Index

F-measures, see image classification	from multiple images
F_1 -measure, see image classification	factorization, 237–238
F_{β} -measure, see image classification	affine transformation, 15
P_b , see probability of boundary	affinity, see clustering
χ -squared kernel, see classifier	affordances, see object recognition
0-1 loss, 459, 511	AIC, see model selection
$2\frac{1}{2}$ -dimensional sketch, 210	airlight, see color sources
2 differisional sketch, 210	albedo, 34
aberrations, 10–12	low dynamic range, 90
astigmatism, 11	reflectance, 76
chromatic aberration, 12	spectral albedo, 76
circle of least confusion, 11	spectral reflectance, 76
coma, 11	algebraic surface, 454
distortion, 11	aliasing, see sampling
radial, 27	alignment, 377
field curvature, 11	all-vs-all, see classifier
primary aberrations, 11	alpha expansion, 214, 680
spherical aberration, 10	ambient illumination, 35
absolute	ambiguity
conic, 249	affine, see affine structure from motion
dual quadric, 250	Euclidean, 223, see structure from mo-
absolute reconstruction, 611	tion, 246
accumulator array, see fitting	projective, see projective structure from
actions from the web, see datasets	motion
active markers, see people	aperture problem, see corner
active sensors, 422	apparent curvature, 402, 406
active vision, 218, 221	apparent motion, 315
activity recognition, see people	arc length, 400, 404
affine, 230	area source, 36
affine geometry	area sources
affine shape, 232	shadows, 36, 37
affine transformation, 231	aspect, 416, 531, 547
affine motion model, see optical flow	aspect graph, 392, 416–417
affine shape, 232	astigmatism, 11
affine structure from motion	asymptotic
ambiguity, 232	bitangent, 415
definition, 230	curve, 409–410
Euclidean upgrade, 238–240	red and blue, 409
multiple views, 239–240	directions, 399, 403–405, 425
from binocular correspondences, 233-	spherical image, 412
236	spherical map, 407, 410–411

tangent, 409, 412, 414	bundle adjustment, 245, see for mosaics
atlas, see medical imaging	C k 1 101 1
attached shadow, 403	Caltech 101, see image classification
attributes, 550, see object recognition	Caltech 256, see image classification
AUC, 466	Caltech-101, see datasets
average pooling, see pooling	Caltech-256, see datasets
average precision, see image classification	camels, see datasets
	camera
background subtraction, 261–263, 314	obscura, 3
backward variable, see people	pinhole, see pinhole camera
barycentric coordinates, 379	camera calibration
baseline, 199	linear, 23–26
basis pursuit, 184	camera parameters, 25–26
Bayes classifier, see classifier	degeneracies, 24–25
Bayes information criterion, see model se-	projection matrix, 23–24
lection	photogrammetry, 27–29
Bayes risk, see classifier	weak, see weak calibration
beak-to-beak, 412	camera consistency, 367
beat frequency, 424	camera model
bed-of-nails function, 125	affine, 20–22
best bin first, see nearest neighbors	extrinsic parameters, 22
between-class variance, 495	intrinsic parameters, 22
between-class variation, see image classifi-	projection equation, 6, 7, 22
cation	perspective, 14–20
Bhattacharyya coefficient, 336	extrinsic parameters, 18–19
bias, 515	intrinsic parameters, 16–18
binary terms, see tree-structured models	projection equation, 18
binocular fusion, 197	weak perspective, 20–22
binormal	canonical variates, see classifier
vector, 403	capacity, see graphs
birds, see image classification	CART, 450
bitangent, 413	carved visual hull, 572–573
line, 414	cascade, see detection
asymptotic, 415	cast shadow, 403
limiting, 415	catadioptric optical systems, 8
plane, 415, 417	category, see object recognition
ray manifold, 407, 413–414	center of curvature, 395
black body, see color sources	central limit theorem, 430
color, physical terminology, 75	central perspective, see projection model \rightarrow
blind spot, 14	pinhole perspective
blurring, see smoothing	chaff, 349
BM3D, 183–184	Chamfer matching, 388
boosting, 475	chromatic aberration, 12
bootstrapping, see classifier	CIE, see color spaces
bottles, see datasets	CIE LAB, see color spaces
brightness, 32, 44, see color spaces	CIE u'v' space, see color spaces
browsing, 643	CIE xy, see color spaces
browsing images, 627	CIE xy color space, see color spaces
desiderata for systems, 643	CIE XYZ, see color spaces
BSDS, see datasets	CIE XYZ color space, see color spaces
Buffy, see datasets	circle of curvature, 395

circle of least confusion, 11	histogram intersection kernel, 489
circuit, see graph	spatial pyramid kernel, 489
class-confusion matrix, see classifier	linking faces to names, 651, 652
classifier, 457, see also image classification	logistic regression, 461
Bayes classifier, 459, 460	logistic loss, 461
Bayes risk, 459	loss, 457
boosting, 475	Mahalanobis distance, 468
decision stump, 475	multiclass
decision stump, training, 476	all-vs-all, 479
discrete adaboost, 477	one-vs-all, 479
fast face detection by, 524	naive Bayes, 469
real adaboost, 478	nearest neighbor classifier
weak learner, 475	k-nearest neighbor classifier, 469
class confusion matrix, 465	nearest neighbors, 469, 470
class-confusion matrix, 464	neural network
correlated image keywords, 649, 650	finding faces using, 522, 523
cost of misclassification, 457	plug-in classifier
cross-validation, 464	example, 467, 468
decision boundary, 458	practical tips, 475
chosen to minimize total risk, 458,	bootstrapping, 477
459	hard negative mining, 478
definition, 457	manipulating training data, 477
error rate, 463	predicting keywords for images, 646–
estimating performance, 459, 464	648, 654, 656
detection rate, 466	regularization, 460
leave-one-out cross-validation, 464	choosing weight with cross-validation,
receiver operating characteristic curve	
466	for numerical reasons, 463
receiver operating curve, 466, 501	possible norms, 463
true positive rate, 466	to improve generalization, 463
examples	risk function, 458
finding faces using a neural network,	software, 480
522, 523	LIBSVM, 480
false negative, 457	multiple kernel learning, 480
false positive, 457	PEGASOS, 480
feature selection	SVMLight, 480
by canonical variates, 494, 497–499	support vector machine, 526
by principal component analysis or	for linearly separable datasets, 470–
PCA, 493–495	472
problems with principal component	for non-separable data, 472
analysis, 496	hinge loss, 472
from class histograms	total risk, 458
skin finding examples, 466, 500, 501	closing point, 564
general methods for building	closure, see segmentation
directly determining decision bound-	clustering, 268
aries, 467	as a missing data problem, see missing
from explicit probability models, 467	data problems
kernel machine, 473	complete-link clustering, 270
kernel, 474	dendrogram, 270
kernel machines	graph theoretic, 277
χ -squared kernel, 488	
χ-squared kerner, 400	agglomerative, 280, 281

divisive, 281–283	black body, 75
normalized cuts, 284, 285	color temperature, 75
group average clustering, 270	daylight, 73
grouping and agglomeration, 269	fluorescent light, 74
image pixels using agglomerative or di-	incandescent light, 74
visive methods, 270	mercury arc lamps, 75
image pixels using K-means, 272, 273	Mie scattering, 74
image pixels, as a missing data prob-	Rayleigh scattering, 73
lem, 308	skylight, 73
normalized cut, 284	sodium arc lamps, 75
partitioning and division, 269	color spaces, 77
single-link clustering, 270	brightness, 83
using hierarchical k-means, 640	by matching experiments, 78
using K-means, 172	CIE, 79
clutter, 377	CIE LAB, 85
CMU Quality of Life dataset, see datasets	CIE u' v' space, 87
CMY space, see color spaces	CIE u'v' space, 85
coarse-to-fine matching, 137	CIE xy color space, 80
coding, see image classification	CIE XYZ color space, 79, 81
collections of images, browsing	CIE xy, 80, 82, 83
MDS for layout, 644, 645	CMY space, 81
color bleeding, 59, 101	mixing rules, 81
color constancy, 95	use of four inks, 82
finite-dimensional linear model, 96	color differences, 86
recovering surface color by gamut map	
ping, 98	negative values, 78
recovering surface color from aver-	obtaining weights from, 78
age reflectance, 98	cyan, 81
recovering surface color from gamut,	HSV space, 84, 85
99	hue, 83
recovering surface color from specu-	imaginary primaries, 78
lar reflections, 98	just noticeable differences, 84
human color constancy, 95, 96	lightness, 83
lightness computation, 44	Macadam ellipses, 84, 86
color matching functions, see color spaces	magenta, 81
color perception, 68	opponent color space, 80
cone, 72, 73	RGB color space, 80
Grassman's laws, 70	RGB cube, 80
lightness	saturation, 83
computing lightness, 44	subtractive matching, required, 78
photometry does not explain, 95, 96	uniform color space, 85, 87
primaries, 68	uniform color spaces, 86
principle of univariance, 71	value, 83
rod, 72	yellow, 81
•	color temperature, see color sources
subtractive matching, 69 surface color, 96	color, modeling image, 87
surface color, 90 surface color perception, 95	color constancy using model, 96
test light, 68	color constancy using model, 96 color depends on surface and on illu-
trichromacy, 69	minant, 89
color sources	complete equation, 88
airlight, 73	diffuse component, 89
annsm, 19	amuse component, os

finding specularities using model, 92	2D derivation, 117
finite-dimensional linear model, 96, 97	impulse response, 117
computing receptor responses, 98	point spread function, 117
recovering surface color by gamut map	
ping, 98	discrete, 108
recovering surface color from aver-	convention about sums, 108
age reflectance, 98	effects of finite input datasets, 118
recovering surface color from gamut,	examples
99	finite differences, 110, 112, 141, 142,
recovering surface color from specu-	144, 145
lar reflections, 98	local average, 107
illuminant color, 88, 89	ringing, 108, 109
color, physical terminology	smoothing, see smoothing
spectral energy density, 68	weighted local average, see smooth-
coma, 11	ing
comb function, 125	gives response of shift invariant linear
combinatorial optimization, 663	system
common fate, see segmentation	discrete 1D derivation, 113
common region, see segmentation	discrete 2D derivation, 114
compact support, 116	kernel, 107, 117
complete data log-likelihood, see missing data	
problems	notation, 114, 115
composition across the body, see people	convolution theorem, 120
compound lenses, 12	convolutional nets, 216
computational molecules, 429	coordinate system
computed tomography imaging, see medical	local, see differential geometry
imaging	copyright, see near duplicate detection
concave point, 405	corner
plane curve, 397	aperture problem, 148
surface, 399	covariant windows, 156
cone strip, 561, 567	detection, 149
cones, 13	estimating scale and orientation, 151
conjugate directions, 403, 405	estimating scale with Laplacian of Gaus-
connected, see graph	sian, 151, 153 finding pattern elements, 154, 155
connected components, see graph	Harris corner detector, 150
connected graph, see graph consecutive, see graph	interest point, 148
content based image retrieval, see digital li-	self-similar, 149
braries	correspondence problem, 197
continuity, see segmentation	cosine similarity, 633
contour	cost-to-go function, see tree-structured mod-
image, see image contour	els
occluding, see occluding contour	covariance, 154
convex point	cross-validation, see model selection, see clas-
planar curve, 397	sifier
surface, 399	crowdsourcing, 515
convolution, 107	crust algorithm, 454
associative, 117	curvature, 396, 402, 404
commutative, 117	curve, 395, 397, 428
continuous, 115, 117	apparent, 402
1D derivation, 115	sign, 397
,	9 /

surface	scenes, 515
Gaussian, 401, 404, 406	LHI, 287
normal, 398, 401, 405	near duplicate detection, 640
principal, 41, 399, 401	parsing
cusp, 391, 394, 399, 402, 407–409, 411–413,	Buffy, 624
416	HumanEva dataset, 626
crossing, 415, 416	pedestrian detection, 538
of Gauss, 408, 410, 411	people, 624
of the first kind, 394	pose
of the second kind, 394	Buffy, 624
point, 391, 404	segmentation, 287
cut, see graph	daylight, see color sources
cyan, see color spaces	decision boundary, see classifier
cyclopean retina, 205	decision stump, see classifier
cylindrical panorama, 371	decision tree, 448
	Decision trees, 448–450
data association, 349	decoding, see object recognition
Data-driven texture representations, 164	definite patch neighbor, 577
datasets	definitely visible patch, 576
activity	deformable objects
actions from the web, 625	detection, 530, 533, 534
CMU Quality of Life dataset, 626	software, 535
IXMAS dataset, 626	deformation, 531
KTH action dataset, 625	degree, see graph
movies and scripts datasets, 626	Delaunay triangulation, 454
MSR action dataset, 625	delta function, see convolution
Olympic sports dataset, 626	dendrogram, see clustering
PMI dataset, 626	dense depth map, 47
UCF activity datasets, 626	depth map, 47, 422
VIRAT dataset, 626	depth of field, 9
Weizmann activity, 625	depth of focus, 9
BSDS, 287	derivative of Gaussian filters, see gradient,
crowdsourcing, 515	estimating
dataset bias, 515	derivatives
face detection, 539	using finite differences, 430
general object detection, 539	derivatives, estimating
human interactions, 624	differentiating and smoothing with one
human signers, 625	convolution, 142
image classification, 513	using finite differences, 110
bottles, 514	noise, 112
Caltech-101, 513 Caltech-256, 513	smoothing, 141, 142, 144, 145
camels, 514	detection
flowers, 514	cascade, 524
Graz-02, 514	deformable objects model, 530, 533, 534
Imagenet, 514	model, 550, 555, 554 software, 535
LabelMe, 513	evaluation
Lotus Hill data, 514	overlap test, 535
materials, 515	face detection, 520, 524
Pascal challenge, 514	non-maximum suppression, 519
repositories, 515	occluding boundaries, 527, 529
r,	occidents boundaries, 021, 020

evaluation, 530	normal curvature, 398
method, 531	normal line, 398
pedestrian detection, 524–526, 528	normal section, 398
evaluation, 527, 537	normal vector, 398
sliding windows, 520	parabolic point, 399
state of the art, 536	parametric surface, 41
detection rate, see classifier	principal curvatures, 399
dictionary, 183, 184	principal directions, 398, 403
dielectric surfaces, 90	second fundamental form, 400, 425
differential geometry, 391, 441	second-order model, 399
analytical, 424–426	tangent plane, 398
descriptive, 393–401	differential of the Gauss map, 400, 425
plane curves, 393–397	diffraction, 8
concave point, 397	diffuse reflection, 33
convex point, 397	diffusion equation, 138
curvature, 395, 396, 428	digital libraries, 627
cusp of the first kind, 394	browsing, 627
cusp of the second kind, 394	desiderata for systems, 643
Gauss map, 396	MDS for layout, 644, 645
Gaussian image, 396	correlated image keywords, 649, 650
inflection, 394, 396	evaluation, 629
local coordinate system, 393	news search example, 506
normal line, 393	patent search example, 506
normal vector, 393	precision, 506
regular point, 394	recall, 506
singular point, 394	web filtering example, 506
tangent line, 393	example applications, 628
tangent vector, 393	image browsing, 629
space curves, 397	image search, 628
curvature, 397	near duplicate detection, 628
Gauss map, 397	trademark evaluation, 628
normal plane, 397	image search by keyword, 645
osculating plane, 397	linking faces to names, 651, 652
parametric curve, 420	predicting keywords for images, 646–
principal normal line, 397	648, 654, 656
tangent line, 397	user behavior, 630, 631
surfaces, 397–401	user needs, 629
asymptotic directions, 399	dilation, 499, 500
concave point, 399	diopter, 13
conjugate directions, 403, 405	directed graph, see graph
convex point, 399	discrete Adaboost, 475
differential of the Gauss map, 400,	discrete cosine transform, 184
425	discrete wavelet transform, 184
elliptic point, 399, 405	disparity, 197
first fundamental form, 425	distance minimization
Gauss map, 399	geometric, 225
Gaussian curvature, 401, 404	distance transformation, 388
Gaussian image, 399	distant point light source, 34
hyperbolic point, 399	distortion, 11
local coordinate system, 399	distributional semantics, see information re-
Monge patch, 425	trieval
U 1 / -	

1 1 11 470	11 1 201
dual problem, 473	uncalibrated, 201
dynamic programming, 210, see hidden Mark	
models	calibrated, 200
dynamics, 327	instantaneous, 218
D 4 11	epipoles, 199
E-step, see missing data problems	erosion, 500, 501
ecologically valid, 260	error rate, see classifier
edge	essential matrix, see epipolar constraint
detection, 424	estimating scale with Laplacian of Gaussian
roof edges, 428–429	corner
step edges, 427–428	Laplacian, 151
edge detection, 144	Euclidean geometry
gradient based, 145	Euclidean shape, 223, 246
examples, 148	rotation matrix
finding maxima of gradient magni-	exponential representation, 219
tude, 145, 146	quaternions, 434
hysteresis, 146	Rodrigues formula, 455
nonmaximum suppression, 147	Euclidean structure from motion
poor behavior at corners, 149	ambiguity, 224
rectifying, see corner	definition, 222
roof edges, 161	from binocular correspondences, 224–
step edges, 161	228
edge points, 145	Euclidean upgrade
edge-preserving smoothing, 138	from affine structure, 238–240
edges, 141, 145	multiple views, 239–240
egg-shaped, see differential geometry \rightarrow sur-	from projective structure, 246–248
$faces \rightarrow elliptic$	partially-calibrated cameras, 246–248
egomotion, 315	Euler angles, 15
eigenvalue problem, 666	exemplars, 609
generalized, 666	EXIF tags, 17
eight-point algorithm, see weak calibration	exitance, 55
elastic net, 675	expectation-maximization, see EM
elliptic point, 399, 405	exterior orientation, 27
EM, see missing data problems	extremal points, 564
empirical cost function, 673	extrinsic parameters, 18
entropy, 94, 387	affine camera, 22
entropy coding, 586	perspective camera, 18–19
envelope, 410	
epipolar	f-number, 9, 206
geometry, 198–199	false negative, see classifier
line, 198, 199, 202, 210	false positive, see classifier
plane, 198	false positive rate, 466
epipolar constraint, 199	familiar configuration, see segmentation, see
affine fundamental matrix, 233–235	segmentation
parameterization, 235	feature tracking, 137
essential matrix	feature vectors, 457
characterization, 201	field curvature, 11
parameterization, 200	field of view
fundamental matrix, 201	camera, 9
characterization, 201	human eye, 13
Longuet–Higgins relation	figure-ground, see segmentation

filtering, see linear filtering	of the Gauss map
finite difference, 110	plane curve, 396
finite differences, 112, 142	surface, 400, 404
choice of smoothing, 145	point, 391, 404
derivative of Gaussian filters, 142, 144,	footskate, see people
145	for mosaics
differentiating and smoothing with one	bundle adjustment, 374
convolution, 142	forest, see graph
smoothing, 141, 142, 144 finite-dimensional linear model, see color,	forward selection, 673 forward variable, see people
modeling image	Fourier transform, 118, 119
first fundamental form, 425	as change of basis, 118, 119
first-order geometric optics, see paraxial \rightarrow	basis elements as sinusoids, 119
geometric optics, see paraxiar —	definition for 2D signal, 119
fitting, see segmentation, 290	inverse, 120
curves, 297	is linear, 120
parametric curves, distance from a	of a sampled signal, 126
point to, 299	pairs, 120
Hough transform, 290	phase and magnitude, 120
accumulator array, 292	magnitude spectrum of image unin-
for lines, 290–292	formative, 121, 122
practical issues, 292	sampling, see sampling
identifying outliers with EM, 312, 313	fovea, 13
layered motion models with EM, 313,	frame-bearing group, 369
318–320	free-form surface, 441
least squares, 294, 295	Frobenius norm, 247, 669
outliers, 299	frontier point, 561, 564
sensitivity to outliers, 299, 300	fronto-parallel plane, 6
lines	fundamental matrix, see epipolar constraint
by least squares, 294, 295	
by total least squares, 294, 295	gamut, 81
fitting multiple lines, 296	gate, 350
identifying outliers with EM, 312 , 313	Gauss map
incremental line fitting, 296	differential of the, 400, 425
k-means, 296	fold, 396, 400, 404
outliers, see robustness	plane curve, 396
planes, 295	space curve, 397
robust, see robustness	surface, 399
tokens, 293	Gauss sphere, 399, 439
total least squares, 294, 295	Gauss–Newton, see nonlinear least squares
using k-means, 296	Gaussian curvature, 401, 404, 406, 425
flecnodal	Gaussian image
curve, 411, 412, 414, 417	curve, 396, 404
point, 411, 412	surface, 399, 401
flow, see graph	Gaussian kernel, 474
flow-based matching, 334	Gaussian smoothing, 426
flowers, see datasets	generalized
FM beat, 424	eigenvalue problem, 666 eigenvector, 666
focal points, 9	generalized eigenvalue problem, 496
focus of expansion, see optical flow	generalized eigenvalue problem, 490 generalized polyhedron, 561
fold	generalized polyhedroll, 301

generalizing badly, 460	Grassman's laws, see color perception
generative model, 306	Graz-02, see datasets
generic	grouping, see segmentation, see fitting
surface, 409	gutterpoint, 408
geoconsistency, 572	gzip, 586
geometric consistency	827, 000
in pedestrian detection, 528	half-angle direction, 40
geometrical modes, 65	hard negative mining, see classifier, 535
-	hard thresholding, 183
geometry	9,
differential, see differential geometry	Harris corner detector, see corner
gestalt, see segmentation	height map, 47
GIST features, see image classification	Hessian, 671
global shading model, 52	hidden Markov models, see also matching
color bleeding, 59	on relations, see also people, see
comparing black and white rooms, 56	also tracking, see also tree struc-
governing equation, 56	tured energy models
interreflections, 35	dynamic programming, 594
reflexes, 59	homogeneous Markov chain, 591
smoothing effect of interreflection, 57	Markov chain, 591
gradient, estimating	state transition matrix, 591
differentiating and smoothing with one	stationary distribution, 592
convolution, 142	Viterbi algorithm, 594
using derivative of Gaussian filters, 142,	hierarchical k-means, see clustering
145	high dynamic range image, 39
using finite differences, 110	highlights, see specular
	hinge loss, see classifier
noise, 112	histogram equalization, 521
smoothing, 141, 144	
graph, 277	histogram intersection kernel, see classifier
agglomerative clustering using, 280, 281	HOG feature, 155, 157, 159, 524–526
circuit, 278	software, 160
connected, 278	HOG features
connected components, 279	difficulties with, 546
connected graph, 278	homogeneous
consecutive, 278	projection matrices, 19
cut, 279	homogeneous Markov chain, see hidden Markov
degree, 277	models
directed graph, 278	homography, see projective transformation,
divisive clustering using, 281–283	372, 589
flow, 279	homotopy continuation, 419
forest, 279	horopter, 204
min-cut, 283	Hough transform, see fitting
path, 278	HSV space, see color spaces
self-loop, 278	hue, see color spaces
spanning tree, 279	human
tree, 278	eye, 12–14
· · · · · · · · · · · · · · · · · · ·	
undirected graph, 278	blind spot, 14
weighted graph, 278	cones, 13
graph cuts, see min-cut/max-flow problems	fovea, 13
and combinatorial optimization	Helmoltz's schematic eye, 13
graphs	macula lutea, 13
capacity, 279	rods, 13

stereopsis, 203–205, 217	precision, 506
cyclopean retina, 205	recall, 506
horopter, 204	web filtering example, 506
monocular hyperacuity threshold, 204	* **
random dot stereogram, 204	explicit images, 482, 498
human parser, see people	material classification, 483, 502
HumanEva dataset, see datasets	scene classification, 484, 502
hyperbolic point, 391, 399, 405	features
hypernyms, 511	coding, 544
hyponyms, 511	contour features, 546
hysteresis, see edge detection	general points, 484
ICD 1 111 11 11 11 11 11 11 11	geometric representations, 548
ICP algorithm, see iterated closest-point al-	GIST features, 486
gorithm	histogram equalization, 521
illumination cone, 65	HOG feature, 524–526
illusory contour, 260	pooling, 545
illusory contours, see segmentation	preclustering, 546
image browsing, 629	shading features, 547
image classification, see also classifier	spatial pyramid kernel, 489
as information retrieval, 639	visual words, 488, 639
between-class variation, 482	linking faces to names, 651, 652
classifying images of single objects, 504	output
evaluation, 505	affordances, 549
general points, 505	attributes, 550–553
correlated image keywords, 649, 650	predicting keywords for images, 646–
dataset bias, 515	648, 654, 656
datasets, 512, 513	software, 512
birds, 515	color descriptor, 513
bottles, 514	course software, 513
Caltech 101, 510	GIST, 513
Caltech 256, 510	link repository, 513
Caltech-101, 513	pyramid match, 513
Caltech-256, 513	VLFeat, 513
camels, 514	specialized problems, 511
crowdsourcing, 515	state of art
flowers, 514	number of classes, 509
Graz-02, 514	performance on fixed classes, 508
Imagenet, 514	within-class variation, 482
LabelMe, 513	image completion, 176
Lotus Hill data, 514	by matching, 180
materials, 515	by texture synthesis, 181
Pascal challenge, 509, 514	methods, 179
repositories, 515	state of the art, 182
scenes, 515	image contour, 391
evaluation	convexities and concavities, 405
F-measures, 506	curvature, 404
F_1 -measure, 506	cusp, 391, 403, 404
F_{β} -measure, 506	inflection, 403, 404
average precision, 507	Koenderink's theorem, 404–407
news search example, 506	T-junction, 391
patent search example, 506	image denoising, 182–186

BM3D, 183 integrability, 50	
learned sparse coding, 184 in lightness computation, 45	
non-local means, 183 in photometric stereo, 50	
results, 186 integral image, 522	
image hole filling, 176 interactive segmentation, see segment	ntation
by matching, 180 interest point, see corner	
by texture synthesis, 181 interior orientation, 27	
methods, 179 interior-point methods, 677	
state of the art, 182 interpretation tree, 438, 454	
image irradiance equation, 59 interreflections, see global shading r	nodel
image mosaic, 370 intrinsic parameters, 17	
image plane, 4 affine camera, 22	
image pyramid, 134, see also scale, 135 perspective camera, 16–18	
coarse scale, 135 intrinsic representations, 43	
Gaussian pyramid, 135 invariant image, see shadow remova	
analysis, 135, 136 inverted index, 632	
applications, 136, 137 isotropy, see texture	
image rectification, 202–203, 205 iterated closest points, 369	100
image search, see digital libraries iterated closest-point algorithm, 434	-436
correlated image keywords, 649, 650 IXMAS dataset, see datasets	
linking faces to names, 651, 652 predicting keywords for images, 646— Jacobian, 670	
F	
, , ,	
G V /	
image stabilization, 330 image-based modeling and rendering, 221, k-d tree, see nearest neighbors, 637	
559 software, 638	
PMVS, 573 k-d trees, 435	
visual hulls, 559 k-means, see clustering	
Imagenet, see datasets k-nearest neighbor classifier, see class	sifier
impulse response, 114, see convolution Kalman filter, 345	
incremental fitting, see fitting Kalman filtering, see tracking	
index of refraction, 9, 11 kernel, see convolution, see convolution	ion, see
inertia classifier	
axis of least, 667 kernel profile, 274, 336	
second moments, 667 kernel smoother, 336	
inflection, 394, 396, 399, 408, 412, 413 kernel smoothing, 273	
information retrieval, 632 key frame, see shot boundary detect	ion
distributional semantics, 634 Kinect, 446–453	
latent semantic analysis, 634 Koenderink's theorem, 404–407	
latent semantic indexing, 634 KTH action dataset, see datasets	
pagerank, 638 Ky-Fan norm, 649	
for image layout, 642	
query expansion, 639 LabelMe, see datasets	
ranking by importance, 638 Lagrange multiplier, 673	
stop words, 632 Lambert's cosine law, 34	
strategies applied to image classifica- Lambertian+specular model	
tion, 639 image color model, 91, 92	
tf-idf weighting, 633 lambertian+specular model, 36	т ,
word counts, 632 Laplacian, see estimating scale with	Lapla-
smoothing, 633 cian of Gaussian	-

Lasso, 184	filters respond strongly to signals they
latent semantic analysis, see information re-	look like, 131
trieval	impulse response, 117
latent semantic indexing, see information	point spread function, 117
retrieval	properties, 112
latent variable, 531	scaling, 113
layered motion, 318, see also fitting, see also	superposition, 113
optical flow	response given by convolution, 115
support maps, 319	1D derivation, 115
learned sparse coding, 184–185	2D derivation, 117
least squares, see fitting, 663	discrete 1D derivation, 113
linear, 201	discrete 2D derivation, 114
homogeneous, 436	lines of curvature, 421
non-homogeneous, 441	lip, 412
nonlinear, 202	local shading model, 36
least-angle regression, 673	Local texture representations, 164
leave-one-out cross-validation, 322, see class-	local visual events, 407, 412–413
sifier	locality sensitive hashing, see nearest neigh-
lenses	bors, 636
depth of field, 9	software, 638
f number, 9	logistic loss, see classifier
level set, 436	logistic regression, see classifier
Levenberg–Marquardt, see nonlinear least	Longuet–Higgins relation, see epipolar con-
squares	straint, 200
LHI, see datasets287	loss, see classifier
LIBSVM, see classifier	Lotus Hill data, see datasets
light field, 559, 584–586	luminaires, 33
light slab, 585	26 (*)
lightness, 44, see color spaces	M-estimator, see robustness
lightness computation, 44	M-step, see missing data problems
algorithm, 43, 45	macula lutea, 13
assumptions and model, 44	magenta, see color spaces
constant of integration, 45	magnetic resonance imaging, see medical imag
lightness constancy, 44	ing
limiting bitangent developable, 415	magnification, 6
line space, 291	magnitude spectrum, see Fourier transform
linear, see properties, 113	Mahalanobis distance, see classifier
linear filtering, see convolution, see linear	manifold, 414 MAP inference, 213
systems, shift invariant	marching cubes, 437
linear least squares, 663–669	markerless motion capture, 589
homogeneous, 665–669	Markov chain, 339, see hidden Markov mod-
eigenvalue problem, 666	els
generalized eigenvalue problem, 666 nonhomogeneous, 664–665	Markov models, hidden, see hidden Markov
	models, see also matching on re-
normal equations, 664	lations, see also people, see also
pseudoinverse, 665 linear systems, shift invariant	tracking
convolution like a dot product, 131–	matching on relations
133	hidden Markov models, 590
filtering as output of linear system, 107	backward variable, 598
miching as output of fillear system, 107	dynamic programming, 594

dynamic programming algorithm, 595 dynamic programming figure, 596 example of Markov chain, 592	M-step, 311 motion segmentation example, 313, 318–320
fitting a model with EM, 595, 597, 598	outlier example, 312, 313 practical difficulties, 312
forward variable, 598	soft weights, 311
node value, 594	image segmentation, 308
trellis, 592, 593	iterative reestimation strategy, 310
Viterbi algorithm, 594, 595	layered motion, 318
pictorial structure models, 602, 604, 605,	mixture model, 309
608, 610	mixing weights, 309
tree-structured energy models, 600	mixture, 309
material properties, 164	mixing weights, see missing data problems
materials, see datasets	mixture, see missing data problems
matrix	mixture model, see missing data problems
nullspace, 24	mobile robot
range, 664	navigation, 197, 221
rank, 664	model selection, 319
matte, 266	AIC, 321
max pooling, see pooling	Bayes information criterion, 321
MDL, see model selection	Bayesian, 321
MDS, see multidimensional scaling	BIC, 321 cross-validation, 322
Mean average precision, 508 mean shift	MDL, 321
tracking with, 335	minimum description length, 321
medical imaging	overfit, 321
applications of registration, 383, 387	selection bias, 320
atlas, 384	test set, 320
imaging techniques, 384	training set, 320
computed tomography imaging, 385	model-based vision
magnetic resonance imaging, 385	alignment, 377
nuclear medical imaging, 385	application in medical imaging, 383, 384,
ultra-sound imaging, 385	387
metric shape, see Euclidean shape	verification, 377
Meusnier's theorem, 401	by edge proximity and orientation,
Mie scattering, see color sources	378
min-cut/max-flow, 214	by edge proximity is unreliable, 378,
min-cut/max-flow problems and combina-	379 Mandrian worlds, 06
torial optimization, 675–682 min-cuts, 663	Mondrian worlds, 96 Monge patch, 47, 425
minimum description length, see model se-	motion capture, 451, see people
lection	motion field, 218
missing data problem, 307	motion graph, see people
missing data problems, 307	motion primitives, see people
EM algorithm, 310, 311	movies and scripts datasets, see datasets
background subtraction example, 314	MSR action dataset, see datasets
complete data log-likelihood, 309	Muller-Lyer illusion, 256
E-step, 311	multidimensional scaling, 644
fitting HMM with, 595, 597, 598	for image layout, 645
	esmultilocal visual events, 407, 414–416
at each step, 311	multiple kernel learning, 475, see classifier

multiple-view stereo, see stereops is \rightarrow mul-	line, 393, 398
tiple views	plane, 397
Munsell chips, 100	principal, 397
mutual information, 387	section, 398
27	vector, 393, 398
N-cut, see clustering	normal equations, 665
naive Bayes, see classifier	normal section, 399
narrow-baseline stereopsis, 217, 573	normalized correlation, 133, 206, 445, 576
near duplicate detection, 628, 639	normalized cut, see clustering, 285
using hierarchical k-means, 640	normalized image plane, 16
copyright, 628	nuclear medical imaging, see medical imag-
trademark, 628	ing
using LSH, 640	Nyquist's theorem, 126
using visual words, 639	1
nearest neighbor classifier, see classifier	object model acquisition
nearest neighbors, 350	from range images, 436–438
approximate algorithms, 635, 637	object recognition
best bin first, 637	affordances, 549
k-d tree, 636	aspect, 547
locality sensitive hashing, 635	attributes, 550–553
software, 638	categorization, 542–543
correlated image keywords, 649, 650	current strategies, 542
linking faces to names, 651, 652	desirable properties, 540–541
near duplicate detection, 640	from range images, 438–446
predicting keywords for images, 647, 648	geometric representations, 548 part representations, 553
neural net, 522	poselets, 553, 554
Newton's method	selection, 544
convergence rate, 670	visual phrases, 554, 555
nonlinear equations, 670	decoding, 555, 556
nonlinear least squares, 670–671	observations, 327
node value, see matching on relations	occluding boundaries
noise	detecting, 527, 529
additive stationary Gaussian noise, 142,	evaluation, 530
143	method, 531
choice of smoothing filter	occluding contour, 141, 391
effect of scale, 145	cusp point, 391, 404
smoothing to improve finite difference	fold point, 391, 404
estimates, 141, 142, 144	Olympic sports dataset, see datasets
non-local means, 183	one-vs-all, see classifier
non-maximum suppression, see detection	OpenCV, 30
non-square pixels, 124	opening point, 564
nonlinear least squares, 669–672	opponent color space, see color spaces
Gauss-Newton, 671–672	optical axis, 8
convergence rate, 672	optical flow, 313, 589
Levenberg-Marquardt, 672	focus of expansion, 315
Newton, see Newton's method	layered motion, 318
nonmaximum suppression, see edge detec-	parametric models of
tion	affine motion model, 316
normal	more general, 317
curvature, 398	segmentation by, 316 , $318-320$

yields time to contact, 315	people
ordering constraint, 210	3D from 2D, 611, 612, 614
orientation, 147	ambiguities, 613
orientations, 144, 147	snippets, 616
affected by scale, 150	activity is compositional, 619
differ for different textures, 151	composition across the body, 620
	1
do not depend on intensity, 149	motion primitives, 619
in HOG features, 159	activity recognition, 617, 619
in SIFT descriptors, 157	by characteristic poses, 618
orthogonal matching pursuit, 673	by poselets, 618, 619
osculating plane, 397	by spacetime features, 621–623
outliers, see robustness	from compositional models, 621, 624,
outline, see image contour	625
overcomplete dictionaries, 672	datasets, see datasets
overfit, see model selection	detecting, 525, 526, 528
overfitting, 460	evaluation, 527, 537
overlap test, see detection	hidden Markov models, 590
oversegmentation, 268	backward variable, 598
Damarant, 620	dynamic programming, 594
Pagerank, 639	dynamic programming algorithm, 595
pagerank, see information retrieval	dynamic programming figure, 596
for image layout, 642	example of Markov chain, 592
parabolic	fitting a model with EM, 595, 597,
curve, 407–409, 411, 417	598
point, 410, 412	forward variable, 598
parabolic point, 391, 399, 404, 405	trellis, 592, 593
paraboloid, 399	Viterbi algorithm, 594, 595
parallelism, see segmentation	human parser, 602
parametric	pictorial structure models, 602, 604,
curve, 420	605
surface, 41	motion capture, 617
parametric models of	active markers, 617
optical flow, 316	computed edges, 620
parametric surface, 424	footskate, 617
part representations, see object recognition	joint angles, 617
parts, 532, 551	joint positions, 617
Pascal challenge, see image classification,	motion graph, 620
see datasets	passive markers, 617
passive markers, see people	skeleton, 617
patch-based multi-view stereopsis, 573–584	pictorial structure models, 608, 610
path, see graph	software, see software
pattern elements	tracking, 606
describing neighborhoods, 155, 157	by appearance, 608, 610
finding with corner detector, 154	by templates, 609
finding with Laplacian of Gaussian, 155	is hard, 606
shape context, 613	tree-structured energy models, 600
software, 160	perceptual organization, see segmentation
yield covariant windows, 156	perspective
PCA, see classifier	camera, see camera model \rightarrow perspec-
PEGASOS, see classifier	tive
penumbra, 37	effects, 5

projection matrix, see projection ma-	prior, 339
$\text{trix} \rightarrow \text{pinhole perspective}$	probabilistic data association, 350
phase spectrum, see Fourier transform	probability distributions
photoconsistency, 572	normal distribution
photogrammetry, 27, 197	important in tracking linear dynamic
Photometric stereo, 47	models, 344
photometric stereo	sampled representations, 351
depth from normals, 49	probability of boundary
formulation, 49	P_b , 528
integrability, 45, 50	probability, formal models of
normal and albedo in one vector, 48	expectation
recovering albedo, 49	computed using sampled representa-
recovering normals, 49	tions, 351, 352
pictorial structure models, see people	integration by sampling
pinhole, 3	sampling distribution, 351
camera, 4–6	representation of probability distribu-
pinhole perspective, 4	tions by sampled representations,
planes, representing orientation of	352
slant, 188, 189	marginalizing a sampled representa-
tilt, 188, 189	tion, 353
tilt direction, 188, 189	prior to posterior by weights, 354,
plenoptic function, 584	355
PMI dataset, see datasets	projection equation
PMVS, see patch-based multi-view stereop-	affine, 22
sis, 574	orthographic, 7
point spread function, see convolution	weak-perspective, 6
pooled texture representations, 164	pinhole perspective, 6
pooling, see image classification	points, 18
average pooling, 545	projection matrix
max pooling, 545	affine, 22
pose, 367	characterization, 22
pose consistency, 367	weak-perspective, 22
poselet, 552	pinhole perspective
poselets, see object recognition	characterization, 19–20
for activity recognition, 618, 619	explicit parameterization, 19
posterior, 340	general form, 18
potential patch neighbor, 577	projection model
potentially visible patch, 576	affine, $6-7$
pragmatics, 657	orthographic, 7
precision, see image classification	paraperspective, 21
preclustering, see image classification	weak-perspective, 6
predictive density, 340	pinhole perspective
primaries, see color perception	planar, $4-6$
primary aberrations, 11	weak perspective, 20–22
principal	projective, 230
curvatures, 399, 426	projective coordinate system, 242
directions, 398, 403, 425	projective geometry
principal component analysis, see classifier	projective shape, 242
principal points, 10	projective transformation, 241
principle of univariance, see color percep-	projective projection matrix, 241
tion	projective shape, 241

projective structure from motion	recall, see image classification
ambiguity, 241	receiver operating characteristic curve, see
definition, 241	classifier
Euclidean upgrade, 246–248	estimating performance
partially-calibrated cameras, 246–248	ROC, 466
from multiple images	reciprocity, 38
bilinear method, 244–245	reflectance, see albedo
bundle adjustment, 245	color, physical terminology, 76
factorization, 244	reflexes, 58
from the fundamental matrix, 242–243	region, 164
projective transformations, 15	region growing, 431
properties	regional properties, 58
linear systems, shift invariant	regions, 256
linear, 107	registration
shift invariant, 107, 113	from planes, 439–441
proximity, see segmentation	from points, 434–436
pseudoinverse, 665	regular point, 394
pulse time delay, 424	regularization, 213, see classifier
pyramid kernel, see image classification	regularization term, 672
OD 1	regularizer, 463
QR decomposition, 665, 666	relative reconstruction, 611
quaternions, 433–434, 436, 440, 454	render, 377
query expansion, see information retrieval QuickTime VR, 588	repetition, 164
Quick Time VIC, 500	repositories, see datasets
radial	rest positions, 619
curvature, 405	retargeting, 451 Retinex, 63
curve, 404	RGB color space, see color spaces
distortion, 27	RGB cube, see color spaces
radiance	rigid transformation, 15
definition, 52	rigid transformations and homogeneous co-
units, 53	ordinates, 14–16
radiometric calibration, 38	rim, see occluding contour
radiosity, 54	ringing, see convolution
of a surface whose radiance is known,	risk, see classifier
54	risk function, see classifier
definition and units, 54	robustness, 299
radius of curvature, 395	identifying outliers with EM, 312, 313
random dot stereogram, 204	M-estimator, 300, 303, 304
random forest, 448	influence function, 301
Random forests, 448–450	M-estimators, 301
random forests, 446 range finders, 422–424	scale, 302
,	outliers
acoustico-optical, 424 time of flight, 423	causes, 299
triangulation, 422	sensitivity of least squares to, 299,
range image, 422	300 BANSAC 202
ranking, see Pagerank	RANSAC, 302
RANSAC, see robustness	how many tries? 303
ratio, 232	how many tries?, 303 how near should it be?, 305
Rayleigh scattering, see color sources	searching for good data, 302
v G G)	scarcining for good data, 502

ROC, see receiver operating characteristic	shot boundary detection, 264
curve	gestalt, 257
Rodrigues formula, 455	human, 256
rods, 13	closure, 258
roof, 426	common fate, 258
roof edge, 161	common region, 258
root, 532	continuity, 258
root coordinate system, 611	examples, $258-261$
rotation matrices, 15	factors that predispose to grouping,
Rotoscoping, 266	257-261
ruled surface, 411	familiar configuration, 258, 260
	figure and ground, 256, 257
saddle-shaped, see differential geometry \rightarrow	gestalt quality or gestaltqualität, 256,
$surfaces \rightarrow hyperbolic$	257
sample impoverishment, 357	illusory contours, 260
sampling, 121, 122	parallelism, 258
aliasing, 123, 125–130	proximity, 257
formal model, 122, 123, 125	similarity, 257
Fourier transform of sampled signal, 126	symmetry, 258
illustration, 124	in humans
non-square pixels, 124	examples, 255
Nyquist's theorem, 126	interactive segmentation, 261
poorly causes loss of information, 123	range data, 424–432
sampling distribution, see probability, for-	trimaps, 281
mal models of	watershed, 271
saturation, see color spaces	selection bias, see also model selection, 460
scale, 134, see smoothing	self-calibration, 250
anisotropic diffusion or edge preserving	self-loop, see graph
smoothing, 138	self-similar, see corner
applications, 136	self-similarities, 183
coarse scale, 135	semi-local surface representation, 441
effects of choice of scale, 145	SFM, 221
of an M-estimator, 302	shading, 33
scale ambiguity, see ambiguity \rightarrow Euclidean	shading primitives, 65
scale space, 426	shadow, 35
scaled orthography, see weak perspective	shadow removal, 92
scaling, see linear systems, shift invariant	color temperature direction, 94
scan conversion, 443	estimating color temperature direction,
scene classification, see scenes	94
scenes, 483, see datasets	examples, 95
scene classification, 484	general procedure, 93
searching for images, see digital libraries	invariant image, 94
secant, 393	shadows
second fundamental form, 400, 425	area sources, 36, 37
segmentation, 164, 255, see also clustering,	penumbra, 37
see also fitting, 424	umbra, 36
as a missing data problem, 308, see	shape
missing data problems	affine, see affine geometry
by clustering, general recipe, 268	Euclidean, see Euclidean geometry
example applications, 261	projective, see projective geometry
background subtraction, 261–263	shape context, see pattern elements
background babilaction, 201 200	snape context, see pattern elements

shape from shading, 59–61	approximate nearest neighbors, 638
shape from texture	classifier
for curved surfaces, 190	LIBSVM, 480
repetition of elements yields lighting,	multiple kernel learning, 480
190	PEGASOS, 480
shift invariant, see properties	SVMLight, 480
shift invariant linear system, see linear sys-	deformable object detection, 535
tems, shift invariant	deformable registration, 383
shot boundary detection, 261, 264	face detection, 539
key frame, 264	FLANN, 638
shots, 264	general object detection, 539
shots, see shot boundary detection	homography estimation, 373
shrinkage, 183	image classification
SIFT descriptor, 155, 157–159	color descriptor, 513
software, 160	course software, 513
SIFT descriptors	GIST, 513
difficulties with, 546	link repository, 513
silhouette, see image contour	pyramid match, 513
similarity, 223, see segmentation	VLFeat, 513
simplex method, 576	image segmenters, 285
simulated annealing, 683	pattern elements, 160
singular point, 394	color descriptors, 160
singular value decomposition, 237, 244, 666–	HOG feature, 160
669	PCA-SIFT, 160
skeleton, 563, see people	toolbox, 160
skinning, 451	VLFEAT, 160
skylight, see color sources	people, 624
slack variables, 472	sources
slant, 188, 189	source colors, 88, 89
normal is ambiguous given, 189, 191	space carving, 587
smoothing, 108	spanning tree, see graph
as high pass filtering, 126, 128–130	sparse coding, 663, 672
Gaussian kernel, 109	sparse coding and dictionary learning, 672–
discrete approximation, 110	675
Gaussian smoothing, 108, 109	dictionary learning, 673–675
avoids ringing, 108, 109	sparse coding, 672–673
discrete kernel, 110	supervised dictionary learning, 675
effects of scale, 110, 145	sparse model, 183
standard deviation, 109	spatial frequency
suppresses independent stationary ad-	see Fourier transform, 118
ditive noise, 111	spatial frequency components, 119
scale, 143	spectral albedo, see albedo
to reduce aliasing, 126, 128–130	color, physical terminology, 76
weighted average, 107	spectral colors, 68
word counts, see information retrieval	spectral energy density, see color, physical
Snell's law, 8	terminology
snippets, see people	spectral locus, 83
soft thresholding, 183	spectral reflectance, see albedo
soft weights, see missing data problems	color, physical terminology, 76
software	specular
active appearance models, 383	dielectric surfaces, 90

metal surfaces, 90	sum of squared differences, 177
specularities, 90	sum-of-squared differences, 330
specularity	SSD, 330
finding, 90, 91	summary matching, 334
specular albedo, 34	superpixels, 268
specular direction, 34	superposition, see linear systems, shift in-
specular reflection, 34	variant
specularities, see specular	superquadrics, 454
specularity, 34	support maps, see layered motion
spherical	surface color, see color perception
aberration, 10	SVMLight, see classifier
spherical panorama, 371	swallowtail, 412
spin	symmetric Gaussian kernel, see smoothing
coordinates, 442	symmetry, see segmentation
images, 441–446	system, see linear systems, shift invariant
map, 442	system identification, 362
SSD, see sum-of-squared differences	TI
ssd, see sum of squared differences	T-junction, 391, 404, 407, 412–416
standard deviation, see smoothing	tangent
state, 327	crossing, 415
state transition matrix, see hidden Markov	line, 393
models	plane, 398
stationary distribution, see hidden Markov	vector, 393
models	template matching
step, 426	filters as templates, 131
step edges, 161	test error, 459
stereolithography, 438	test set, see model selection
stereopsis	texton, 166 texture
binocular fusion	
combinatorial optimization, 211–214	examples, 164, 165 isotropy, 188
dynamic programming, 210–211	local representations, 166–171
global methods, 210–214	pooled representations, 171, 173–175
local methods, 205–210	representing with filter outputs, 166
multi-scale matching, 207–210	algorithm, 169
normalized correlation, 205–207	example, 169–171
constraints	published codes, 170
epipolar, 198	scheme, 167
ordering, 210	typical filters, 168
disparity, 197, 202, 203	representing with vector quantization,
multiple views, 214–215	172
random dot stereogram, 204 reconstruction, 201–203	algorithm, 172
rectification, 202–203	example, 174, 175
robot navigation, 215–216	scheme, 173
trinocular fusion, 214	scale, 164
stop words, see information retrieval	shape from texture, 187
structured light, 422	for planes, 187–189
stuff, 658	synthesis, 176, 178
submodularity, 213, 663	algorithm, 177
subtractive matching, see color perception	example, 178, 179
sum of absolute difference, 207	texton, 166
	,

texture mapping, 559, 569, 585	measurement
texture synthesis	measurement matrix, 341
for image hole filling, 181	observability, 341
tf-idf weighting, see information retrieval	particle filtering, 350
thick lenses, 10	practical issues, 360
principal points, 10	sampled representations, 351–355
thin lenses, 9	simplest, 355
equation, 9	simplest, algorithm, 356
focal points, 9	simplest, correction step, 356
tilt, 188, 189	simplest, difficulties with, 357
tilt direction, 188	simplest, prediction step, 355
topics, 634	working, 358–361
total least squares, see fitting	working, by resampling, 358
total risk, see classifier	smoothing, 345, 347, 348
tracking	tracking by detection, 327
applications	tracking by matching, 327
motion capture, 326	tracking by detection, see tracking
recognition, 326	tracking by matching, see tracking
surveillance, 326	trademark, see near duplicate detection
targeting, 326	trademark evaluation, 628
as inference, 339	Training error, 459
definition, 326	training set, see model selection
hidden Markov models	transformation groups
backward variable, 598	affine transformations, 231
dynamic programming, 594	projective transformations, 241
dynamic programming algorithm, 595	
dynamic programming figure, 596	tree, see graph
example of Markov chain, 592	tree-structured models
fitting a model with EM, 595, 597,	binary terms, 600
598	cost-to-go function, 601
forward variable, 598	unary terms, 600
trellis, 592, 593	trellis, see matching on relations
Viterbi algorithm, 594, 595	trichromacy, see color perception
Kalman filters, 344	trimaps, see segmentation
example of tracking a point on a line,	trinocular fusion, see stereopsis \rightarrow trinocu-
344, 345	lar fusion
forward-backward smoothing, 345, 34'	7,triple point, 415, 416
348	tritangent, 415
linear dynamic models	true positive rate, see classifier
all conditional probabilities normal,	twisted cubic, 25
344	twisted curves, see differential geometry \rightarrow
are tracked using a Kalman filter,	space curves
qv, 344	HCD
constant acceleration, 342, 343	UCF activity datasets, see datasets
constant velocity, 341, 342	ultra-sound imaging, see medical imaging
drift, 341	umbra, 36
periodic motion, 343	unary terms, see tree-structured models
main problems	undirected graph, see graph
correction, 340	undulation, 410
data association, 340	unode, 416
prediction, 339	value, see color spaces
	,

**	
Vector quantization, 172	wit
vector quantization, 586	wit
vergence, 204, 217	
viewing	WO
cone, 391	
cylinder, 391	yel
viewing sphere, 416	
viewpoint	zer
general, 404	zip
vignetting, 12	
VIRAT dataset, see datasets	
virtual image, 4	
visual events, 392, 411	
curves, 411	
equations, 421	
local, 412–413	
beak-to-beak, 412	
lip, 412	
swallowtail, 412	
,	
multilocal, 414–416 cusp crossing, 415, 416	
2	
tangent crossing, 415	
triple point, 415, 416	
visual hull, 417, 559–573	
visual phrases, see object recognition	
visual potential, see aspect graph	
visual words, 487, see image classification, 639	
recovering suppressed detail, 640	
Viterbi algorithm, see hidden Markov mod-	
els	
see hidden Markov models, 594	
voxel, 437	
watershed, see segmentation	
wavelet shrinkage, 183	
weak calibration, 224–226	
eight-point algorithm	
minimal, 225	
normalized, 225	
overconstrained, 225	
nonlinear, 225	
weak learner, see classifier	
weak perspective, 7	
projection matrix, see projection ma-	
$trix \rightarrow affine \rightarrow weak-perspective$	
weighted graph, see graph	
Weizmann activity, see datasets	
wide-baseline, 215	
wide-baseline stereopsis, 217, 574	
window, see chaff	

within-class variance, 495
within-class variation, see image classification
word counts, see information retrieval
yellow, see color spaces
zero-skew projection matrix, 19
zippered polygonal mesh, 454

List of Algorithms

2.1	Determining the Lightness of Image Patches	45
2.2	Photometric Stereo	50
4.1	Subsampling an Image by a Factor of Two.	129
4.2	Forming a Gaussian Pyramid	
5.1	Gradient-Based Edge Detection	146
5.2	Obtaining Location, Radius and Orientation of Pattern Elements Using a	
	Corner Detector.	154
5.3	Obtaining Location, Radius, and Orientation of Pattern Elements Using	
	the Laplacian of Gaussian.	155
5.4	Computing a SIFT Descriptor in a Patch Using Location, Orientation and	
	Scale	158
5.5	Computing a Weighted q Element Histogram for a SIFT Feature	159
6.1	Local Texture Representation Using Filters	172
6.2	Texture Representation Using Vector Quantization	173
6.3	Clustering by K-Means	176
6.4	Non-parametric Texture Synthesis.	177
7.1	The Marr-Poggio (1979) Multi-Scale Binocular Fusion Algorithm	208
7.2	A Dynamic-Programming Algorithm for Establishing Stereo Correspon-	
	dences Between Two Corresponding Scanlines	212
8.1	The Longuet-Higgins Eight-Point Algorithm for Euclidean Structure and	
	Motion from Two Views	228
8.2	The Tomasi-Kanade Factorization Algorithm for Affine Shape from Motion.	238
9.1	Background Subtraction	263
9.2	Shot Boundary Detection Using Interframe Differences	264
9.3	Agglomerative Clustering or Clustering by Merging	269
9.4	Divisive Clustering, or Clustering by Splitting	269
9.5	Finding a Mode with Mean Shift.	275
9.6	Mean Shift Clustering	
9.7	Mean Shift Segmentation	277
9.8	Agglomerative Clustering with Graphs.	280
10.1	Incremental Line Fitting	296
	K-means Line Fitting	
	Using an M-Estimator to Fit a Least Squares Model	
	RANSAC: Fitting Structures Using Random Sample Consensus	
	Tracking by Detection	
	Tracking with the Mean Shift Algorithm	
	The Kalman Filter	
	Forward-Backward Smoothing	
	Obtaining a Sampled Representation of a Probability Distribution	
	Computing an Expectation Using a Set of Samples	
11.7	Obtaining a Sampled Representation of a Posterior from a Prior	355
	A Practical Particle Filter Resamples the Posterior	
	An Alternative Practical Particle Filter.	
	The Model-Based Edge-Detection Algorithm of Ponce and Brady (1987)	
	The Iterative Closest-Point Algorithm of Besl and McKay (1992)	
14.3	The Plane-Matching Algorithm of Faugeras and Hebert (1986)	440

14.4	Pointwise Matching of Free-Form Surfaces Using Spin Images, after Johnson					
	and Hebert (1998, 1999)					
14.5	Training a Decision Tree					
14.6	Training a Random Forest					
15.1	The Bayes Classifier					
15.2	Cross-Validation					
15.3	Multi-class Classification Assuming Class-Conditional Densities are Normal 468					
15.4	(k,l) Nearest Neighbor Classification					
15.5	Training a Two-Class Decision Stump					
	Discrete Adaboost					
15.7	Real Adaboost					
16.1	Principal Components Analysis					
16.2	Canonical Variates					
16.3	Dilation					
16.4	Erosion					
	Sliding Window Detection					
19.1	Visual Hull Construction					
	A Curve-Tracing Algorithm					
19.3	The Strip Triangulation Algorithm					
	The PMVS Algorithm					
	The Feature-Matching Algorithm of PMVS					
	The Patch-Expansion Algorithm of PMVS					
20.1	The Viterbi Algorithm					
	Fitting Hidden Markov Models with EM					
	Computing the Forward Variable for Fitting an HMM 597					
	Computing the Backward Variable for Fitting an HMM 597					
	Updating Parameters for Fitting an HMM					
	Nearest Neighbor Tagging					
	Greedy Labeling Using Kernel Similarity Comparisons 648					
22.1	The Alpha Expansion Algorithm of Boykov et al. (2001) 681					