
C H A P T E R 17

Detecting Objects in Images

Chapter 16 described methods to classify images. When we assumed that the image
contained a single, dominating object, these methods were capable of identifying
that object. In this chapter, we describe methods that can detect objects. These
methods all follow a surprisingly simple recipe—essentially, apply a classifier to
subwindows of the image—which we describe with examples in Section 17.1. We
then describe a more complex version of this recipe that applies to objects that can
deform, or that have complex appearance (Section 17.2). Finally, we sketch the
state of the art of object detection, giving pointers to available software and data
(Section 17.3).

17.1 THE SLIDING WINDOW METHOD

Assume we are dealing with objects that have a relatively well-behaved appearance,
and do not deform much. Then we can detect them with a very simple recipe. We
build a dataset of labeled image windows of fixed size (say, n×m). The examples
labeled positive should contain large, centered instances of the object, and those
labeled negative should not. We then train a classifier to tell these windows apart.
We now pass every n×m window in the image to the classifier. Windows that the
classifier labels positive contain the object, and those labeled negative do not. This
is a search over location, which we could represent with the top left-hand corner of
the window.

There are two subtleties to be careful about when applying this recipe. First,
not all instances of an object will be the same size in the image. This means we
need to search over scale as well. The easy way to do this is to prepare a Gaussian
pyramid of the image (Section 4.7), and then search n×m windows in each layer
of the pyramid. Searching an image whose edge lengths have been scaled by s for
n×m windows is rather like searching the original image for (sn)× (sm) windows
(the differences are in resolution, in ease of training, and in computation time).

The second subtlety is that some image windows overlap quite strongly. Each
of a set of overlapping windows could contain all (or a substantial fraction of) the
object. This means that each might be labeled positive by the classifier, meaning
we would count the same object multiple times. This effect cannot be cured by
passing to a bigger training set and producing a classifier that is so tightly tuned
that it responds only when the object is exactly centered in the window. This is
because it is hard to produce tightly tuned classifiers, and because we will never be
able to place a window exactly around an object, so that a tightly tuned classifier
will tend to behave badly. The usual strategy for managing this problem is non-
maximum suppression. In this strategy, windows with a local maximum of the
classifier response suppress nearby windows. We summarize the whole approach in
Algorithm 17.1.

519



Section 17.1 The Sliding Window Method 520

Train a classifier on n×m image windows. Positive examples contain
the object and negative examples do not.
Choose a threshold t and steps ∆x and ∆y in the x and y directions

Construct an image pyramid.

For each level of the pyramid
Apply the classifier to each n×m window, stepping by
∆x and ∆y, in this level to get a response strength c.
If c > t
Insert a pointer to the window into a ranked list L, ranked by c.

For each window W in L, starting with the strongest response
Remove all windows U 6=W that overlap W significantly,
where the overlap is computed in the original image by expanding windows
in coarser scales.

L is now the list of detected objects.

Algorithm 17.1: Sliding Window Detection.

The sliding window detection recipe is wholly generic and behaves very well in
practice. Different applications require different choices of feature and sometimes
benefit from different choices of feature. Notice that there is a subtle interaction
between the size of the window, the steps ∆x and ∆y, and the classifier. For
example, if we work with windows that tightly surround the object, then we might
be able to use a classifier that is more tightly tuned, but we will have to use smaller
steps and so look at more windows. If we use windows that are rather larger than
the object, then we can look at fewer windows, but our ability to detect objects
next to one another might be affected, as might our ability to localize the objects.
Cross-validation is one way to make appropriate choices here. As a result, there is
some variation in the appearance of the window caused by the fact our search is
quantized in translation and scale; the training tricks in Section 15.3.1 are extremely
useful for controlling this difficulty.

17.1.1 Face Detection

In frontal views at a fairly coarse scale, all faces look basically the same. There
are bright regions on the forehead, the cheeks, and the nose, and dark regions
around the eyes, the eyebrows, the base of the nose, and the mouth. This suggests
approaching face finding as a search over all image windows of a fixed size for
windows that look like a face. Larger or smaller faces can be found by searching
coarser- or finer-scale images.

A face illuminated from the left looks different than a face illuminated from



Section 17.1 The Sliding Window Method 521

the right, which might create difficulties for the classifier. There are two options:
we could use HOG features, as in Section 5.4; or we could correct the image window
to reduce illumination effects. The pedestrian detector of Section 17.1.2 uses HOG
features, so we will describe methods to correct image windows here.

Generally, illumination effects look enough like a linear ramp (one side is
bright, the other side is dark, and there is a smooth transition between them) that
we can simply fit a linear ramp to the intensity values and subtract that from
the image window. Another way to do this would be to log-transform the image
and then subtract a linear ramp fitted to the logs. This has the advantage that
(using a rather rough model) illumination effects are additive in the log transform.
There doesn’t appear to be any evidence in the literature that the log transform
makes much difference in practice. Another approach is to histogram equalize the
window to ensure that its histogram is the same as that of a set of reference images
(histogram equalization is described in Figure 17.1).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Value Output Value

Pe
rc

en
ta

ge
 o

f 
pi

xe
ls

FIGURE 17.1: Histogram equalization uses cumulative histograms to map the gray levels
of one image so that it has the same histogram as another image. The figure at the
top shows two cumulative histograms with the relevant images inset in the graphs. To
transform the left image so that it has the same histogram as the right image, we take a
value from the left image, read off the percentage from the cumulative histogram of that
image, and obtain a new value for that gray level from the inverse cumulative histogram
of the right image. The image on the left is a linear ramp (it looks nonlinear because the
relationship between brightness and lightness is not linear); the image on the right is a
cube root ramp. The result—the linear ramp, with gray levels remapped so that it has
the same histogram as the cube root ramp—is shown on the bottom row.

Once the windows have been corrected for illumination, we need to determine
whether there is a face present. The orientation isn’t known, and so we must either



Section 17.1 The Sliding Window Method 522

FIGURE 17.2: The architecture of Rowley, Baluja, and Kanade’s system for finding faces.
Image windows of a fixed size are corrected to a standard illumination using histogram
equalization; they are then passed to a neural net that estimates the orientation of the
window. The windows are reoriented and passed to a second net that determines whether
a face is present. This figure was originally published as Figure 2 from “Rotation invariant
neural-network based face detection,” H.A. Rowley, S. Baluja, and T. Kanade, Proc. IEEE
CVPR, 1998, c© IEEE, 1998.

determine it or produce a classifier that is insensitive to orientation. A neural net
is a procedure for parametric regression that produces an output that is a function
of input and parameters. Neural nets are typically trained by gradient descent on
an error function that compares computed output to labels for numerous labeled
examples. Rowley et al. (1998b) produced a face finder that finds faces very suc-
cessfully by first estimating the orientation of the window using one neural net then
reorienting the window so that it is frontal, and then passing the frontal window
onto another neural net (see Figure 17.2; the paper is a development of Rowley et
al. (1996) and (1998a)). The orientation finder has 36 output units, each coding
for a 10◦ range of orientations; the window is reoriented to the orientation given by
the largest output. Examples of the output of this system are given in Figure 17.3.

There is now an extremely rich face detection literature based on the sliding
window recipe. The most important variant is due to Viola and Jones (2001), who
point out that a clever choice of classifier and of features results in an extremely
fast system. The key is to use features that are easy to evaluate to reject most
windows early. Viola and Jones (2001) use features that are composed of sums of
the image within boxes; these sums are weighted by 1 or −1, then added together.
This yields the form

∑

k

δkBk(I),

where δi ∈ {1,−1} and

Bk(I) =
u2(k)∑

i=u1(k)

v2(k)∑

j=v1(k)

Iij .

Such features are extremely fast to evaluate with a device called an integral image.
Write Î for the integral image formed from the image I. Then

Îij =
i∑

u=1

j
∑

v=1

Iuv.



Section 17.1 The Sliding Window Method 523

FIGURE 17.3: Typical responses for the Rowley, Baluja, and Kanade system for face
finding; a mask icon is superimposed on each window that is determined to contain a face.
The orientation of the face is indicated by the configuration of the eye holes in the mask.
This figure was originally published as Figure 7 from “Rotation invariant neural-network
based face detection,” H.A. Rowley, S. Baluja, and T. Kanade, Proc. IEEE CVPR, 1998,
c© IEEE, 1998.

This means that any sum within a box can be evaluated with four queries to the
integral image. It is easy to check that

u2∑

i=u1

v2∑

j=v1

Iij = Îu2v2 − Îu1v2 − Îu2v1 + Îu1v1 ,

which means that any of the features can be evaluated by a set of integral image
queries. Now imagine we build a boosted classifier, using decision stumps based
around these features. The resulting score will be a weighted sum of binary terms,



Section 17.1 The Sliding Window Method 524

FIGURE 17.4: Face detection can be made extremely fast using features that are easy to
evaluate, and that can reject most windows early. On the left, features can be built up out
of sums of the image within boxes, weighted by 1 or −1. The drawings show two two-box
features (some readers might spot a relationship to Haar wavelets). On the right, the
features used for the first two tests (equivalently, the first two classifiers in the cascade)
by Viola and Jones (2001). Notice how they check for the distinctive dark bar at the eyes
with the lighter bar at the cheekbones, then the equally distinctive vertical specularity
along the nose and forehead. This figure was originally published as Figures 1 and 3 from
“Rapid Object Detection using a Boosted Cascade of Simple Features,” by P. Viola and
M. Jones, Proc. IEEE CVPR 2001 c© IEEE 2001.

FIGURE 17.5: Examples of pedestrian windows from the INRIA pedestrian dataset, col-
lected and published by Dalal and Triggs (2005). Notice the relatively strong and dis-
tinctive curve around the head and shoulders; the general “lollipop” shape, caused by the
upper body being wider than the legs; the characteristic “scissors” appearance of sepa-
rated legs; and the strong vertical boundaries around the sides. These seem to be the cues
used by classifiers. This figure was originally published as Figure 2 of “Histograms of
Oriented Gradients for Human Detection,” N. Dalal and W. Triggs, Proc. IEEE CVPR
2005, c© IEEE, 2005.

one for each feature. Now we can order the features by complexity of evaluation (for
example, two box features will be much faster to evaluate than ten box features).
For the simplest feature, we can then adjust the threshold of the weak learner such
that there are few or no false negatives. Now any window that returns a feature
value below that threshold can be rejected without looking at the other features;
this means that many or most image windows can be rejected at the first test
(Figure 17.4). If the window passes the first test, we can test the next feature with
a threshold adjusted so it produces few or no false negatives on the output of the
first test. Again, we expect to be able to reject many or most windows. We apply
this strategy repeatedly to get an architecture of repeated classifiers referred to as
a cascade. Classifiers in the cascade do not need to use only a single feature. Viola
and Jones (2001) train the cascade by requiring that each stage meet or exceed
targets for the reduction in false positives (which should be big) and the decrease



Section 17.1 The Sliding Window Method 525

FIGURE 17.6: The performance of the pedestrian detector of Dalal and Triggs (2005),
for various choices of features and two different datasets. On the left, results using
the MIT pedestrian dataset, and on the right, results using the INRIA dataset. The
results are reported as the miss rate (so smaller is better) against the false positive per
window (FPPW) rate, and so evaluate the classifier rather than the system. Overall
system performance will depend on how many windows are presented to the detector in
an average image (details in the text; see Figure 17.8). Notice that different datasets
result in quite different performance levels. The best performance on the INRIA dataset
(which is quite obviously the harder dataset) is obtained with a kernel SVM (circles, Ker.
R-HOG), but there is very little difference between this and a linear SVM (squares, Lin.
R2-HOG). This figure was originally published as Figure 3 of “Histograms of Oriented
Gradients for Human Detection,” N. Dalal and W. Triggs, Proc. IEEE CVPR 2005, c©
IEEE, 2005.

in detection rate (which should be small); they add features to the stage until the
targets are met.

Generally, frontal face detection is now a reliable part of vision systems (e.g.,
Section 21.4.4); usually other components of a system cause more problems than
face detection does. It is much more difficult to detect faces in lateral views; there
seem to be two major reasons. First, the profile of the face is quite important,
and variable between subjects. This means that classifier windows must take an
awkward shape, and some pixels in the window do not lie on the face and so
contribute noise. Second, lateral views of faces seem to have a less constrained
appearance than frontal views, so that classifiers must be more flexible to find
them.

17.1.2 Detecting Humans

Being a pedestrian is dangerous, and even more so if one is intoxicated. Counting
pedestrian deaths is hard, but reasonable estimates give nearly 900,000 pedestrians
killed worldwide in 1990 (Jacobs and Aeron-Thomas 2000). If a car could tell
whether it were heading for a pedestrian, it might be able to prevent an accident.
As a result, there is much interest in building pedestrian detectors.

The sliding window recipe applies naturally to pedestrian detection because
pedestrians tend to take characteristic configurations. Standing pedestrians look



Section 17.1 The Sliding Window Method 526

FIGURE 17.7: As Figure 17.6 indicates, a linear SVM works about as well as the best
detector for a pedestrian detector. Linear SVMs can be used to visualize what aspects of
the feature representation are distinctive. On the left, a typical pedestrian window, with
the HOG features visualized on the center left, using the scheme of Figure 5.15. Each
of the orientation buckets in each window is a feature, and so has a corresponding weight
in the linear SVM. On the center right, the HOG features weighted by positive weights,
then visualized (so that an important feature is light). Notice how the head and shoulders
curve and the lollipop shape gets strong positive weights. On the right, the HOG features
weighted by the absolute value of negative weights, which means a feature that strongly
suggests a person is not present is light. Notice how a strong vertical line in the center of
the window is deprecated (because it suggests the window is not centered on a person).
This figure was originally published as Figure 6 of “Histograms of Oriented Gradients for
Human Detection,” N. Dalal and W. Triggs, Proc. IEEE CVPR 2005, c© IEEE, 2005.

like lollipops (wider upper body and narrower legs), and walking pedestrians have
a quite characteristic scissors appearance (Figure 17.5). Dalal and Triggs (2005)
invented HOG features for this purpose, and used a linear SVM to classify windows,
because it is as good as the best classifier, but simpler (Figure 17.6). Another
advantage of a linear SVM is that one can get some insight into what features are
distinctive (Figure 17.7).

Evaluating sliding window methods can be difficult. Dalal and Triggs (2005)
advocate plotting the detection rate (percentage of true positives detected) against
the false positives per window (FPPW). Figure 17.6 shows performance for various
configurations of their system plotted on these axes. When evaluating these plots,
it is important to keep in mind that they characterize the behavior of the classifier,
rather than the whole system. This is attractive if you are interested in features and
classifiers, but perhaps less so if you are interested in systems. A higher FPPW
rate may be tolerable if you have to look at fewer windows, though looking at
fewer windows might affect the detect rate. Dollar et al. (2009) have conducted
a systematic evaluation of pedestrian detectors on a large dataset built for that
purpose. As Figure 17.8 shows, the ranking of methods changes depending on
whether one plots FPPW or false positive per image (FPPI); generally, we expect
that FPPI is more predictive of performance in applications.

Our sliding window recipe has one important fault: it assumes that windows
are independent. In pedestrian detection applications, windows aren’t really in-
dependent, because pedestrians are all about the same size, have their feet on or
close to the ground, and are usually seen outdoors, where the ground is a plane. If



Section 17.1 The Sliding Window Method 527

FIGURE 17.8: The FPPW statistic is useful for evaluating classifiers, but less so for
evaluating systems. On the left, results on the INRIA pedestrian dataset for a variety
of systems, plotted using miss rate against FPPW by Dollar et al. (2009). In this plot,
curves that lie lower on the figure represent better performance (because they have a lower
miss rate for a given FPPW rate). On the right, results plotted using miss rate against
false positive per image (FPPI), a measure that takes into account the number of windows
presented to the classifier. Again, curves that lie lower are better. Notice how different the
ranking of the systems is. This figure was originally published as Figure 8 of “Pedestrian
Detection: A Benchmark” P. Dollár, C. Wojek, B. Schiele, and P. Perona, Proc. IEEE
CVPR 2009 c© IEEE 2009.

we knew the horizon of the ground plane and the height of the camera above that
ground plane, then many windows could not be legitimate pedestrians. Windows
whose base is above the horizon would be suspect because they would imply pedes-
trians in the air; windows whose base is closer to the horizon should be smaller
(otherwise, we would be dealing with gigantic pedestrians). The height of the cam-
era above the ground plane matters because in this problem there is an absolute
scale, given by the average height of a pedestrian. Assume the horizon is in the
center of the image. Then, for cameras that are higher above the ground plane,
legitimate pedestrian windows get smaller more quickly as their base approaches
the horizon. There are two strong sources of information about the horizon and
the camera height. First, the textures of the ground, buildings, and sky are all
different, and these can be used to make a rough decomposition of the image that
suggests the horizon. Second, observing some reliable detection responses should
give us clues to where the horizon lies, and how high the focal point is above the
ground plane. Hoiem et al. (2008) show that these global geometric cues can be
used to improve the behavior of pedestrian and car detectors (Figure 17.9; see also
Hoiem et al. (2006)).

17.1.3 Detecting Boundaries

Edges are not the same as occluding contours, as we said in Chapter 5, because many
effects—changes in albedo, shadow boundaries, fast changes in surface normal—
can create edges. Rather than relying on the output of an edge detector, we could
explicitly build an occluding contour detector, using the sliding window recipe. At



Section 17.1 The Sliding Window Method 528

View

Prior

Horiz
on heig

ht 

in
 im

ag
e

Camera height off the ground

Image Ground plane

SkyVerticalsLocal car detections Local pedestrian 

detections

View Posterior

Global car detections Global pedestrian 

detections

FIGURE 17.9: Hoiem et al. (2008) show geometric consistency can be used to improve de-
tector performance. The main parameters are the height of the camera above the ground,
and the positition of the image horizon. The texture of the ground plane, the sky, and
vertical walls tend to be different, so that discriminative methods can classify pixels into
these classes; with this information, combined with detector responses (local detector
results), they obtain a significantly improved posterior estimate of the geometric param-
eters, and an improved detection rate for a given false positive rate (global detector
results). This figure was originally published as Figure 5 of “Putting Objects in Perspec-
tive,” by D. Hoiem, A. Efros, and M. Hebert, Proc. IEEE CVPR 2006 c© IEEE 2006.

each window, we would look at a set of relevant features within the window, then
use these to decide whether the pixel at the center of the window is an occluding
contour or not. In practice, it is sometimes more useful to produce the posterior
probability that each pixel lies on a boundary, at that pixel. Martin et al. (2004),
who pioneered the method, call these maps the Pb, for probability of boundary.

For this problem, it makes sense to work with circular windows. Boundaries
are oriented, so we will need to search over orientations. Each oriented window
can be visualized as a circle cut in half by a line through the center. If this line is
an object boundary, we expect substantial differences between the two sides, and
so features will compare these sides. Martin et al. (2004) build features for a set
of properties (raw image intensity, oriented energy, brightness gradient, color gra-
dient, raw texture gradient, and localized texture gradient) by taking a histogram



Section 17.1 The Sliding Window Method 529

FIGURE 17.10: Object boundaries marked by human informants for some images from the
Berkeley segmentation dataset, used by Martin et al. (2004) to train detectors that report
the probability of boundary. Maps produced by many informants have been averaged,
so that pixels are darker when many informants agree that they represent boundaries.
This figure was originally published as Figure 1 of “Learning to Detect Natural Image

Boundaries Using Local Brightness, Color, and Texture Cues,” by D.R. Martin, C.C.
Fowlkes, and J. Malik, IEEE Transactions on Pattern Analysis and Machine Intelligence,
2004 c© IEEE 2004.

representing that property for each side, then computing the χ2 distance between
the histograms. This means that each feature encodes the tendency of a particular
property to look different on the two sides of the circle. This set of features is then
supplied to logistic regression.

The boundary detector is trained using images whose boundaries have been
marked by humans (Figure 17.10). Human annotators don’t get boundaries per-
fectly right (or else they’d agree, which they certainly don’t; see also Figure 17.12).
This means that the training dataset might contain multiple copies of the same
window with different annotations—some humans marked the point a boundary
point, and others didn’t. However, the set of windows is very large, so that such in-
consistencies should be averaged out in training. The procedure we have described
can be used to build two methods. One reports Pb(x, y, θ), that is, the probability
the point is a boundary point as a function of position and orientation; the other
reports Pb(x, y) = maxθ Pb(x, y, θ). The second is most widely used (Figure 17.11).

Testing requires some care, because reporting a boundary point close to, but
not on, a boundary point marked by a human is not a failure. Martin et al.
(2004) cope with this issue by building a weighted matching between the boundary
points marked by a human and those predicted by the method. Weights depend on
distance, with larger distances being more unfavorable. A predicted boundary point
too far away from any human-marked point is a false positive. Similarly, if there
are no boundary points predicted close enough to a human-marked point, then that



Section 17.2 Detecting Deformable Objects 530

Image

Pb

Human

FIGURE 17.11: Some images from the dataset used by Martin et al. (2004). Boundaries
predicted by humans (averaged over multiple informants; darker pixels represent boundary
points on which more informants agree) compare well with boundaries predicted by the Pb

method. Some Pb errors are unavoidable (see the detailed windows in Figure 17.13); the
method has no-long scale information about the objects present in the image. This figure
was originally published as Figure 15 of “Learning to Detect Natural Image Boundaries
Using Local Brightness, Color, and Texture Cues,” by D.R. Martin, C.C. Fowlkes, and J.
Malik, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004 c© IEEE
2004.

point counts as a false negative. We can then threshold the Pb map at some value,
and compute recall and precision of the method; by varying the threshold, we get a
recall-precision curve (Figure 17.12). Although this method doesn’t perform as well
as humans, who can use context and object identity cues (and so predict illusory
contours, as in Figure 17.13), it significantly outperforms other methods for finding
boundaries. Pb is now widely used as a feature, and implementations are available
(Section 17.3.1). The most recent variant is globalPb, which gets improved results
by linking the Pb method to a segmenter, and so filling in pixels that are required
to ensure that object boundaries are closed curves. You can see this as a method
to force windows not to be independent. Precision-recall curves for this method
appear in Figure 9.25, which should be compared with Figure 17.11.

17.2 DETECTING DEFORMABLE OBJECTS

The basic sliding window detection recipe is extremely powerful. It does assume
(incorrectly) that windows are independent, but we have shown ways to manage
the cost of that assumption. However, the recipe must fail when the classifier fails.
There are two important effects that cause the classifier to fail: The object might


