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well, because manufacturers try to have sensitivities that are reasonably compat-
ible with human receptor sensitivities. They do this so that cameras give about
the same responses to colored lights that people do; as a result, cameras tend to
have quite similar receptor sensitivities. There are three ways to proceed: install
narrow-band filters in front of the lens (difficult to do and seldom justified); apply a
transformation to the receptor outputs that makes them behave more like narrow-
band receptors (often helpful, if the necessary data are available, Finlayson et al.
(1994b);Barnard et al. (2001a)); or assume that they are narrow-band receptors
and tolerate any errors that result (generally quite successful).

3.42 The Specular Term

The specular component will have a characteristic color, and its intensity will change
with position. We can model the specular component as

gs(z)s(z),
where s(x) is the unit intensity image color of the specular reflection at that pixel,
and g;(x) is a term that varies from pixel to pixel, and models the amount of energy
specularly reflected. We expect gs(x) to be zero at most points, and large at some
points.

The color s(x) of the specular component depends on the material. Generally,
metal surfaces have a specular component that is wavelength dependent and so
takes on a characteristic color that depends on the metal (gold is yellow, copper
is orange, platinum is white, and osmium is blue or purple). Surfaces that do
not conduct—dielectric surfaces— have a specular component that is independent
of wavelength (e.g., the specularities on a shiny plastic object are the color of the
light). Section 3.5.1 describes how these properties can be used to find specularities,
and to find image regions corresponding to metal or plastic objects.

3.5 INFERENCE FROM COLOR

Our color model supports a variety of inferences. It can be used to find specular-
ities (Section 3.5.1); to remove shadows (Section 3.5.2); and to infer surface color
(Section 3.5.3).

3.5.1 Finding Specularities Using Color

Specular reflections can have strong effects on an object’s appearance. Typically,
they appear as small, bright patches, called highlights or specularities. Highlights
have a substantial effect on human perception of a surface properties; the addition
of small, highlight-like patches to a figure makes the object depicted look glossy
or shiny. Specularities are often bright enough to saturate the camera, so that the
color of a specularity can be hard to measure. However, because the appearance of
a specularity is quite strongly constrained, there are a number of effective schemes
for marking them, and the results can be used as a shape cue.

The dynamic range of practically available albedoes is relatively small. Sur-
faces with very high or very low albedo are difficult to make. Uniform illumination
is common too, and most cameras are reasonably close to linear within their operat-
ing range. This means that very bright patches cannot be due to diffuse reflection;
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FIGURE 3.18: The linear clusters produced by specularities on plastic objects can be
found by reasoning about windows of image pixels. In a world of plastic objects on a
black background, a background window produces a region of pixels that are point-like in
color space—all pixels have the same color. A window that lies along the body produces a
line-like cluster of points in color space, because the intensity varies, but the color does not.
At the boundary of a specularity, windows produce plane-like clusters because points are
a weighted combination of two different colors (the specular and the body color). Finally,
at the interior of a specular region, the windows can produce volume-like clusters, because
the camera saturates, and the extent of the window can include both the boundary-style
window and saturated points. Whether a region is line-like, plane-like, or volume-like can
be determined easily by looking at the eigenvalues of the covariance of the pixels.

they must be either sources (of one form or another—perhaps a stained glass win-
dow with the light behind it) or specularities. Furthermore, specularities tend to
be small. Thus, looking for small, bright patches can be an effective way to find
specularities (Brelstaff and Blake 1988a).

An alternative is to use image color. From our model, the color of specularities
on dielectric objects is the color of the light source. Assume we can ignore the
interreflection term, either because we have an isolated object or because the term
doesn’t change much over the object we are viewing. Our model gives the image
color as a sum of a diffuse term and a specular term. Now consider a patch of
surface around a specularity. We expect that this patch is small, because we expect
specularities to be small (this will be true on curved surfaces; the approach we are
describing might not work for flat surfaces). Because the patch is small, we expect
that d(x) does not change in the patch; we do not expect to be unlucky, and have
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a specularity on an albedo boundary. We expect that s(x) does not change within
the patch, because the color of the specularity will be the color of the light source,
and this will not change within a small patch.

On a dielectric object, as we move from a patch with no specular reflection
to one with a specular component, the image color will change, because the size of
the specular component changes. We can write the image color as

ga(x)d + gs(x)s,

where s is the color of the source and d is the color of the diffuse reflected light,
ga(x) is the geometric term that depends on the orientation of the surface, and
gs(x) is a term that gives the extent of the specular reflection.

If the object is curved, then gs(x) is small over much of the surface and
large only around specularities; gq(x) varies more slowly with the orientation of
the surface. We now map the colors produced by this surface in receptor response
space and look at the structures that appear there.

The term g4(x)d produces a line that should extend to pass through the origin
because it represents the same vector of receptor responses multiplied by a constant
that varies over space. If there is a specularity, then we expect to see a second line
due to gs(x)s. This does not, in general, pass through the origin (because of the
diffuse term). This is a line, rather than a planar region, because g (x) is large
over only a small range of surface normals. We expect that, because the surface
is curved, this corresponds to a small region of surface. The term gq4(x) should be
approximately constant in this region. We expect a line, rather than an isolated
pixel value, because we expect surfaces to have (possibly narrow) specular lobes,
meaning that the specular coefficient has a range of values. This second line might
collide with a face of the color cube and get clipped.

The resulting dog-leg pattern leads pretty much immediately to a specularity
marking algorithm: find the pattern and then find the specular line. All the pixels
on this line are specular pixels, and the specular and diffuse components can be
estimated easily. For the approach to work effectively, we need to be confident that
only one object is represented in the collection of pixels. This is helped by using
local image windows, as illustrated by Figure 3.18. The observations underlying the
method hold even if the surface is not monochrome—a coffee mug with a picture on
it, for example—but finding the resulting structures in the color space now becomes
something of a nuisance and, to our knowledge, has not been demonstrated.

3.5.2 Shadow Removal Using Color

Lightness methods make the assumption that “fast” edges in images are due to
changes in albedo (Section 2.2.3). This assumption is usable, but fails badly at
shadows, particularly shadows in sunlight outdoors (Figure 3.20), where there can
be a large and fast change of image brightness. People usually are not fooled into
believing that a shadow is a patch of dark surface, so must have some method to
identify shadow edges. Home users often like editing and improving photographs,
and programs that could remove shadows from images would be valuable. A shadow
removal program would work something like a lightness method: find all edges,
identify the shadow edges, remove those, and then integrate to get the picture
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back.

There are some cues for finding shadow edges that seem natural, but don’t
work well. One might assume that shadow edges have very large dynamic range
(which albedo edges can’t have; see Section 2.1.1), but this is not always the case.
One might assume that, at a shadow edge, there was a change in brightness but not
in color. It turns out that this is not the case for outdoor shadows, because the lit
region is illuminated by yellowish sunlight, and the shadowed region is illuminated
by bluish light from the sky, or sometimes by interreflected light from buildings,
and so on. However, a really useful cue can be obtained by modelling the different
light sources.

We assume that light sources are black bodies, so that their spectral energy
density is a function of temperature. We assume that surfaces are diffuse. We
use the simplified black-body model of Section 3.2.1, where, writing T for the
temperature of the body in Kelvins, h for Planck’s constant, k& for Boltzmann’s
constant, ¢ for the speed of light, and A\ for the wavelength, we have

exp(—hc/kAT)

ENT)=C G

(C is some constant of proportionality). Now assume that the color receptors each
respond only at one wavelength, which we write )\, for the k’th receptor, so that
orx(A) = 6(A = Ap). If we view a surface with spectral albedo p(A) illuminated by
one of these sources at temperature 7', the response of the j’'th receptor will be

ry = / 7oK PRI Kp(Aj)—exp(_];%/ FAT).

We can form a color space that is very well behaved by taking ¢; = log(r1/r3),

co = log(ra/r3), because
ca\ [ a 1/
(a)=()r2 ()

where a1 = log p(A1) —log p(A3) +5log A3 — 5log A1 and by = (he/k)(1/A3 — 1/ A1)
(and ag, by follow). Notice that, when one changes the color temperature of the
source, the (c1,c2) coordinates move along a straight line. The direction of the
line depends on the sensor, but not on the surface. Call this direction the color
temperature direction. The intercept of the line depends on the surface.

Now consider a world of colored surfaces, and map the image colors to this
space. There is a family of parallel lines in this space, whose direction is the color
temperature direction. Different surfaces may map to different lines. If we change
the color temperature of the illuminant, then each color in this space will move
along the color temperature direction, but colors will not move from line to line.
We now represent a surface color by its line. For example, we could construct a
line through the origin that is perpendicular to color temperature direction, then
represent a surface color by distance along this line (Figure 3.19). We can represent
each pixel in the image in this space, and in this representation the color image
becomes a gray-level image, where the gray level does not change inside shadows
(because a shadow region just has a different color temperature to the non-shadowed
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FIGURE 3.19: Changing the color temperature of the light under which a surface is viewed
moves the (c1,c2) coordinates of that surface along the color temperature direction (left;
the different gray patches represent the same surface under different lights). If we now
project the coordinates along the (c1,c2) direction onto some line, we obtain a value that
doesn’t change when the illuminant color temperature changes. This is the invariant value
for that pixel. Generally, we do not know enough about the imaging system to estimate
the color temperature direction. However, we expect to see many different surfaces in
each scene; this suggests that the right choice of color temperature direction on the right
is 1 (where there are many different types of surface) rather than 2 (where the range of
invariant values is small).

region). Finlayson (1996) calls this the invariant image. Any edge that appears in
the image but not in the invariant image is a shadow edge, so we can now apply
our original formula: find all edges, identify the shadow edges, remove those, and
then integrate to get the picture back.

Of course, under practical circumstances, usually we do not know enough
about the sensors to evaluate the as and bs that define this family of lines, so we
cannot get the invariant image directly. However, we can infer a direction in (¢1, ¢2)
space that is a good estimate by a form of entropy reasoning. We must choose a
color temperature direction. Assume the world is rich in differently colored surfaces.
Now consider two surfaces S and S3. If ¢; (the (c1,ca) values for S7) and ¢y are
such that ¢; —c3 is parallel to the color temperature direction, we can choose 77 and
T5 so that S; viewed under light with color temperature 77 will look the same as
So viewed under light with color temperature T5. We expect this to be uncommon,
because surfaces tend not to mimic one another in this way. This means we expect
that colors will tend to spread out when we project along a good estimate of the
color temperature direction. A reasonable measure of this spreading out is the
entropy of the histogram of projected colors. We can now estimate the invariant
image, without knowing anything about the sensor. We search directions in (¢1, ¢2)
space, projecting all the image colors along that direction; our estimate of the color
temperature direction is the one where this projection yields the largest entropy.
From this we can compute the invariant image, and so apply our shadow removal
strategy above. In practice, the method works well, though great care is required
with the integration procedure to get the best results (Figure 3.20).
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FIGURE 3.20: The invariant of the text and of Figure 3.19 does not change value when a
surface is shadowed. Finlayson et al. use this to build a shadow removal system that works
by (a) taking image edges; (b) forming an invariant image; then (c¢) using that invariant
image to identify shadow edges; and finally (d) integrating only non-shadow edges to form
the result. The results are quite convincing. This figure was originally published as Figures
2 and 4 of “On the Removal of Shadows From Images,” G. Finlayson, S. Hordley, C. Lu
and M. Drew, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006 (©)
IEEE, 2006.

3.5.3 Color Constancy: Surface Color from Image Color

In our model, the image color depends on both light color and on surface color. If
we light a green surface with white light, we get a green image; if we light a white
surface with a green light, we also get a green image. This makes it difficult to
name surface colors from pictures. We would like to have an algorithm that can
take an image, discount the effect of the light, and report the actual color of the
surface being viewed.

This process is called color constancy. Humans have some form of color con-
stancy algorithm. People are often unaware of this, and inexperienced photogra-
phers are sometimes surprised that a scene photographed indoors under fluorescent
lights has a blue cast, whereas the same scene photographed outdoors may have a
warm orange cast. The simple linear models of Section 3.3 can predict the color
an observer will perceive when shown an isolated spot of light of a given power
spectral distribution. But if this spot is part of a larger, more complex scene, these
models can give wildly inaccurate predictions. This is because the human color
constancy algorithm uses various forms of scene information to decide what color
to report. Demonstrations by Land and McCann (1971), which are illustrated in
Figure 3.21, give convincing examples of this effect. It is surprisingly difficult to
predict what colors a human will see in a complex scene (Fairchild (1998); Helson
(1938a); (1938b); (1934); (1940)). This is one of the many difficulties that make it
hard to produce really good color reproduction systems.

Human color constancy is not perfectly accurate, and people can choose to
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FIGURE 3.21: Land showed an audience a quilt of rectangles of flat colored papers—since
known as a Mondrian for a purported resemblance to the work of that artist—illuminated
using three slide projectors, casting red, green and blue light respectively. He used a
photometer to measure the energy leaving a particular spot in three different channels,
corresponding to the three classes of receptor in the eye. He recorded the measurement,
and asked the audience to name the patch. Assume the answer was “red” (on the left).
Land then adjusted the slide projectors so that some other patch reflected light that gave
the same photometer measurements, and asked the audience to name that patch. The
reply would describe the patch’s color in white light—if the patch looked blue in white
light, the answer would be “blue” (on the right). In later versions of this demonstration,
Land put wedge-shaped neutral density filters into the slide projectors so that the color
of the light illuminating the quilt of papers would vary slowly across the quilt. Again,
although the photometer readings vary significantly from one end of a patch to another,
the audience sees the patch as having a constant color.

disregard information from their color constancy system. As a result, people can
often report:

e the color a surface would have in white light (often called surface color);

e the color of the light arriving at the eye (a useful skill that allows artists to
paint surfaces illuminated by colored lighting); and

e the color of the light falling on the surface.

The model of image color in Section 3.4 is
C(z) = ga(z)d(z) + g5(x)s(z) + i().

We decided to ignore the interreflection term ¢(x). In principle, we could use
the methods of Section 3.5.1 to generate new images without specularities. This
brings us to the term g4(x)d(x). Assume that gs(x) is a constant, so we are
viewing a flat, frontal surface. The resulting term, d(x), models the world as a
collage of flat, frontal, diffuse colored surfaces. Such worlds are sometimes called
Mondrian worlds, after the painter. Notice that, under our assumptions, d(x)
consists of a set of patches of fixed color. We assume that there is a single illuminant
that has a constant color over the whole image. This term is a conglomeration of
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illuminant, receptor, and reflectance information. It is impossible to disentangle
these completely in a realistic world. However, current algorithms can make quite
usable estimates of surface color from image colors given a well-populated world of
colored surfaces and a reasonable illuminant.

Recall from Section 3.4 that if a patch of perfectly diffuse surface with diffuse
spectral reflectance p(\) is illuminated by a light whose spectrum is E()), the
spectrum of the reflected light is p(A\)E(X) (multiplied by some constant to do
with surface orientation, which we have already decided to ignore). If a linear
photoreceptor of the kth type sees this surface patch, its response is:

PkZ/AUk(A)p()\)E()\)dA,

where A is the range of all relevant wavelengths, and o () is the sensitivity of the
kth photoreceptor.

Finite-Dimensional Linear Models

This response is linear in the surface reflectance and linear in the illumination,
which suggests using linear models for the families of possible surface reflectances
and illuminants. A finite-dimensional linear model models surface spectral albedoes
and illuminant spectral energy density as a weighted sum of a finite number of basis
functions. We need not use the same bases for reflectances and for illuminants.

If a finite-dimensional linear model of surface reflectance is a reasonable de-
scription of the world, any surface reflectance can be written as

p(N) =D bV,
j=1

where the ¢;()) are the basis functions for the model of reflectance, and the r;
vary from surface to surface. Similarly, if a finite-dimensional linear model of the
illuminant is a reasonable model, any illuminant can be written as

m

E\) = Z eihi(N),

i=1

where the 1);(\) are the basis functions for the model of illumination.
When both models apply, the response of a receptor of the kth type is

/ o) | S rid () (Zeiwa)) dA
j=1 i=1

= > e </Uk(/\)¢j(/\)7/1i()\)> d\

i=1,j=1

Pk

m,n

= E €il'jGijks

i=1,j=1
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where we expect that the

G = / (N 65 (A (\)dA

are known, as they are components of the world model (they can be learned from
observations; see the exercises).

Inferring Surface Color

The finite-dimensional linear model describes the interaction between illumi-
nation color, surface color, and image color. To infer surface color from image color,
we need some sort of assumption. There are several plausible cues that can be used.

Specular reflections at dielectric surfaces have uniform specular albedo. We
could find the specularities with the methods of that section, then recover surface
color using this information. At a specularity, we have

m

Pk = /Uk()\)zeﬂ/fi(/\)d)\,

i=1

and so if we knew the spectral sensitivities of the sensor and the basis functions ;,
we could solve for e; by solving a linear system. Now we know all e;, and all py for
each pixel. We can solve the linear system

m,n

Pk = Z €iT5Gi5k

i=1,j=1

in the unknown 7; to recover reflectance coefficients.

Known average reflectance is another plausible cue. In this case, we
assume that the spatial average of reflectance in all scenes is constant and known
(e.g., we might assume that all scenes have a spatial average of reflectance that is
dull gray). In the finite-dimensional basis for reflectance, we can write this average
as

> 6.
j=1

Now if the average reflectance is constant, the average of the receptor responses
must be constant too (if the imaging process is linear; see the discussion), and the
average of the response of the kth receptor can be written as:

m,n
Dk = E €iGijkT;-
i=1 =1

We know py and 75, and so have a linear system in the unknown light coefficients
e;. We solve this, and then recover reflectance coefficients at each pixel, as for the
case of specularities. For reasonable choices of reflectors and dimension of light and
surface basis, this linear system will have full rank.

The gamut of a color image is revealing. The gamut is the set of different
colors that appears in the image. Generally, it is difficult to obtain strongly colored
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pixels under white light with current imaging systems. Furthermore, if the picture
is taken under strongly colored light, that will tend to bias the gamut. One doesn’t
see bright green pixels in images taken under deep red light, for example. As
a result, the image gamut is a source of information about the illumination. If
an image gamut contains two pixel values—call them p; and p,—then it must
be possible to take an image under the same illuminant that contains the value
tp; + (1 —t)py for 0 <t <1 (because we could mix the colorants on the surfaces).
This means that the illuminant information depends on the convex hull of the
image gamut. There are now various methods to exploit these observations. There
is usually more than one illuminant consistent with a given image gamut, and
geometric methods can be used to identify the consistent illuminants. This set can
be narrowed down using probabilistic methods (for example, images contain lots of
different colors (Forsyth 1990)) or physical methods (for example, the main sources
of illumination are the sun and the sky, well modelled as black bodies (Finlayson
and Hordley 2000)).

3.6 NOTES

There are a number of important general resources on the use of color. We rec-
ommend Hardin and Maffi (1997), Lamb and Bourriau (1995), Lynch and Liv-
ingston (2001), Minnaert (1993), Trussell et al. (1997), Williamson and Cummins
(1983). Wyszecki and Stiles (1982) contains an enormous amount of helpful infor-
mation. Recent textbooks with an emphasis on color include Velho et al. (2008), Lee
(2009), Reinhard et al. (2008), Gevers et al. (2011) and Burger and Burge (2009).

Trichromacy and Color Spaces

Until quite recently, there was no conclusive explanation of why trichromacy ap-
plied, although it was generally believed to be due to the presence of three different
types of color receptor in the eye. Work on the genetics of photoreceptors can be
interpreted as confirming this hunch (see Nathans et al. (19864a) and Nathans et al.
(19860)), although a full explanation is still far from clear because this work can
also be interpreted as suggesting many individuals have more than three types of
photoreceptor (Mollon 1995).

There is an astonishing number of color spaces and color appearance models
available. The important issue is not in what coordinate system one measures color,
but how one counts the difference, so color metrics may still bear some thought.

Color metrics are an old topic; usually, one fits a metric tensor to MacAdam el-
lipses. The difficulty with this approach is that a metric tensor carries the strong im-
plication that you can measure differences over large ranges by integration, whereas
it is very hard to see large-range color comparisons as meaningful. Another con-
cern is that the weight observers place on a difference in a Maxwellian view and the
semantic significance of a difference in image colors are two very different things.

Specularity Finding

The specularity finding method we describe is due to Shafer (1985), with improve-
ments due to Klinker et al. (1987), (1990), and to Maxwell and Shafer (2000).
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Specularities can also be detected because they are small and bright (Brelstaff and
Blake 1988a), because they differ in color and motion from the background (Lee
and Bajcsy 1992a, Lee and Bajcsy 19926, Zheng and Murata 2000), or because
they distort patterns (Del Pozo and Savarese 2007). Specularities are a prodi-
gious nuisance in reconstruction, because specularities cause matching points in
different images to have different colors; various motion-based strategies have been
developed to remove them in these applications (Lin et al. 2002, Swaminathan et
al. 2002, Criminisi et al. 2005).

Color Constancy

Land reported a variety of color vision experiments (Land (19594), (19590), (1959¢),
(1983)). Finite-dimensional linear models for spectral reflectances can be supported
by an appeal to surface physics as spectral absorption lines are thickened by solid
state effects. The main experimental justifications for finite-dimensional linear
models of surface reflectance are measurements, by Cohen (1964), of the surface re-
flectance of a selection of standard reference surfaces known as Munsell chips, and
measurements of a selection of natural objects by Krinov (1947). Cohen (1964)
performed a principal axis decomposition of his data to obtain a set of basis func-
tions, and Maloney (1984) fitted weighted sums of these functions to Krinov’s date
to get good fits with patterned deviations. The first three principal axes explained
in each case a high percentage of the sample variance (near 99 %), and hence a
linear combination of these functions fitted all the sampled functions rather well.
More recently, Maloney (1986) fitted Cohen’s (1964) basis vectors to a large set of
data, including Krinov’s (1947) data, and further data on the surface reflectances
of Munsell chips, and concluded that the dimension of an accurate model of surface
reflectance was on the order of five or six.

Finite-dimensional linear models are an important tool in color constancy.
There is a large collection of algorithms that follow rather naturally from the ap-
proach. Some algorithms exploit the properties of the linear spaces involved (Mal-
oney (1984); Maloney and Wandell (1986); Wandell (1987)). Illumination can be
inferred from: reference objects (Abdellatif et al. 2000); specular reflections (Judd
(Judd 1960) writing in 1960 about early German work in surface color perception
refers to this as “a more usual view”; recent work includes (D’Zmura and Lennie
1986, Flock 1984, Klinker et al. 1987, Lee 1986)); the average color (Buchsbaum
1980, Gershon 1987, Gershon et al. 1986); and the gamut (Forsyth (1990), Barnard
(2000), Finlayson and Hordley (1999), (2000)).

The structure of the family of maps associated with a change in illumination
has been studied quite extensively. The first work is due to Von Kries (who didn’t
think about it quite the way we do). He assumed that color constancy was, in
essence, the result of independent lightness calculations in each channel, meaning
that one can rectify an image by scaling each channel independently. This practice
is known as Von Kries’ law. The law boils down to assuming that the family of
maps consists of diagonal matrices. Von Kries’ law has proved to be a remarkably
good law (Finlayson et al. 1994a). Current best practice involves applying a linear
transformation to the channels and then scaling the result using diagonal maps
(Finlayson et al. (1994a), (1994b)).



