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FIGURE 21.7: Multidimensional scaling allows us to compute locations on a screen that are
consistent with inter-image distances, and so lay out images in a suggestive way. Frame
1 shows 500 images, the response to a query for a desert landscape. Multidimensional
scaling has been used to compute locations for the thumbnails. Notice how strongly
different images are far apart (this image distance places strong weight on global color
distances, and the purple images are to the left of this frame, while more yellow images are
to the right). The user then clicks on the black dot (near top right of the frame), and the
100 images closest to that point are selected; a new multidimensional scaling is computed
for this subset of images, and they are laid out to give frame 2. The layout changes because
the statistics of distances have changed. Again, the user clicks on the black dot (lower
center of the frame), to select a subset of 20 images; again, a new scaling is computed
for this subset, and they are laid out to give frame 3. This figure was originally published
as Figure 4 of “A Metric for Distributions with Applications to Image Databases,” by Y.
Rubner, C. Tomasi, and L. Guibas, Proc. IEEE ICCV 1998, c© IEEE, 1998.

cluster center, then see all the elements of the cluster.

21.4 PREDICTING ANNOTATIONS FOR PICTURES

Appearance-based searches for images seem to be useful only in quite special ap-
plications. In most cases, people appear to want to search for images using more
general criteria, like what objects are present, or what the people depicted are
doing (Jörgensen 1998). These searches are most easily specified with words. Rel-
atively few pictures come with keywords directly attached to them. Many pictures
have words nearby, and a fair strategy is to treat some of these words as keywords
(Section 21.4.1). More interesting to us is the possibility of learning to predict
good annotating words from image features. We could do so by predicting words
from the whole image (Section 21.4.2). Words tend to be correlated to one an-
other, and prediction methods that take this into account tend to perform better
(Section 21.4.3). Linking names in a caption to faces in an image is an important
special case (Section 21.4.4), which suggests a general strategy of thinking about
correspondences between image regions and words (Section 21.4.5).

Image annotation is important for two reasons: first, there are useful practical
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applications in image search; and second, it emphasizes a question that is crucial
for object recognition—what should we say about a picture? The main distinction
between methods is how they deal with the fact that image annotations tend to be
quite strongly correlated. Some methods model correlations explicitly, and others
allow words to be conditionally independent given image structures, and allow the
correlation between image structures to encode the correlation between words.

21.4.1 Annotations from Nearby Words

The name of the image might yield words. A picture called mydog.jpg likely shows
a dog, but it is hard to tell what might be in 13789.jpg. If the image appears on a
web page, then it is most likely in an IMG tag. The standard for these tags requires
an alt attribute, which is the text that should appear when the image can’t be
displayed. Words that appear in this attribute could also be used as keywords.
Unfortunately, HTML does not have a single standard way of captioning images,
but a text matcher could identify some of the many methods used to display images
with captions. If a caption is found, words that appear in the caption might be
used as keywords. Finally, one could use words that render on the web page near
to the image. One could also cluster any or all of these sources of words to try
to suppress noise, and attach cluster tags rather than keywords to images. Notice
that some kinds of web page might be more fruitful for this kind of analysis than
others. For example, a catalog might contain a lot of images whose identity is quite
obvious.

If you experiment informally with commercial image search engines, you will
notice that most pictures returned for simple one-word object queries are pictures in
which a single object is dominant. This underlines an important point. The images
that we are dealing with in Internet search applications may not be at all like the
images that appear at the back of your eye. There are quite strong relationships
between object recognition and image search, but they’re not the same problem.
Apart from this very important point, these pictures are there either because people
want such pictures (and so the search results are biased to place them at the top),
or because search engines are biased toward finding them (because they look in
places where such pictures are prominent and easily obtained).

21.4.2 Annotations from the Whole Image

The simplest way to attach words to pictures is to use a classifier to predict one
word for the whole picture (methods described in Chapter 16). The vocabulary
might need to be quite big, and the approach might not work well for images that
don’t contain a dominant object. A more attractive approach is to try to predict
more than one word. A simple and natural way to try and do this is to annotate
each image with a binary code. This code is the length of the vocabulary. Each bit
in the code corresponds to a word in the vocabulary, and there is a one if the word
is present and a zero if it is absent. We then find the set of codes that actually
appear (a set that will be much smaller than the set that could appear. Typical
vocabularies might run to 400 words or more, and the number of possible codes
is then 2400). We treat each code that actually appears as a word, and build a
multi-class classifier. This sounds easy, but is wholly impractical, because there
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FIGURE 21.8: A comparison of words predicted by human annotators and by the method
of Makadia et al. (2008) for images from the Corel5K dataset. This figure was originally
published as Figure 4 of “A New Baseline for Image Annotation,” by A. Makadia, V.
Pavlovic, and S. Kumar, Proc. European Conference on Computer Vision. Springer
Lecture Notes in Computer Science, Volume 5304, 2008 c© Springer, 2008.

will be very few examples for each code. By failing to pool data, we are wasting
examples. For example, our strategy would treat an image labeled with “sheep,”
“field,” “sky,” and “sun” as completely different from an image labeled “sheep,”
“field,” and “sky,” which is absurd.

So we must treat words individually; but words tend to be correlated, and we
should exploit this correlation in our prediction methods. Straightforward methods
are extremely strong. Makadia et al. (2008) describe a method based around k-
nearest neighbors, which performs as well as, or better than, more complex methods
in the literature (see also Makadia et al. (2010)). They use color and texture
features in a straightforward labeling algorithm (Algorithm 21.1). They compare
their method to a number of more complicated methods. It is highly competitive
(see Table 21.2 for comparative performance information).

To predict n tags:
obtain the k-nearest neighbors of the query image
sort the tags of the closest image in order of frequency, then report the first n
If the closest image has fewer than n tags:
rank tags associated with the other k − 1 neighbors according to:
(a) their cooccurrence with the tags already chosen and
(b) their frequency in the k-nearest neighbor set.

The remaining tags are the best in this ranked set.

Algorithm 21.1: Nearest Neighbor Tagging.

Some of the tags on the nearest neighbor might be much rarer than the tags
on the second nearest neighbor. To account for this, we can modify the tagging al-
gorithm to account for both similarity between nearby neighbors and tag frequency.
One plausible strategy is due to Kang et al. (2006). For a given query image, they
build a confidence measure associating each tag with that image. Larger values of
the measure associate the tag to the image more strongly. To do so, they require a
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ranking of the tags in importance; this ranking is given by a vector of values, one
per tag. Write αj for the ranking value of the jth tag; xi for the feature vector
of the ith training example image, and xt for the feature vector of the test image;
K(·, ·) for a kernel comparing images; Ω(·, ·) for a kernel comparing sets of tags;
and zt,k for the confidence with which the kth tag is associated with the test image.
We must compute zt,k. Kang et al. use a submodular function argument to derive
an algorithm for concave Ω, though in their examples they use

Ω(S,S ′) =
{

0 if S ∩ S ′ 6= ∅
1 otherwise

.

Their method is a straightforward greedy algorithm, which appears in Algorithm
21.2. Once we have the confidence for each tag for a test image, we can choose the
tags to report with a variety of strategies (top k; top k if all confidences exceed
a threshold; all whose confidence exceeds a threshold; and so on). This method
works well (see Table 21.2).

Using the notation of the text

For k = 1, . . . ,m:
Let Tk = {1, 2, . . . , k}
f(Tk) =

∑n
i=1K(xi,xt)Ω(Si, Tk)

zt,k = f(Tk)− f(Tk−1)

Algorithm 21.2: Greedy Labeling Using Kernel Similarity Comparisons.

21.4.3 Predicting Correlated Words with Classifiers

When word annotations are heavily correlated, we could predict some words based
on image evidence, and then predict others using the original set of word predictions.
A more efficient method is to train the classifiers so that their predictions are
coupled. For example, we will train a set of linear support vector machines, one
per word. Write N for the number of training images; T for the size of the tag
vocabulary; m for the number of features; xi for the feature vector of the ith
training image; X for the m×N matrix (x1, . . . ,xN ); ti for the tag vector of the
ith image (this is a 0-1 vector whose length is the vocabulary size, with a 0 value
if the tag corresponding to that slot is absent and a 1 if it is present); and T for
the T ×N matrix (t1, . . . , tN ). Training a set of linear SVMs to predict each word
independently involves choosing a T ×m matrix C to minimize some loss L that
compares T to the predictions sign(CX ). If we chose to use the hinge loss, then the
result is a set of independent linear SVMs.

Loeff and Farhadi (2008) suggest that these independent linear SVMs can
be coupled by penalizing the rank of C. Assume for the moment that C does
have low rank; then it can be factored as GF , where the inner dimension is small.
Then CX = GFX . The term FX represents a reduced dimension feature space
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FIGURE 21.9: One way to build correlated linear classifiers is to learn a matrix of linear
classifiers C while penalizing the rank of C. A low rank solution factors into two terms
as C = GF . The term F maps image features to a reduced dimensional space of linear
features, and G maps these features to words. The word predictors must be correlated,
because the number of rows of G is greater than the dimension of the reduced dimensional
feature space. This figure was originally published as Figure 1 of “Scene Discovery by Ma-
trix Factorization,” by N. Loeff and A. Farhadi, Proc. European Conference on Computer
Vision. Springer Lecture Notes in Computer Science, Volume 5304, 2008 c© Springer,
2008.

(it is a linear map of the original feature space to a lower dimensional feature
space; Figure 21.9). Similarly, G is a set of linear classifiers, one per row. But
these classifiers have been coupled to one another (because there are fewer linearly
independent rows of G than there are classifiers, see Figure 21.9).

Penalizing rank can be tricky numerically. One useful measure of the rank is
the Ky-Fan norm, which is the sum of the absolute values of the singular values of
the matrix. An alternative definition is

λ |! |C ||kf= inf
U ,V|UV=C

(||U ||2 + ||V ||2).

Loeff and Farhadi learn by minimizing

L(T , CX ) + λ |! |C ||kf
as a function of the matrix of classifiers C, and they offer several algorithms to
minimize this objective function; the algorithm can be kernelized (Loeff et al. 2009).
These correlated word predictors are close to, or at, the state of the art for word
prediction (see Table 21.2). Results in this table support the idea that correlation is
important only rather loosely; there is no clear advantage for methods that correlate
word predictions. To some extent, this is an effect of the evaluation scheme. Image
annotators very often omit good annotations (see the examples in Figure 21.10),
and we do not have methods that can score word predictions that are accurate
and useful but not predicted by annotators. Qualitative results do suggest that
explicitly representing word correlation is helpful (Figure 21.10).

21.4.4 Names and Faces

Rather than predict all tags from the whole image, we could cut the image into
pieces (which might or might not overlap), then predict the tags from the pieces.
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FIGURE 21.10: Word predictions for examples from the Corel 5K dataset, using the
method of Loeff and Farhadi (2008). Blue words are correct predictions; red words are
predictions that do not appear in the annotation of the image; and green words are anno-
tations that were not predicted. Notice that the extra (red) words are strongly correlated
to those that are correctly predicted, and are often good annotations. Image annotators
often leave out the obvious—sky is present in the center image of the top row—and cur-
rent scoring methods do not account for this phenomenon well. his figure was originally
published as Figure 5 of “Scene Discovery by Matrix Factorization,” by N. Loeff and A.
Farhadi, Proc. European Conference on Computer Vision. Springer Lecture Notes in
Computer Science, Volume 5304, 2008 c© Springer, 2008.

This will increase the chance that that individual tag predictors could be trained
independently. For example, it is unlikely that names in news captions are in-
dependent (in 2010, the name “Elin Nordegren” was very likely to co-occur with
“Tiger Woods”). But this doesn’t mean we need to couple name predictors when
we train them; instead, we could find each individual face in the image and then
predict names independently for the individual faces. This assumes that the major
reason that the names are correlated is that the faces tend to appear together in
the images.

Linking faces in pictures with names and captions is a useful special case be-
cause news images are mainly about people, and captions very often give names. It
is also a valuable example for developing methods to apply to other areas because
it illustrates how correspondence between tags and image components can be ex-
ploited. Berg et al. (2004) describe a method to take a large dataset of captioned
images, and produce a set of face images with the correct names attached. In their
dataset, not every face in the picture is named in the caption, and not every name
in the caption has a face in the picture (see the example in Figure 21.11). The
first step is to detect names in captions using an open source named entity recog-
nizer (Cunningham et al. 2002). The next is to detect (Mikolajczyk n.d.), rectify,
and represent faces using standard appearance representations. We construct the
feature vector so that Euclidean distance in feature vector space is a reasonable
metric. We can now represent the captioned images as a set of data items that
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FIGURE 21.11: Berg et al. (2004) take a collection of captioned news images and link
the faces in each image to names in the caption They preprocess the images by detecting
faces, then rectifying them and computing a feature representation of the rectified face.
They detect proper names in captions using an open source named entity recognizer
(Cunningham et al. 2002). The result is a set of data items that consist of (a) a face
representation and (b) a list of names that could be associated with that face. Part of
this figure was originally published as Figure 2 of “Names and Faces in the News,” by T.
Berg, A. Berg, J. Edwards, M. Maire, R. White, Y-W. Teh, E. Learned-Miller and D.
Forsyth, Proc. IEEE CVPR 2004, c© IEEE 2004.

consist of a feature representation of a face, and a list of names that could go to
that face (notice that some captioned images will produce several data items, as in
Figure 21.11).

We must now associate names with faces (Figure 21.12). This can be seen as
a form of k-means clustering. We represent each name with a cluster of possible
appearance vectors, represented by the cluster mean. Assume we have an initial
appearance model for each name; for each data item, we now allocate the face to
the closest name in its list of possible names. Typically, these lists are relatively
short, so we need only tell which item in a short list the face belongs to. We now
re-estimate the appearance models, and repeat until labels do not change. At this
point, we can re-estimate the feature space using the labels associated with the face
images, then re-estimate the labeling. A natural variant is to allocate a face only
when the closest name is closer than some threshold distance. The procedure can
be started by allocating faces to the names in their list at random, or by exploiting
cases where there is just one face and just one name. This strategy is crude, but
works quite well, because it exploits two important features of the problem. First,
on the whole, multiple instances of one individual’s face should look more like one
another than like another individual’s face. Second, allocating one of a short list of
names to a face is a lot easier than recognizing a face.

21.4.5 Generating Tags with Segments

The most attractive feature of these names-and-faces models is that by reasoning
about correspondence between pieces of image (in the models above, faces) and
tags, we can learn models for tags independently. The fact that some tags co-
occur strongly with others is caused by some pieces of image co-occuring strongly
with others, so it doesn’t need to be accounted for by the model. There is now a
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FIGURE 21.12: We associate faces with names by a process of repeated clustering. Each
name in the dataset is associated with a cluster of appearance vectors, represented by a
mean. Each face is then allocated to the closest name in that face’s list of names. We now
re-estimate the cluster means, and then reallocate faces to clusters. Once this process has
converged, we can re-estimate the feature space using linear discriminants (Section 16.1.6),
then repeat the labeling process. The result is a correspondence between image faces and
names (right). Part of this figure was originally published as Figure 2 of “Names and
Faces in the News,” by T. Berg, A. Berg, J. Edwards, M. Maire, R. White, Y-W. Teh, E.
Learned-Miller and D. Forsyth, Proc. IEEE CVPR 2004, c© IEEE 2004.

huge variety of such models for tagging images with words. Generally, they can be
divided into two classes: in one class, we reason explicitly about correspondence,
as in the names and faces examples; in the other, the correspondence information
is hidden implicitly in the model.

Explicit correspondence models follow the lines of the names and faces ex-
ample. Duygulu et al. (2002) describe a model to which many other models have
been compared. The image is segmented, and a feature descriptor incorporating
size, location, color, and texture information is computed for each sufficiently large
image segment. These descriptors are vector quantized using k-means. This means
each tagged training image can be thought of as a bag that contains a set of vector
quantized image descriptors and a set of words. There are many such bags, and we
think of each bag as a set of samples from some process. This process generates im-
age segments and then some image segments generate words probabilistically. This
problem is analogous to one that occurs in the discipline of machine translation.
Imagine we wish to build a dictionary giving the French word that corresponds
to each English word. We could take the proceedings of the Canadian Parliament
as a dataset. These proceedings conveniently appear in both French and English,
and what a particular parliamentarian said in English (resp. French) is carefully
translated into French (resp. English). This means we can easily build a rough
paragraph-level correspondence. Corresponding pairs of paragraphs are bags of
French words generated by (known) English words; what we don’t know is which
English word produced which French word. The vision problem is analogous if we
replace English words with vector quantized image segments, and French words
with words (Figure 21.13).

Brown et al. (1990) give a series of natural models and corresponding algo-
rithms for this problem. The simplest model that applies is known as model 2
(there are five in total; the more complex models deal with the tendency of some
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FIGURE 21.13: Duygulu et al. (2002) generate annotations for images by segmenting the
image (left) and then allowing each sufficiently large segment to generate a tag. Segments
generate tags using a lexicon (right), a table of conditional probabilities for each tag
given a segment. They learn this lexicon by abstracting each annotated image as a bag of
segments and tags (center). If we had a large number of such bags, and knew which tag
corresponded to which segment, then building the lexicon just involves counting; similarly,
if we knew the lexicon, we could estimate which tag corresponded to which segment in
each bag. This suggests using an EM method to estimate the lexicon. This figure was
originally published as Figure 1 of “Object Recognition as Machine Translation: Learning
a lexicon for a fixed image vocabulary,” by P. Duygulu, K. Barnard, N. deFreitas, and
D. Forsyth, Proc. European Conference on Computer Vision. Springer Lecture Notes in
Computer Science, Volume 2353, 2002 c© Springer, 2002.

languages to be wordier than others, or to have specific word orders, and do not
apply). We assume that each word is generated by a single blob, and associate a
(hidden) correspondence variable with each bag. We can then estimate p(w|b), the
conditional probability that a word type is generated by a blob type (analogous to
a dictionary), using EM.

Once we have a lexicon, we can tag each sufficiently large region with its
highest probability word; or do so, but refuse to tag regions where the predicted
word has too low a probability; or tag only the k regions that predict words with
the highest probability; or do so, but check probabilities against a threshold. This
method as it stands is now obsolete as an image tagger, but is widely used as a
comparison point because it is natural, quite easily beaten, and associated with an
easily available dataset (the Corel5K dataset described in Section 21.5.1).

The cost of reasoning explicitly about correspondence between individual re-
gions and individual words is that such models ignore larger image context. An
alternative is to build a form of generative model that explains the bag of segments
and words without reasoning about which segment produced which word. An ex-
ample of such an implicit correspondence model is the cross-media relevance model
of Jeon et al. (2003). We approximate words as conditionally independent given an
image, which means we need to build a model of the probability of a single word
conditioned on an image, P (w|I). We approximate this as P (w|b1, . . . , bn), and
must now model this probability. We will do so by modelling the joint probability
P (w, b1, . . . , bn). We assume a stochastic relationship between the blobs and the
image; and we assume that, conditioned on the image, the blobs and the words are
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Nulls Clustering words

FIGURE 21.14: The basic correspondence method we described in the text can produce
reasonable results for some image tags (left), but tends to perform better with tags that
describe “stuff” rather than tags that describe “things” (center left). Some of this
is because the method has very weak shape representations, and cannot fuse regions.
However, it is extremely flexible. Improved word predictions can be obtained by refusing
to predict words for regions where the conditional probability of the most likely word is too
low (center right, “null” predictions), and by fusing words that are predicted by similar
image regions (right, “train” and “locomotive”). This figure was originally published as
Figures 8, 10, and 11 of “Object Recognition as Machine Translation: Learning a lexicon
for a fixed image vocabulary,” by P. Duygulu, K. Barnard, N. deFreitas, and D. Forsyth,
Proc. European Conference on Computer Vision. Springer Lecture Notes in Computer
Science, Volume 2353, 2002 c© Springer, 2002.

independent. If we write T for the training set, we have

P (w, b1, . . . , bn) =
∑

j∈T
P (J)P (w, b1, . . . , bn|J)

=
∑

j∈T
P (J)P (w|J)

#w
∏

j=1

P (bj|J),

and these component probabilities can be estimated by counting and smoothing.
Jeon et al. assume that P (J) is uniform over the training images. Now write
c(w, J) for the number of times the word w appears as a tag for image J and cw(J)
for the total number of words tagging J . Then we could estimate

P (w|J) = (1 − α)c(w, J)
cw(J)

+ α
c(w, T )
cw(T )

(where we have smoothed the estimate so that all words have some small probability
of being attached to J). Notice that this is a form of non-parametric topic model.
Words and blobs are not independent in the model as a result of the sum over
training images, but there is no explicit tying of words to blobs. This model is
simple and produces quite good results. As a model, it is now obsolete, but it is a
good example of a very large family of models.

21.5 THE STATE OF THE ART OF WORD PREDICTION

Word prediction is now an established problem that operates somewhat indepen-
dently from object recognition. It is quite straightforward to start research because
good standard datasets are available (Section 21.5.1), and methods are quite easy
to compare quantitatively because there is at least a rough consensus on appropri-
ate evaluation methodologies (Section 21.5.2). Finally, there are numerous good
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open questions (Section 21.5.3), which are worth engaging with because the search
application is so compelling.

21.5.1 Resources

Most of the code that would be used for systems described in this chapter is feature
code (Section 16.3.1) or classifier code (Section 15.3.3). Code for approximate
nearest neighbors that can tell whether k-d trees or locality sensitive hashing works
better on a particular dataset, and can tune the chosen method, is published by
Marius Muja at http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN.

The Corel5K dataset contains 5,000 images collected from a larger set of
stock photos, split into 4,500 training and 500 test examples. Each image has
3.5 keywords on average, from a dictionary of 260 words that appear in both the
training and the test set. The dataset was popularized by Duygulu et al. (2002).
As of the time of writing, an archive of features and tags for this dataset can be
found at http://lear.inrialpes.fr/people/guillaumin/data.php.

The IAPRTC-12 dataset contains 20,000 images, accompanied by free text
captions. Tags are then extracted from the text by various parsing methods. As
of the time of writing, the dataset can be obtained from http://imageclef.org/

photodata. Various groups publish the features and tags they use for this dataset.
See http://lear.inrialpes.fr/people/guillaumin/data.php, or http://www.
cis.upenn.edu/~makadia/annotation/.

The ESP dataset consists of 21,844 images collected using a collaborative
image labeling task (von Ahn and Dabbish 2004); two players assign labels to an
image without communicating, and labels they agree on are accepted. Images can
be reassigned, and then only new labels are accepted (see http://www.espgame.

org). This means that the pool of labels for an image grows, with easy labels being
assigned first.

MirFlickr is a dataset of a million Flickr images, licensed under creative com-
mons and released with concrete visual tags associated (see http://press.liacs.
nl/mirflickr/).

21.5.2 Comparing Methods

Generally, methods can be compared using recall, precision, and F1 measure on ap-
propriate datasets. Table 21.2 gives a comparison of methods applied to Corel5K
using these measures. The performance statistics are taken from the literature.
Some variations between experiments mean that comparisons are rough and ready:
CorrLDA predicts a smaller dictionary than the other methods; PicSOM predicts
only five annotations; and the F1 measure for Submodular is taken by eye from the
graph of figure 3 in (Kang et al. 2006), in the method’s most favorable configuration.
Table 21.2 suggests that (a) performance has improved over time, though the near-
est neighbor method of Section 21.4.2 is simultaneously the simplest and the best
performing method; and (b) that accounting for correlations between labels helps,
but isn’t decisive (for example, neither Submodular nor CorrPred decisively beats
JEC). This suggests there is still much to be learned about the image annotation
problem.
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Method P R F1 Ref
Co-occ 0.03 0.02 0.02 (Mori et al. 1999)
Trans 0.06 0.04 0.05 (Duygulu et al. 2002)
CMRM 0.10 0.09 0.10 (Jeon et al. 2003)
TSIS 0.10 0.09 0.10 (Celebi 30 Nov. - 1 Dec. 2005)

MaxEnt 0.09 0.12 0.10 (Jeon and Manmatha 2004)
CRM 0.16 0.19 0.17 (Lavrenko et al. 2003)

CT-3×3 0.18 0.21 0.19 (Yavlinsky et al. 2005)
CRM-rect 0.22 0.23 0.23 (Feng et al. 2004)
InfNet 0.17 0.24 0.23 (Metzler and Manmatha 2004)
MBRM 0.24 0.25 0.25 (Feng et al. 2004)
MixHier 0.23 0.29 0.26 (Carneiro and Vasconcelos 2005)
CorrLDA1 0.06 0.09 0.072 (Blei and Jordan 2002)

JEC 0.27 0.32 0.29 (Makadia et al. 2010)
JEC2 0.32 0.40 0.36 (Makadia et al. 2010)

Submodular - - 0.26 (Kang et al. 2006)
CorrPred 0.27 0.27 0.27 (Loeff and Farhadi 2008)

CorrPredKernel 0.29 0.29 0.29 (Loeff and Farhadi 2008)
PicSOM3 0.35 0.35 0.35 (Viitaniemi and Laaksonen 2007)

TABLE 21.2: Comparison of the performance of various word annotation prediction
methods by precision, recall, and F1-measure, on the Corel 5K dataset. The methods
described in the text are: Trans, which is the translation model of Section 21.4.5;
CMRM, which is the cross-media relevance model of Section 21.4.5; CorrPred, which
is the correlated classifier method of Section 21.4.3; JEC, which is the nearest neighbor
method of Section 21.4.2; and Submodular, which is the submodular optimization method
of Section 21.4.2. Other performance figures are given for information, and details of the
models appear in the papers cited.

21.5.3 Open Problems

One important open problem is selection. Assume we wish to produce a textual
representation of an image—what should it contain? It is unlikely that a list of
all objects present is useful or helpful. For most pictures, such a list would be
much too long and dominated by extraneous detail; preparing it would involve
dealing with issues like whether the nut used to hold the chairleg to the chair is
a separate object, or just a part of the chair. Several phenomena seem to affect
selection; some objects are interesting by their nature and tend to get mentioned if
they occur in an image. Spain and Perona (2008) give a probabilistic model that
can often predict such mentions. Other objects are interesting because of where
they occur in the image, or how big they are in the image. Yet other objects are
interesting because they have unusual properties (say, a glass cat or a car without
wheels), and identifying this remains difficult. Some objects are depicted in unusual
circumstances (for example, a car that is upsidedown). This means that context
cues might help tell what is worth mentioning. Choi et al. (2010) show a variety of
contextual cues that can be computed and identify an object as unusual for context.
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Without spatial relations

With spatial relations

FIGURE 21.15: Gupta and Davis (2008) show that image labeling can be improved by
representing spatial relations between regions, and taking these relations into account
when labeling. The top row shows labelings predicted using the method of (Duygulu et
al. 2002), which considers only individual regions when labeling; the bottom row shows
predictions made by their method. Notice that, for example, the “lighthouse” and the
“steps” in the image on the right are overruled by the other patches and given better
labels by the context. This figure was originally published as Figure 7 of “Beyond nouns;
exploiting prepositions and comparative adjectives for learning visual classifiers,” by A.
Gupta and L. Davis, Proc. European Conference on Computer Vision. Springer Lecture
Notes in Computer Science, Volume 5302, 2008 c© Springer, 2002.

Modifiers, such as adjectives or adjectival phrases, present interesting pos-
sibilities to advance learning. Yanai and Barnard (2005) demonstrated that it was
possible to learn local image features corresponding to color words (e.g., “pink”)
without knowing what parts of the image the annotation referred to (Yanai and
Barnard 2005). This raises the interesting possibility that possessing phrases can
help learning: for example, it is easier to learn from “pink cadillac” than from “cadil-
lac,” because the “pink” helps tell where the “cadillac” is in the image. Small im-
provements have been demonstrated using this approach (Wang and Forsyth 2009).
A discipline in linguistics, known as pragmatics, studies the things that people
choose to say; one guideline is that people mention things that are unusual or im-
portant. This suggests that, for example, there is no particular value in mentioning
that a sheep is white or a meadow is green. This means that we face two prob-
lems: first, we must determine what modifiers apply to a particular object, and
second, we must determine whether that modifier is worth mentioning. Farhadi et
al. (2009a) have demonstrated a method that can identify instances of objects that
either have unusual attributes, or lack usual ones. This method may be capable of
predicting what modifiers are worth mentioning.
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FIGURE 21.16: In structured video, we can predict narratives by exploiting the structure
of what can happen. This figure shows examples from the work of Gupta et al. (2009),
who show that by searching possible actors and templates for sports videos, one can come
up with matches that are accurate enough to build a reasonable narrative from templates.
This figure was originally published as Figure 7 of “Understanding Videos, Constructing
Plots Learning a Visually Grounded Storyline Model from Annotated Videos,” by A. Gupta,
P. Srinivasan, J. Shi, and L.S. Davis, Proc. IEEE CVPR 2009, c© IEEE 2009.

Another way to obtain richer descriptions of images is to use spatial rela-
tions between objects. Heitz and Koller (2008) improve the performance of object
detectors by identifying patches of stuff—materials such as grass, tarmac, sky and
so on, where the shape of the region has little to offer in identifying what it is—
that lie nearby. They train a probabilistic graphical model to enhance the detector
response when appropriate materials lie in appropriate places (and weaken the re-
sponse when they don’t); the result is a small improvement in detector performance.
Gupta and Davis (2008) use images labeled with relational phrases (e.g., “bear in
water”) to learn to label regions with noun tags together with models of spatial re-
lations. Relational cues could improve learning by disambiguating correspondence
quite strongly; for example, if one has a good model of “grass” and of the spatial
relation “on,” then “sheep on the grass” offers strong cues as to which region is
“sheep.” Experiments suggest that both of these effects are significant and helpful;
the paper shows significant improvements in region labeling (Figure 21.15).

The natural goal of all this generalization is to produce sentences from im-
ages. Even short sentences can represent a great deal of information in a compact
form. To produce a sentence, we would need to select what is worth mentioning;
we would need to decide what was happening, what was doing it, and to what it
was being done; and we would need to know what modifiers to attach where. In
some kinds of video (for example, of a sport), the narrative structure of what is
likely to happen is quite stylized, and so quite good sentences can be produced
(Figure 21.16). Gupta et al. (2009) have shown this means that we can search for
sets of actors that fit a template of an action, then report that action in quite a rich
sentence form. Yao et al. (2010) have been able to link image parsing strategies
to text generation strategies to generate informative sentences about video. For
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FIGURE 21.17: Farhadi et al. (2010b) link sentences to pictures by first computing an
affinity with an intermediate representation, then using this to compute a score for a
sentence-image pair; the sentence that produces the best score is the annotation. On the
left, two example images; in the center, the top five intermediate representations, given
as triples of (actor, scene, action); on the right, the top five sentences for each image.
Notice how sentence details tend to be inaccurate, but the general thrust of the sentence
is often right. This figure was originally published as Figure 3 of “Every picture tells a
story: Generating sentences from images,” by A. Farhadi, M. Hejrati, M.A. Sadeghi, P.
Young, C. Rastchian, J. Hockenmaier, and D. Forsyth, Proc. European Conference on
Computer Vision. Springer Lecture Notes in Computer Science, Volume 6314, 2010 c©
Springer, 2009.

static images, the problem remains very difficult; Farhadi et al. (2010b) describe
one method to link static images to sentences, using an intermediate representation
to manage difficulties created by the fact that we have no detector for most of the
words encountered (Figure 21.17).

21.6 NOTES

There are many datasets of images with associated words. Examples include: col-
lections of museum material (Barnard et al. 2001b); the Corel collection of images,
described in (Barnard and Forsyth 2001, Duygulu et al. 2002, Chen andWang 2004),
and numerous other papers; any video with sound or closed captioning (Satoh and
Kanade 1997, Satoh et al. 1999, Wang et al. 2000); images collected from the Web
with their enclosing web pages (Berg and Forsyth 2006); or captioned news im-
ages (Berg et al. 2004). It is a remarkable fact that, in these collections, pictures
and their associated annotations are complementary. The literature is very exten-
sive, and we can mention only the most relevant papers here. For a more complete
review, we refer readers to (Datta et al. 2005), which has 120 references. There
are three natural activities: One might wish to cluster images; to search for images
using keywords; or to attach keywords to new images. Typically, models intended
for one purpose can produce results for others.

Search: Belongie et al. (1998b) demonstrate examples of joint image-keyword
searches. Joshi et al. (2004) show that one can identify pictures that illustrate a
story by searching annotated images for those with relevant keywords, then rank-
ing the pool of images based on similarity of appearance. Clustering: Barnard
and Forsyth (2001) cluster Corel images and their keywords jointly to produce a
browsable representation; the clustering method is due to Hofmann and Puzicha
(1998). Barnard et al. (2001b) show that this form of clustering can produce a
useful, browsable representation of a large collection of annotated art in digital


