
Section 16.2 Classifying Images of Single Objects 504

FIGURE 16.18: Not all scene categories are easily distinguished by humans. These are
examples from the SUN dataset (Xiao et al. 2010). On the top of each column is an ex-
ample of a difficult category; below are examples from three categories that are commonly
confused with it by people. Such confusions might result from difficulties in knowing the
category boundaries (which aren’t canonical), or the terms (or categories) are unfamiliar,
or because the images are ambiguous. This figure was originally published as Figure 3 of
“SUN database: Large-scale Scene Recognition from Abbey to Zoo,” by J. Xiao, J. Hays,
K. Ehinger, A. Oliva, and A. Torralba, Proc. IEEE CVPR 2010, c© IEEE, 2010.

16.2 CLASSIFYING IMAGES OF SINGLE OBJECTS

Many interesting images contain essentially a single object on a simple background.
Some images, such as catalogue pictures, are composed this way. Others just hap-
pen to be this way. Images like this are important in image search, because searchers
typically compose quite simple queries (e.g., “elephant” rather than “long shot
showing mopani bush near a waterhole with an elephant in the bottom left and
baboons frolicking”) and so might not object to quite simple responses. Another
reason that they’re important is that it might be easier to learn models of object
category from such images, rather than from general images. A core challenge in
computer vision is to learn to classify such images.

A bewildering variety of features and classifiers has been tried on this problem;
Section 16.2.1 makes some general remarks about approaches that seem successful.
The classification process is rather naturally linked to image search, and so image
search metrics are the usual way to evaluate classifiers (Section 16.2.2). Large-scale
experimental work in image classification is difficult (one must collect and label

Section 16.2 Classifying Images of Single Objects 505

images; and one must train and evaluate methods on very large datasets), and
as a result there are unavoidable flaws in all experimental paradigms at present.
However, trends suggest significant improvements in the understanding of image
classification over the last decade. There are two general threads in current work.
One can try to increase the accuracy of methods using a fixed set of classes (Sec-
tion 16.2.3), and so gain some insight into feature constructions. Alternatively, one
might try to handle very large numbers of classes (Section 16.2.4), and so gain some
insight into what is discriminative in general.

16.2.1 Image Classification Strategies

The general strategy is to compute features, and then present feature vectors to
a multi-class classifier. A very great variety of methods can be produced using
this strategy, depending on what features and what classifier one uses. However,
there are some general statements one can make. The features we described earlier
predominate (which is why we described them). Methods typically use variants of
HOG and SIFT features, combined with color features. Methods commonly use
dictionaries of visual words, though there is great variation in the precise way these
dictionaries are built. Spatial pyramid and pyramid match kernels seem to give
very strong performance in representing images. A wide variety of classifiers are
then applied to the resulting features; different reasonable choices of classifier give
slightly different results, but no single classifier appears to have an overwhelming
advantage.

Most research in this area is experimental in nature, and building datasets is a
major topic. Fortunately, datasets are freely shared, and there is much competition
to get the best performance on a particular dataset. Furthermore, much feature and
classifier code is also freely shared. In turn, this means that it is usually relatively
straightforward to try and reproduce cutting-edge experiments. Section 16.3 gives
a detailed survey of datasets and code available as of the time of writing.

There are so many methods, each with slight advantages, that it is difficult
to give a crisp statement of best practice. The first thing we would do when
presented with a novel image classification problem would be to compute visual
words for feature locations on an image grid. These visual words would be vector
quantized with a large number of types (104 or 105, if enough data is available).
We would then represent images with a histogram of the visual words and classify
them using a histogram intersection kernel. If we were unhappy with the results, we
would first vary the number of types of visual word, then apply a spatial pyramid
kernel. After that, we would start searching through the different packages for
feature computation described in Section 16.3.1, and perhaps search different types
of classifier.

16.2.2 Evaluating Image Classification Systems

Image retrieval is related to image classification. In image retrieval, one queries
a very large collection of images with a query—which could be keywords, or an
image—and wishes to get matching images back (Chapter 21 surveys this area). If
the query is a set of keywords and we expect keyword matches, then there must
be some form of image classification engine operating in the background to attach

Section 16.2 Classifying Images of Single Objects 506

keywords to images. For this reason, it is quite usual to use metrics from image
retrieval to evaluate image classification methods.

Information retrieval systems take a query, and produce a response from a
collection of data items. The most important case for our purposes is a system
that takes a set of keywords and produces a set of images taken from a collection.
These images are supposed to be relevant to the keyword query. Typically, two
terms are used to describe the performance of information retrieval systems. The
percentage of relevant items that are actually recovered is known as the recall. The
percentage of recovered items that are actually relevant is known as the precision. It
is natural to use these measures to evaluate an image classification system, because
this system is attaching a label — which is rather like a keyword—to a set of test
images.

It is tempting to believe that good systems should have high recall and high
precision, but this is not the case. Instead, what is required for a system to be good
depends on the application, as the following examples illustrate.

Patent searches: Patents can be invalidated by finding “prior art” (material
that predates the patent and contains similar ideas). A lot of money can depend on
the result of a prior art search. This means that it is usually much cheaper to pay
someone to wade through irrelevant material than it is to miss relevant material,
so very high recall is essential, even at the cost of low precision.

Web and email filtering: US companies worry that internal email contain-
ing sexually explicit pictures might create legal or public relations problems. One
could have a program that searched email traffic for problem pictures and warned
a manager if it found anything. Low recall is fine in an application like this; even
if the program has only 10% recall, it will still be difficult to get more than a small
number of pictures past it. High precision is very important, because people tend
to ignore systems that generate large numbers of false alarms.

Looking for an illustration: There are various services that provide stock
photographs or video footage to news organizations. These collections tend to have
many photographs of celebrities; one would expect a good stock photo service to
have many thousands of photographs of Nelson Mandela, for example. This means
that a high recall search can be a serious nuisance, as no picture editor really wants
to wade through thousands of pictures. Typically, staff at stock photo organizations
use their expertise and interviews with customers to provide only a very small subset
of relevant pictures.

There are a variety of ways of summarizing recall and precision data to make
it more informative. F -measures are weighted harmonic means of precision and
recall. Write P for precision and R for recall. The F1-measure weights precision
and recall evenly, and is given by

F1 = 2
PR

P +R
.

The Fβ-measure weights recall β times as strongly as recall, and is given by

Fβ = (1 + β2)
PR

β2P +R
.

Usually, it is possible to adjust the number of items that a system returns in re-

Section 16.2 Classifying Images of Single Objects 507

AP=0.70

AP=0.55

AP=0.81

AP=0.49

FIGURE 16.19: Plots of precision as a function of recall for six object queries. Notice
how precision generally declines as recall goes up (the occasional jumps have to do with
finding a small group of relevant images; such jumps would become arbitrarily narrow
and disappear in the limit of an arbitrarily large dataset). Each query is made using the
system sketched in Figure 16.5. Each graph shows a different query, for two different
configurations of that system. On top of each graph, we have indicated the average
precision for each of the configurations. Notice how the average precision is larger for
systems where the precision is higher for each recall value. This figure was originally
published as Figure 9 of J. Sivic and A. Zisserman “Efficient Visual Search for Objects in
Videos,” Proc. IEEE, Vol. 96, No. 4, April 2008 c© IEEE 2008.

sponse to a query. As this pool gets bigger, the recall will go up (because we are
recovering more items) and the precision will go down. This means we can plot
precision against recall for a given query. Such a plot gives a fairly detailed pic-
ture of the system’s behavior, and particular profiles are important for particular
applications (Figure 16.19). For example, for web search applications, we would
typically like high precision at low recall, and are not concerned about how quickly
the precision dies off as the recall increases. This is because people typically don’t
look at more than one or two pages of query results before rephrasing their request.
For patent search applications, on the other hand, the faster the precision dies off,
the more stuff we might have to look at, so the rate at which precision falls off
becomes important.

An important way to summarize a precision-recall curve is the average preci-
sion, which is computed for a ranking of the entire collection. This statistic averages
the precision at which each new relevant document appears as we move down the
list. Write rel(r) for the binary function that is one when the rth document is
relevant, and otherwise zero; P (r) for the precision of the first r documents in the
ranked list; N for the number of documents in the collection; and Nr for the total
number of relevant documents. Then, average precision is given by

A =
1

Nr

N∑

r=1

(P (r)rel(r))

Notice that average precision is highest (100%) when the top Nr documents are
the relevant documents. Averaging over all the relevant documents means the

Section 16.2 Classifying Images of Single Objects 508

statistic incorporates information about recall; if we were to average over the top
10 relevant documents, say, we would not know how poor the precision was for the
lowest-ranked relevant document. The difficulty for vision applications is that many
relevant documents will tend to be ranked low, and so average precision statistics
tend to be low for image searches. This doesn’t mean image searches are useless,
however.

All of these statistics are computed for a single query, but most systems are
used for multiple queries. Each statistic can be averaged over multiple queries.
The choice of queries to incorporate in the average usually comes from application
logic. Mean average precision, the average precision averaged over a set of queries,
is widely used in object recognition circles. In this case, the set of possible queries
is typically relatively small, and the average is taken over all queries.

16.2.3 Fixed Sets of Classes

The Pascal Challenge is a series of challenge problems set to the vision commu-
nity by members of the Pascal network. From 2005–2010, the Pascal Challenge
has included image classification problems. From 2007–2010, these problems in-
volved 20 standard classes (including aeroplane, bicycle, car and person). Ex-
amples of these images can be found at http://pascallin.ecs.soton.ac.uk/

challenges/VOC/voc2010/examples/index.html. Table 16.1 shows average pre-
cisions obtained by the best method per class (meaning that the method that did
best on aeroplanes might not be the same as the method that did best at bicycles)
from 2007–2010. Note the tendency for results to improve, though there is by no
means monotonic improvement. For these datasets, the question of selection bias
does not arise, as a new dataset is published each year. As a result, it is likely
that improvements probably do reflect improved features or improved classification
methodologies. However, it is still difficult to conclude that methods that do well
on this challenge are good, because the methods might be adapted to the set of
categories. There are many methods that participate in this competition, and dif-
ferences between methods are often a matter of quite fine detail. The main website
(http://pascallin.ecs.soton.ac.uk/challenges/VOC/) is a rich mine of infor-
mation, and has a telegraphic description of each method as well as some pointers
to feature software.

Error rates are still fairly high, even with relatively small datasets. Some of
this is most likely caused by problematic object labels. These result from the occa-
sional use of obscure terms (for example, few people know the difference between
a “yawl” and a “ketch” or what either is, but each is represented in the Caltech
101 dataset). Another difficulty is a natural and genuine confusion about what
term applies to what instance. Another important source of error is that current
methods cannot accurately estimate the spatial support of the object (respectively,
background), and so image representations conflate the two somewhat. This is
not necessarily harmful—for example, if objects are strongly correlated with their
backgrounds, then the background is a cue to object identity—but can cause errors.
Most likely, the main reason that error rates are high is that we still do not fully un-
derstand how to represent objects, and the features that we use do not encapsulate
all that is important, nor do they suppress enough irrelevant information.

Section 16.2 Classifying Images of Single Objects 509

Category 2007 2008 2009 2010

aeroplane 0.775 0.811 0.881 0.933
bicycle 0.636 0.543 0.686 0.790
bird 0.561 0.616 0.681 0.716
boat 0.719 0.678 0.729 0.778
bottle 0.331 0.300 0.442 0.543
bus 0.606 0.521 0.795 0.859
car 0.780 0.595 0.725 0.804
cat 0.588 0.599 0.708 0.794
chair 0.535 0.489 0.595 0.645
cow 0.426 0.336 0.536 0.662

diningtable 0.549 0.408 0.575 0.629
dog 0.458 0.479 0.593 0.711
horse 0.775 0.673 0.731 0.820

motorbike 0.640 0.652 0.723 0.844
person 0.859 0.871 0.853 0.916

pottedplant 0.363 0.318 0.408 0.533
sheep 0.447 0.423 0.569 0.663
sofa 0.509 0.454 0.579 0.596
train 0.792 0.778 0.860 0.894

tvmonitor 0.532 0.647 0.686 0.772

methods 2 5 4 6
comp 17 18 48 32

TABLE 16.1: Average precision of the best classification method for each category for
the Pascal image classification challenge by year (per category; the method that was best
at “person” might not be best at “pottedplant”), summarized from http://pascallin.

ecs.soton.ac.uk/challenges/VOC/. The bottom rows show the number of methods in
each column and the total number of methods competing (so, for example, in 2007, only
2 of 17 total methods were best in category; each of the other 15 methods was beaten by
something for each category). Notice that the average precision grows, but not necessarily
monotonically (this is because the test set changes). Most categories now work rather
well.

16.2.4 Large Numbers of Classes

The number of categories has grown quite quickly. A now little-used dataset had
five classes in it; in turn, this was replaced with a now obsolete ten class dataset;
a 101-class dataset; a 256-class dataset; and a 1,000-class dataset (details in Sec-
tion 16.3.2). Figure 16.20 compares results of recent systems on Caltech 101 (the
101-class dataset described in Section 16.3.2) and on Caltech 256 (256-classes; Sec-
tion 16.3.2). For these datasets, some care is required when one computes error
statistics. Two statistics are natural. The first is the percent of classification at-
tempts that are successful over all test examples. This measure is not widely used,
for the following reason: imagine that one class is numerous, and easy to classify;
then the error statistic will be dominated by this class, and improvements may
just mean that one is getting better at classifying this class. However, for some
applications, this might be the right thing. For example, if one is confident that
the dataset represents the relative frequency of classes well, then this error rate is

Section 16.2 Classifying Images of Single Objects 510

FIGURE 16.20: Graphs illustrating typical performance on Caltech 101 for single descriptor
types (left) and on Caltech 256 for various types of descriptor (right; notice the vertical
scale is different), plotted against the number of training examples. Although these figures
are taken from a paper advocating nearest neighbor methods, they illustrate performance
for a variety of methods. Notice that Caltech 101 results, while not perfect, are now quite
strong; the cost of going to 256 categories is quite high. Methods compared are due to:
Zhang et al. (2006b), Lazebnik et al. (2006), Wang et al. (2006), Grauman and Darrell
(2005), Mutch and Lowe (2006), Griffin et al. (2007), and Pinto et al. (2008); the graph
is from Gehler and Nowozin (2009), which describes multiple methods (anything without
a named citation on the graph). This figure was originally published as Figure 2 of “On
Feature Combination for Multiclass Object Classification,” by P. Gehler and S. Nowozin
Proc. ICCV 2009, 2009 c© IEEE 2009.

a good estimate of the problems that will be encountered when using the classifier.
The other statistic that is natural is the average of per-class error rates. This

weights down the impact of frequent classes in the test dataset; to do well at this
error measure, one must do well at all classes, rather than at frequent classes. This
statistic is now much more widely used, because there is little evidence that classes
occur in datasets with the same frequency they occur in the world.

It is usual to report performance as the number of training examples goes
up, because this gives an estimate of how well features (a) suppress within class
variations and (b) expose between class variations. Notice how the performance of
all methods seems to stop growing with the number of training examples (though it
is hard to confirm what happens with very large numbers, as some categories have
relatively few examples).

Generally, strong modern methods do somewhat better on Caltech 101 than
on Caltech 256, and better on Caltech 256 than on datasets with more categories,
though it is difficult to be sure why. One possibility is that classification becomes
a lot harder when the number of categories grows, most likely because of feature
effects. Deng et al. (2010) show that the performance of good modern methods
declines as the number of categories increases, where the set of categories is se-
lected at random from a very large set. This suggests that increasing the number
of categories exposes problems in feature representations that might otherwise go
unnoticed, because it increases the chances that two of the categories are quite sim-

Section 16.2 Classifying Images of Single Objects 511

ilar (or at least look similar to the feature representation). As a result, performance
tends to go down as the number of categories is increased. Another possibility is
that Caltech 101 is a more familiar dataset, and so feature design practices have
had more time to adapt to its vagaries. If this is the case, then methods that do
well on this dataset are not necessarily good methods; instead, they are methods
that have been found by the community to do well on a particular dataset, which
is a form of selection bias. Yet another, equally disturbing possibility is that no
current methods do well on large collections of categories because it is so hard to
search for a method that does so. The pragmatics of dealing with large numbers
of categories is very demanding. Simply training a single method may take CPU
years and a variety of clever tricks; classifying a single image also could be very
slow (Deng et al. 2010).

Working with large numbers of categories presents other problems, too. Not
all errors have the same significance, and the semantic status of the categories is
unclear (Section 18.1.3). For example, classifying a cat as a dog is probably not
as offensive as classifying it as a motorcycle. This is a matter of loss functions. In
practice, it is usual to use the so-called 0-1 loss, where any classification error incurs
a loss of one (equivalently, to count errors). This is almost certainly misleading,
and is adopted mainly because it is demanding and because there is no consensus
on an appropriate replacement. One possibility, advocated by (Deng et al. 2010), is
to use semantic resources to shape a loss function. For example, Wordnet is a large
collection of information about the semantic relations between classes (Fellbaum
(1998); Miller et al. (1990)). Words are organized into a hierarchy. For exam-
ple, “dog” (in the sense of an animal commonly encountered as a domestic pet)
has child nodes (hyponyms), such as “puppy,” and ancestors (hypernyms) “canid,”
“carnivore,” and, eventually, “entity.” A reasonable choice of loss function could
be the hop distance in this tree between terms. In this case, “dog” and “cat” would
be fairly close, because each has “carnivore” as a grandparent node, but “dog” and
“motorcycle” are quite different, because their first common ancestor is many levels
removed (“whole”). One difficulty with this approach is that some objects that are
visually quite similar and appear in quite similar contexts might be very different
in semantics (bird and aircraft, for example). Deng et al. (2010) advocate using the
height above the correct label of the nearest ancestor, common between the correct
and predicted label.

16.2.5 Flowers, Leaves, and Birds: Some Specialized Problems

Image classification techniques are valuable in all sorts of specialized domains. For
example, there has been considerable recent progress in classifying flowers automat-
ically from pictures. A natural system architecture is to query a collection of labeled
flower images with a query image. If a short list of similar images contains the right
flower, that might be sufficient, because geographic distribution cues might rule out
all other flowers on the list. The problem is tricky because within-class variation
could be high, as a result of pictures taken from different viewing directions, and
between-class variation can be low (Figure 16.21). Nilsback and Zisserman (2010)
describe a system for matching flower images that computes color, texture, and
shape features, then learns a combination of distances in each feature that gives

Section 16.3 Image Classification in Practice 512

Pansy
Fritillary Tiger Lily

Dandelion - A Colts’ foot Dandelion -B

FIGURE 16.21: Identifying a flower from an image is one useful specialized application for
image classification techniques. This is a challenging problem. Although some flowers have
quite distinctive features (for example, the colors and textures of the pansy, the fritillary,
and the tiger lily), others are easy to confuse. Notice that dandelion-A (bottom) looks
much more like the colts’ foot than like dandelion-B. Here the within-class variation is
high because of changes of aspect, and the between-class variation is small. This figure was
originally published as Figures 1 and 8 of “A Visual Vocabulary for Flower Classification,”
by M.E. Nilsback and A. Zisserman, Proc. IEEE CVPR 2006, c© IEEE 2006.

the best performance for this short list; the best results on this dataset to date are
due to a complex multiple-kernel learning procedure (Gehler and Nowozin 2009).

Belhumeur et al. (2008) describe a system for automatic matching of leaf
images to identify plants; they have released a dataset at http://herbarium.cs.
columbia.edu/data.php. This work has recently resulted in an iPad app, named
Leafsnap, that can identify trees from photographs of their leaves (see http://

leafsnap.com).
Often, although one cannot exactly classify every image, one can reduce the

load on human operators in important ways with computer vision methods. For
example, Branson et al. (2010) describe methods to classify images of birds to
species level that use humans in the loop, but can reduce the load on the human
operator. Such methods are likely to lead to apps that will be used by the very
large number of amateur birdwatchers.

16.3 IMAGE CLASSIFICATION IN PRACTICE

Numerous codes and datasets have been published for image classification; the next
two sections give some pointers to materials available at the time of writing. Image
classification is a subject in flux, so methods change quickly. However, one can still
make some general statements. Section 16.3.3 summarizes the difficulties that result
because datasets cannot be as rich as the world they represent, and Section 16.3.4
describes methods for collecting data relatively cheaply using crowdsourcing.

Section 16.3 Image Classification in Practice 513

16.3.1 Codes for Image Features

Oliva and Torralba provide GIST feature code at http://people.csail.mit.edu/
torralba/code/spatialenvelope/, together with a substantial dataset of outdoor
scenes.

Color descriptor code, which computes visual words based on various color
SIFT features, is published by van de Sande et al at http://koen.me/research/
colordescriptors/.

The pyramid match kernel is an earlier variant of the spatial pyramid kernel
described in Section 16.1.4; John Lee provides a library, libpmk, that supports this
kernel at http://people.csail.mit.edu/jjl/libpmk/. There are a variety of
extension libraries written for libpmk, including implementations of the pyramid
kernel, at this URL.

Li Fei-Fei, Rob Fergus, and Antonio Torralba publish example codes for
core object recognition methods at http://people.csail.mit.edu/torralba/

shortCourseRLOC/. This URL is the online repository associated with their very
successful short course on recognizing and learning object categories.

VLFeat is an open-source library that implements a variety of popular com-
puter vision algorithms, initiated by Andrea Vedaldi and Brian Fulkerson; it can
be found at http://www.vlfeat.org. VLFeat comes with a set of tutorials that
show how to use the library, and there is example code showing how to use VLFeat
to classify Caltech-101.

There is a repository of code links at http://featurespace.org.
At the time of writing, multiple-kernel learning methods produce the strongest

results on standard problems, at the cost of quite substantial learning times. Sec-
tion 15.3.3 gives pointers to codes for different multiple-kernel learning methods.

16.3.2 Image Classification Datasets

There is now a rich range of image classification datasets, covering several applica-
tion topics. Object category datasets have images organized by category (e.g.,
one is distinguishing between “bird”s and “motorcycle”s, rather than between
particular species of bird). Five classes (motorbikes, airplanes, faces, cars, spot-
ted cats, together with background, which isn’t really a class) were introduced
by Fergus et al. (2003) in 2003; they are sometimes called Caltech-5. Caltech-
101 has 101 classes, was introduced in Perona et al. (2004) and by Fei-Fei et al.
(2006), and can be found at http://www.vision.caltech.edu/Image_Datasets/
Caltech101/. This dataset is now quite well understood, but as Figure 16.20
suggests, it is not yet exhausted. Caltech-256 has 256 classes, was introduced
by (Griffin et al. 2007), and can be found at http://www.vision.caltech.edu/
Image_Datasets/Caltech256/. This dataset is still regarded as challenging.

LabelMe is an image annotation environment that has been used by many
users to mark out and label objects in images; the result is a dataset that is changing
and increasing in size as time goes on. LabelMe was introduced by Russell et al.
(2008), and can be found at http://labelme.csail.mit.edu/.

The Graz-02 dataset contains difficult images of cars, bicycles, and people in
natural scenes; it is originally due to Opelt et al. (2006), but has been recently
reannotated Marszalek and Schmid (2007). The reannotated edition can be found

Section 16.3 Image Classification in Practice 514

FIGURE 16.22: Torralba and Efros (2011) show one disturbing feature of modern classi-
fication datasets; that it is quite easy for skilled insiders to “name that dataset.” Here
we show a sample of images from current datasets (those not described in the text can be
found by a search); you should try and match the image to the dataset. It is surprisingly
easy to do. This figure was originally published as Figures 1 of “Unbiased look at dataset
bias,” by A. Torralba and A. Efros, Proc. IEEE CVPR 2011, c© IEEE 2011.

at http://lear.inrialpes.fr/people/marszalek/data/ig02/.
Imagenet contains tens of millions of examples, organized according to the

Wordnet hierarchy of nouns; currently, there are examples for approximately 17,000
nouns. Imagenet was originally described in Deng et al. (2009), and can be found
at http://www.image-net.org/.

The Lotus Hill Research Institute publishes a dataset of images annoted in
detail at http://www.imageparsing.com; the institute is also available to prepare
datasets on a paid basis.

Each year since 2005 has seen a new Pascal image classification dataset; these
are available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

There are numerous specialist datasets. The Oxford visual geometry group
publishes two flower datasets, one with 17 categories and one with 102 categories;
each can be found at http://www.robots.ox.ac.uk/~vgg/data/flowers/. Other
datasets include a “things” dataset, a “bottle” dataset, and a “camel” dataset, all
from Oxford (http://www.robots.ox.ac.uk/~vgg/data3.html).

There is a bird dataset published by Caltech and UCSD jointly at http:

Section 16.3 Image Classification in Practice 515

//www.vision.caltech.edu/visipedia/CUB-200.html.
Classifying materials has become a standard task, with a standard dataset.

The Columbia-Utrecht (or CURET) material dataset can be found at http://

www.cs.columbia.edu/CAVE/software/curet/; it contains image textures from
over 60 different material samples observed with over 200 combinations of view and
light direction. Details on the procedures used to obtain this dataset can be found
in Dana et al. (1999). More recently, Liu et al. (2010) offer an alternative and
very difficult material dataset of materials on real objects, which can be found at
http://people.csail.mit.edu/celiu/CVPR2010/FMD/.

We are not aware of collections of explicit images published for use as research
datasets, though such a dataset would be easy to collect.

There are several scene datasets now. The largest is the SUN dataset (from
MIT; http://groups.csail.mit.edu/vision/SUN/; Xiao et al. (2010)) contains
130,519 images of 899 types of scene; 397 categories have at least 100 examples per
category. There is a 15-category scene dataset used in the original spatial pyramid
kernel work at http://www-cvr.ai.uiuc.edu/ponce_grp/data/.

It isn’t possible (at least for us!) to list all currently available datasets.
Repositories that contain datasets, and so are worth searching for a specialist
dataset, include: the pilot European Image Processing Archive, currently at http:
//peipa.essex.ac.uk/index.html; Keith Price’s comprehensive computer vision
bibliography, whose root is http://visionbib.com/index.php, and with dataset
pages at http://datasets.visionbib.com/index.html; the Featurespace dataset
pages, at http://www.featurespace.org/; and the Oxford repository, at http:

//www.robots.ox.ac.uk/~vgg/data.html.

16.3.3 Dataset Bias

Datasets can suffer from bias, where properties of the dataset misrepresent prop-
erties of the real world. This is not due to mischief in the collecting process; it
occurs because the dataset must be much smaller than the set of all images of an
object. Some bias phenomena can be quite substantial. For example, Figure 16.22
shows that people can get quite good at telling which dataset a picture was taken
from, as can computers (Figure 16.23, whose caption gives the right answers for
Figure 16.22). As another example, Figure 16.24 shows the mean image of a set
of Caltech 101 images. Clearly, in this case, each image in the dataset looks quite
a lot like every other image in its class and not much like images in other classes.
This doesn’t mean that it is easy to get very strong recognition results; compare
Figure 16.20. The best current strategies for avoiding bias are (a) to collect large
datasets from a variety of different sources; (b) to evaluate datasets carefully using
baseline methods before using them to evaluate complex methods; and (c) to try
and quantify the effects of bias by evaluating on data collected using a different
strategy than that used to collect the training data. Each is fairly crude. Improved
procedures would be most valuable.

16.3.4 Crowdsourcing Dataset Collection

Recently, dataset builders have made extensive use of crowdsourcing, where one
pays people to label data. One such service is Amazon’s Mechanical Turk. Crowd-

Section 16.3 Image Classification in Practice 516

FIGURE 16.23: Computers do very well at “name that dataset.” On the left, classification
accuracy as a function of training size for some different features; notice that classifiers
are really quite good at telling which dataset a picture came from. On the right, the class
confusion matrix, which suggests that these datasets are well-separated. The answers
to the question in Figure 16.22 are: (1) Caltech-101, (2) UIUC, (3) MSRC, (4) Tiny
Images, (5) ImageNet, (6) PASCAL VOC, (7) LabelMe, (8) SUNS-09, (9) 15 Scenes, (10)
Corel, (11) Caltech-256, (12) COIL-100. This figure was originally published as Figure 2
of “Unbiased look at dataset bias,” by A. Torralba and A. Efros, Proc. IEEE CVPR 2011,
c© IEEE 2011.

sourcing services connect people on the Internet willing to do tasks for money with
people who have tasks and money. Generally, one builds an interface to support the
task (for example, your interface might display an image and some radio buttons to
identify the class), then registers the task and a price. Workers then do the task, you
pay the service, and they transmit money to the workers. Important issues here are
quality control—are people doing what you want them to do?—and pricing—how
much should you pay for a task? Quality control strategies include: prequalifying
workers; sampling tasks and excluding workers who do the task poorly; and using
another set of workers to evaluate the results of the first set. We are not aware
of good principled pricing strategies right now. However, some guidelines can be
helpful. Workers seem to move quickly from task to task, looking for ones that are
congenial and well-paid. This means that all tasks seem to experience a rush of
workers, which quickly tails off if the price is wrong. Paying more money always
seems to help get tasks completed faster. There seems to be a pool of workers who
are good at identifying overpaid tasks with poor quality control, but most workers
are quite conscientious. Finally, interface design can have a huge impact on the
final accuracy of labeled data. These ideas are now quite pervasive. Examples of
recent datasets built with some input from Mechanical Turk include Deng et al.
(2009), Endres et al. (2010), Parikh and Grauman (2011), and Xiao et al. (2010).
Sorokin and Forsyth (2008) give a variety of strategies and methods to use the
service. Vijayanarasimhan and Grauman (2011) supply good evidence that active

Section 16.4 Notes 517

FIGURE 16.24: The average image for each of 100 categories from the Caltech 101 image
classification dataset. Fairly obviously, these pictures consist of isolated objects, and the
mean of each class is far away from the mean of other classes. This does not mean that
these images are easy to classify (compare Figure 16.20); instead, it is an illustration of
the fact that all datasets must contain statistical regularities that are not present in the
world. This figure created by A. Torralba, and used with his permission.

learning can improve costs and quality; see also Vijayanarasimhan and Grauman
(2009). Vondrick et al. (2010) show methods to balance human labor (which is
expensive and slow, but more accurate) with automatic methods (which can prop-
agate existing labels to expose what is already known, and can be fast and cheap)
for video annotation. Crowdflower, which is a service that helps build APIs and
organize crowdsourcing, can be found at http://crowdflower.com/.

16.4 NOTES

Generally, successful work in image classification involves constructing features that
expose important properties of the classes to the classifier. The classifier itself can
make some difference, but seems not to matter all that much. We have described
the dominant feature constructions, but there is a particularly rich literature on
feature constructions; there are pointers to this in the main text.

We suspect that the best methods for explicit image detection are not pub-
lished now, but instead just used, because good methods appear to have real fi-
nancial value. All follow the lines sketched out in our section, but using a range of
different features and of classifiers. Experiments are now on a relatively large scale.

One application we like, but didn’t review in this chapter, is sign language
understanding. Here an automated method watches a signer, and tries to transcribe
the sign language into text. Good start points to this very interesting literature

Section 16.4 Notes 518

include Starner et al. (1998), Buehler et al. (2009), Cooper and Bowden (2009),
Farhadi et al. (2007), Erdem and Sclaroff (2002), Bowden et al. (2004), Buehler et
al. (2008), and Kadir et al. (2004). Athitsos et al. (2008) describe a dataset.

Visual words are a representation of important local image patches. While the
construction we described is fairly natural, it is not the only possible construction.
It is not essential to describe only interest points; one could use a grid of sample
points, perhaps as fine as every pixel. The description does not have to be in
terms of SIFT features. For example, one might extend it by using some or all
of the color sift features described briefly in Section 5.4.1. Many authors instead
compute a vector of filter responses (section 6.1 for this as a texture representation;
section 16.1.8 for applications to texture material classification). An important
alternative is to work directly with small local image patches, say 5 × 5 pixels in
size. The vocabulary of such visual words could be very big indeed, and special
clustering techniques are required to vector quantize. In each case, however, the
main recipe remains the same: decide on a way of identifying local patches (interest
points, sampling, etc.); decide on a local patch representation; vector quantize this
representation to form visual words; then represent the image or the region with a
histogram of the important visual words.

PROGRAMMING EXERCISES

16.1. Build a classifier that classifies materials using the dataset of Liu et al. (2010).
Compare the performance of your system using the main feature constructions
described here (GIST features; visual words; spatial pyramid kernel). Investi-
gate the effect of varying the feature construction; for example, is it helpful to
use C-SIFT descriptors?

16.2. Build a classifier that classifies scenes using the dataset of Xiao et al. (2010).
Compare the performance of your system using the main feature constructions
described here (GIST features; visual words; spatial pyramid kernel). Investi-
gate the effect of varying the feature construction; for example, is it helpful to
use C-SIFT descriptors?

16.3. Search online for classification and feature construction codes, and replicate
an image classification experiment on a standard dataset (we recommend a
Caltech dataset or a PASCAL dataset; your instructor may have an opinion,
too). Do you get exactly the same performance that the authors claim? Why?

