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FIGURE 14.11: A 2D illustration of the Curless-Levoy method for fusing multiple range
images. In the left part of the figure, three views observed by the same sensor located
at the point O are merged by computing the zero set of a weighted average of the signed
distances between voxel centers (e.g., points A, B, and C) and surface points (e.g., a, b,
and c) along viewing rays. In general, distances to different sensors would be used instead.
The light-gray area in the right part of the figure is the set of voxels marked as empty in
the gap-filling part of the procedure.

scanner, as well as a physical model constructed from the geometric one via stereo-
lithography (Curless and Levoy 1996).

14.4 OBJECT RECOGNITION

We now turn to actual object recognition from range images. The registration
techniques introduced in the previous section will play a crucial role in the two
algorithms discussed in this one.

14.4.1 Matching Piecewise-Planar Surfaces Using Interpretation Trees

The recognition algorithm proposed by Faugeras and Hebert (1986) is a recursive
procedure exploiting rigidity constraints to efficiently search an interpretation tree
for the path(s) corresponding to the best sequence(s) of matches. The basic pro-
cedure is given in pseudocode in Algorithm 14.3. To correctly handle occlusions
(and the fact that, as noted earlier, a range finder will “see,” at best, one half of
the object facing it), at every stage of the search, the algorithm must consider the
possibility that a model plane might not match any scene plane. This is done by
always incorporating in the list of potential matches of a given plane a token “null”
plane.

Selecting potential matches. The selection of potential matches for a given
model plane is based on various criteria depending on the number of correspon-
dences already established, with each new correspondence providing new geometric
constraints and more stringent criteria. At the beginning of the search, we know
only that a model plane with area A should be matched to scene planes with a com-
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FIGURE 14.12: 3D Fax of a statuette of a Buddha. From left to right: photograph
of the statuette; range image; integrated 3D model; model after hole filling; and
physical model obtained via stereolithography. Courtesy of Marc Levoy. Reprinted
from “A Volumetric Method for Building Complex Models from Range Images,”
by B. Curless and M. Levoy, Proc. SIGGRAPH, (1996). c© 1996 ACM, Inc.
http:// doi.acm. org/ 10. 1145/237170.237269 Reprinted by permission..

patible area, i.e., in the range [αA, βA]. Reasonable values for the two thresholds
might be 0.5 and 1.1, which allows for some discrepancy between the unoccluded
areas, and also affords a degree of occlusion up to 50%.

After the first correspondence has been established, it is still too early to
try and estimate the rigid transformation mapping the model onto the scene, but
it is clear that the angle between the normals to any matching planes should be
(roughly) equal to the angle θ between the normals to the first pair of planes,
say those that lie in the interval [θ − ε, θ + ε]. The normals to the corresponding
planes lie in a band of the Gauss sphere, and they can be retrieved efficiently by
discretizing this sphere and associating to each cell a bucket that stores the scene
planes whose normal falls into it (Figure 14.13).

A second pairing is sufficient to completely determine the rotation separating
the model from its instance in the scene: this is geometrically clear (and will be con-
firmed analytically in the next section) since a pair of matching vectors constrains
the rotation axis to lie in the plane bisecting these vectors. Two pairs of matching
planes determine the axis of rotation as the intersection of the corresponding bisect-
ing planes, and the rotation angle is readily computed from either of the matches.
Given the rotation and a third model plane, one can predict the orientation of the
normal to its possible matches in the scene, which can be recovered efficiently using
once again the discrete Gauss sphere mentioned before. After three pairings have
been found, the translation can also be estimated and used to predict the distance
between the origin and any scene plane matching a fourth scene plane. The same
is true for any further pairing.
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The recursive function Match returns the best set of matching plane pairs found by
recursively visiting the interpretation tree. It is initially called with an empty list
of pairs and null values for the rotation and translation arguments rot and trans.
The auxiliary function Potential-Matches returns the subset of the planes in the
scene that are compatible with the model plane Π and the current estimate of the
rigid transformation mapping the model planes onto their scene matches (see text
for details).
The auxiliary function Update-Registration-2 uses the matched plane pairs to up-
date the current estimate of the rigid transformation.

Function Match(model, scene, pairs, rot, trans);
begin
bestpairs ← nil; bestscore ← 0;
for Π in model do

for Π′ in Potential-Matches(scene, pairs, Π, rot, trans) do
rot ← Update-Registration-2(pairs, Π, Π′, rot, trans);
(score, newpairs) ← Match(model−Π, scene−Π′, pairs+(Π,Π′), rot, trans);
if score>bestscore then bestscore ← score; bestpairs ← newpairs endif;
endfor;

endfor;
return bestpairs;
end.

Algorithm 14.3: The Plane-Matching Algorithm of Faugeras and Hebert (1986).

Estimating the rigid transformation. Let us consider a plane Π defined by
the equation n · x − d = 0 in some fixed coordinate system. Here, n denotes the
unit normal to the plane and d its (signed) distance from the origin. Under the
rigid transformation defined by the rotation matrix R and the translation vector t,
a point x maps onto the point x′ = Rx+ t, and Π maps onto the plane Π′ whose
equation is n′ · x′ − d′ = 0, with

{
n′ = Rn,
d′ = n′ · t+ d.

Thus, estimating the rigid transformation that maps n planes Πi onto the
matching planes Π′

i (i = 1, . . . , n) amounts to finding the rotation matrix R that
minimizes the error

Er =
n∑

i=1

||n′
i −Rni||2

and the translation vector t that minimizes

Et =

n∑

i=1

(d′i − di − n′
i · t)2.

The rotation R minimizing Er can be computed, exactly as in Section 14.4.1, by
using the quaternion representation of matrices and solving an eigenvector problem.
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FIGURE 14.13: Finding all vectors v that make an angle in the [θ − ε, θ + ε] range with a
given vector u. It should be noted that the unit sphere does not admit tesselations with
an arbitrary level of detail by regular (spherical) polygons. The tesselation shown in the
diagram is made of hexagons with unequal edge lengths. See, for example, (Horn 1986,
Chap. 16) for a discussion of this problem and various tesselation schemes.

The translation vector tminimizing Et is the solution of a (non-homogeneous) linear
least-squares problem, whose solution can be found using the techniques presented
in Chapter 22.

Results. Figure 14.14 shows recognition results obtained using a bin of Renault
parts such as the one shown in Figure 14.8. The range image of the bin has been
segmented into planar patches using the technique presented in Section 14.2.3. The
matching algorithm is run three times on the scene, with patches matched during
each run removed from the scene before the next iteration. As shown by the figure,
the three instances of the part present in the bin are correctly identified, and the
accuracy of the pose estimation process is attested by the reprojection into the
range image of the model in the computed pose.

14.4.2 Matching Free-Form Surfaces Using Spin Images

As demonstrated in Section 14.2.2, differential geometry provides a powerful lan-
guage for describing the shape of a surface locally, i.e., in a small neighborhood of
each one of its points. On the other hand, the region-growing algorithm discussed
in Section 14.2.3 is aimed at constructing a globally consistent surface description in
terms of planar patches. We introduce in this section a semi-local surface represen-
tation, the spin image of Johnson and Hebert (1998, 1999), that captures the shape
of a surface in a relatively large neighborhood of each one of its points. As will be
shown in the rest of this section, the spin image is invariant under rigid transfor-
mations, and it affords an efficient algorithm for pointwise surface matching, thus
completely bypassing segmentation in the recognition process.

Spin image definition. Let us assume as in Section 14.2.3 that the surface Σ of
interest is given in the form of a triangular mesh. The (outward-pointing) surface
normal at each vertex can be estimated by fitting a plane to this vertex and its
neighbors, turning the triangulation into a net of oriented points. Given an oriented
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(a) (b)

(c) (d)

FIGURE 14.14: Recognition results: (a) a bin of parts, and (b)–(d) the three instances of
the Renault part found in that bin. In each case, the model is shown both by itself in
the position and orientation estimated by the algorithm, as well as superimposed (dotted
lines) in this pose over the corresponding planes of the range image. Reprinted from
“The Representation, Recognition, and Locating of 3D Objects,” by O.D. Faugeras and
M. Hebert, International Journal of Robotics Research, 5(3):27–52, (1986). c© 1986 Sage
Publications. Reprinted by permission of Sage Publications.

point P , the spin coordinates of any other point Q can now be defined as the (non-
negative) distance α separating Q from the (oriented) normal line in P and the
(signed) distance β from the tangent plane to Q (Figure 14.15). Accordingly, the
spin map sP : Σ→ R

2 associated with P is defined for any point Q on Σ as

sP (Q)
def
= (||−−→PQ × n||

︸ ︷︷ ︸

α

,
−−→
PQ · n
︸ ︷︷ ︸

β

).

As shown by Figure 14.15, this mapping is not injective. This is not surprising
because the spin map provides only a partial specification of a cylindrical coordinate
system: the third coordinate that would normally record the angle between some

reference vector in the tangent plane and the projection of
−−→
PQ into this plane is

missing. The principal directions are obvious choices for such a reference vector,
but focusing on the spin coordinates avoids their computation, a process that is
susceptible to noise since it involves second derivatives and may be ambiguous for
(almost) planar or spherical patches.

The spin image associated with an oriented point is a histogram of the α, β
coordinates in a neighborhood of this point. Concretely, the α, β plane is divided
into a rectangular array of δα × δβ bins that accumulate the total surface area
spanned by points with α, β values in that range.3 As shown in Carmichael, Hubert,

3The corresponding point sets may actually be divided into several connected components.
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FIGURE 14.15: Definition of the spin map associated with a surface point P : the spin
coordinates (α, β) of the point Q are respectively defined by the lengths of the projections

of
−−→
PQ onto the tangent plane and its surface normal. Note that there are three other

points with the same (α, β) coordinates as Q in this example.

and Hebert (1999) and the problems, each triangle in the surface mesh maps onto
a region of the α, β plane whose boundaries are hyperbola arcs. Its contribution
to the spin image can thus be computed by assigning to each bin that this region
traverses the area of the patch where the triangle intersects the annular region of
R

3 associated with the bin (Figure 14.16). The bins can be found efficiently using
scan conversion (Foley et al. 1990), a process routinely used in computer graphics
to find in optimal time the pixels traversed by a generalized polygon with straight
or curved edges.
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FIGURE 14.16: Spin image construction: the triangle shown in the left of the diagram
maps onto a region with hyperbolic boundaries in the spin image; the value of each bin
intersected by this region is incremented by the area of the portion of the triangle that
intersects the annulus associated with the bin. After Carmichael et al. (1999, Figure 3).

Spin images are defined by several key parameters (Johnson and Hebert 1999).
The first one is the support distance d that limits to a sphere of radius d centered
in P the range of the support points used to construct the image. This sphere must
be large enough to provide good descriptive power but small enough to support

For example, for small enough values of δα and δβ, there are four connected components in the
example shown in Figure 14.15, corresponding to small patches centered at the points having the
same α, β coordinates as Q.
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recognition in the presence of clutter and occlusion. In practice, an appropriate
choice for d might be a tenth of the object’s diameter; thus, as noted earlier,
the spin image is indeed a semi-local description of the shape of a surface in an
extended neighborhood of one of its points. Robustness to clutter can be improved
by limiting the range of surface normals at the support points to a cone of half-angle
θ centered in n. As in the support distance case, choosing the right value for θ
involves a trade-off between descriptive power and insensitivity to clutter; a value
of 60◦ has empirically been shown to be satisfactory. The last parameter defining a
spin image is its size (in pixels), or equivalently, given the support distance, its bin
size (in meters), and it can be shown that an appropriate choice for the bin size is
the average distance between mesh vertices in the model. Figure 14.17 shows the
spin images associated with three oriented points on the surface of a rubber duck.

FIGURE 14.17: Three oriented points on the surface of a rubber duck and the corre-
sponding spin images. The α, β coordinates of the mesh vertices are shown besides the
actual spin images. Reprinted from “Using Spin Images for Efficient Object Recognition
in Cluttered 3D Scenes,” by A.E. Johnson and M. Hebert, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(5):433–449, (1999). c© 1999 IEEE.

Matching spin images. One of the most important features of spin images
is that they are (obviously) invariant under rigid transformations. Thus an image
comparison technique such as correlation can in principle be used to match the spin
images associated with oriented points in the scene and the object model. Things
are not that simple, however: we already noted that the spin map is not injective;
in general, it is not surjective either, and empty bins (or equivalently zero-valued
pixels) may occur for values of α and β that do not correspond to physical surface
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points (see the blank areas in Figure 14.17, for example). Occlusion may cause
the appearance of zero pixels in the scene image, whereas clutter may introduce
irrelevant non-empty bins. It is therefore reasonable to restrict the comparison of
two spin images to their common nonzero pixels. In this context, Johnson and
Hebert (1998) have shown that

S(I,J)
def
= [Arctanh(C(I ,J))]2 − 3

N − 3

is an appropriate similarity measure for two spin images whose overlap regions
contain N pixels and are represented by the vectors I and J of R

N . In this
formula, C(I,J) denotes the normalized correlation of the vectors I and J , and
Arctanh denotes the hyperbolic arc tangent function. Armed with this similarity
measure, we can now outline a recognition algorithm that uses spin images to
establish pointwise correspondences.

Off-line:

Compute the spin images associated with the oriented points of a surface
model and store them into a table.

On-line:

1. Form correspondences between a set of spin images randomly selected in the
scene and their best matches in the model table using the similarity measure
S to rank-order the matches.

2. Filter and group correspondences using geometric consistency constraints, and
compute the rigid transformations best aligning the matched scene and model
features.

3. Verify the matches using the ICP algorithm.

Algorithm 14.4: Pointwise Matching of Free-Form Surfaces Using Spin Images, after
Johnson and Hebert (1998, 1999).

The various stages of this algorithm are mostly straightforward. Let us note,
however, that the filtering/grouping step relies on comparing the spin coordinates
of model points relative to the other mesh vertices in their group with the spin
coordinates of the corresponding scene points relative to their own group. Once
consistent groups have been identified, an initial estimate of the rigid transformation
aligning the scene and the model is computed from (oriented) point matches using
the quaternion-based registration technique described in Section 14.3.2. Finally,
consistent sets of correspondences are verified by iteratively spreading the matching
process to their neighbors, updating along the way the rigid transformation that
aligns the scene and the model.

Results. The matching algorithm presented in the previous section has been
extensively tested in recognition tasks with cluttered indoor scenes that contain
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both industrial parts and various toys (Johnson & Hebert 1998, 1999). It has also
been used in outdoor navigation/mapping tasks with very large datasets covering
thousands of squared meters of terrain (Carmichael et al. 1999). Figure 14.18 shows
sample recognition results in the toy domain.

(a)

(b)

FIGURE 14.18: Spin-image recognition results: (a) a cluttered image of toys and the mesh
constructed from the corresponding range image; (b) recognized objects overlaid on the
original pictures. Reprinted from “Using Spin Images for Efficient Object Recognition in
Cluttered 3D Scenes,” by A.E. Johnson and M. Hebert, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(5):433–449, (1999). c© 1999 IEEE.

14.5 KINECT

Kinect is a video game technology developed by Microsoft for its Xbox 360 platform
that allows its users to control games using natural body motions. It has three
main components: a sensor that delivers accurate depth maps and color images at
frame rate, an effective algorithm for estimating the pose (joint positions) of the
players in every frame, and a tracking algorithm using this information to smoothly
recover the parameters (joint angles) of a 3D kinematic model (skeleton) over time.
This section discusses the pose estimation algorithm used by Kinect (Shotton et
al. 2011), which relies on random forests to classify individual pixels from a single
range image into one of a few predefined body parts, then uses a voting/averaging
procedure to compute these parts’ locations (joint positions) in 3D.

Kinect is a success story for computer vision, with several million units shipped
as of 2011. Before getting into the details of its presentation, it may be worth
examining some key elements that might explain (at least in part, and marketing
and user-interface issues aside) some of this success:
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1. The sensor, developed by Primesense,4 delivers at 30Hz a depth map with
VGA resolution (480 × 640 pixels) and a registered RGB image with UXGA
resolution (1200×1600 pixels). The corresponding Light CodingTM technology
uses a projected infrared pattern observed by a black-and-white camera and
decoded on a dedicated chip. The two main features of this sensor is that it is
fast, much faster than conventional range finders using mechanical scanning,
and cheap—cheap enough, in fact, to ship as part of a mass-market video
game package.

2. Range images are a lot easier to simulate realistically than ordinary pho-
tographs (no color, texture, or illumination variations). In turn, this means
that it is easy to generate synthetic data for training accurate classifiers with-
out overfitting.

3. Voting procedures are relatively robust to errors among individual voters. As
shown later in this section, this explains that excellent pose estimation results
can be achieved despite relatively large error rates (40%) at the individual
pixel level.

4. Kinect’s overall effectiveness and robustness are doubtless due in part to its
tracking component, whose details are proprietary but, like any other ap-
proach to tracking (see Chapter 11), has temporal information at its disposal
for smoothing the recovered skeleton parameters and recovering from joint
detection errors.

One may also argue that depth map features are more robust, or invariant to
viewpoint changes, than those found in photographs. This is certainly true to some
extent (see the spin images of Section 14.4.2). On the other hand, one may also
argue that, in the context of video games, where the viewpoint does not vary much,
the key advantage of these images might be that they readily provide occlusion
boundary/silhouette information. Indeed, it is relatively easy to separate objects
from background in range images, and all the data processed by the approach to
pose estimation presented in the rest of this section is presegmented by a separate
and effective background subtraction module.

14.5.1 Features

For efficiency reasons, Kinect uses very simple features that are related to spin
images, but without the corresponding tangent plane computations. Instead, they
simply measure depth differences in the neighborhood of each pixel. Concretely,
let us denote by z(p) the depth at pixel p in some range image. Given image
displacements λ and µ, a very simple scalar feature can be computed as

fλ,µ(p) = z

[

p+
1

z(p)
λ

]

− z
[

p+
1

z(p)
µ

]

.

In turn, given some allowed range of displacements, one can associate with
each pixel p the feature vector x(p) whose components are the D values of fµ,µ(p)
for all distinct unordered pairs (λ,µ) in that range.

4http://en.wikipedia.org/wiki/PrimeSense.
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FIGURE 14.19: Random forests. See text for details. Reprinted from “Real-Time Human
Pose Recognition in Parts from Single Depth Images,” by J. Shotton et al., Proc. IEEE
Conference on Computer Vision and Pattern Recognition, (2011). c© 2011 IEEE.

As detailed in Section 14.5.3, these features are used to train an ensemble of
simple decision tree classifiers, in the form of a random forest. After training, the
feature x associated with each pixel of a new depth map is passed to every tree in
the forest, where it is recursively redirected to the left or right descendants of the
root according to simple binary tests until it reaches a leaf and is assigned some
tree-dependent posterior probability of belonging to each body part (Figure 14.19).
The overall class probability of the pixel is finally computed as an average of the tree
probabilities. Before detailing this process, let us now present a bit more formally
decision trees and random forests.

14.5.2 Technique: Decision Trees and Random Forests

Decision trees. Decision trees have long been used in machine learning and pat-
tern recognition as efficient multi-label classifiers. Let us consider a classification
problem with features x = (x1, . . . , xD)T in R

D and K different classes. A decision
tree is a binary tree where every non-terminal node is associated with some coor-
dinate xd, with d in {1, . . . , D}, and a threshold τ . A feature vector x is assigned
to the node’s left child if xd < τ , and to its right child otherwise. This recursive
process eventually assigns any feature to some leaf in the tree.

Decision trees split the feature space into hyper-rectangular regions associated
with their leaves. Given some labeled training data

D = {(xi, yi), xi ∈ R
D yi ∈ {1, . . . ,K}, i = 1, . . . , N},

they also classify any unlabeled feature by taking a majority vote among the labeled
examples in D that have reached the same leaf.

Given some fixed tree structure—say, a balanced tree with depth L—training
a decision tree amounts to selecting the feature space coordinates and the thresholds
associated with its non-leaf nodes. This can be achieved by maximizing at every
node the information gain associated with the corresponding coordinate xd and
threshold τ .

Intuitively, a decision tree should split any labeled data into subsets that
are as homogeneous as possible, and ideally, all data reaching a leaf should have
the same label. This can be formalized using the concept of cross-entropy. If the
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number of points in D that belong to class k is Nk, its cross-entropy is defined as

E(D) = −
K∑

k=1

pk(D) log pk(D),

where pk(D) = Nk/N is just the proportion of the points in class k. The cross-
entropy reaches its maximum (positive) value of logK when the data is spread
equally into all classes, and reaches its minimum value of zero when all the points
belong to the same class. The goal is thus to decrease the cross-entropy as much
as possible each time the data is split by a non-terminal node.

The information gain associated with some partition of the data D into left
and right subsets L and R is the difference between the original cross-entropy and
a weighted sum of the entropies associated with the partition, namely

G(D,L,R) = E(D)− |L||D|E(L)− |R||D|E(R).

Now, given some feature space coordinate xd and threshold τ , let us define the
corresponding left and right subsets of D as

Ld,τ (D) = {(x, y) ∈ D, xd < τ} and Rd,τ (D) = {(x, y) ∈ D, xd ≥ τ}.

The information gain associated with d and τ can thus be defined as

Gd,τ (D) = G(D,Ld,τ (D),Rd,τ (D)),

and training a decision tree amounts to picking, for each of its non-terminal nodes,
the values of d and τ that maximize Gd,τ for the corresponding subset of the labeled
data. This procedure is described in Algorithm 14.5.

The arguments of the recursive procedure TrainDT for its first call are the tree
root, 0, and the full dataset. Here, Node.L and Node.R respectively denote the
left and right children of Node. The tree structure is assumed to be fixed, e.g., a
balanced tree.

Procedure TrainDT(Node,l,D);

1. Find the pair (d, τ) maximizing Gd,τ (D);
2. If l < L then

(a) TrainDT(Node.L,Ld,τ (D),l + 1);

(b) TrainDT(Node.R,Rd,τ (D),l + 1).

Algorithm 14.5: Training a Decision Tree.

For small feature space dimensions and labeled datasets, decision trees can
be trained efficiently by exhaustively trying all splitting coordinates, and for each
one of these, sorting all features. It is normally wise to grow a rather large decision
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tree, and then prune it to balance its size with classification accuracy and avoid
overfitting (CART procedure; see Breiman, Friedman, Ohlsen, and Stone [1984] for
details).

As noted earlier, a decision tree classifies a feature vector x by taking a
majority vote among the labeled training examples that have reached the same
leaf. Alternatively, it is also possible to estimate the posterior probability P (k|x)
that x belongs to class k as the proportion of labeled samples with class k associated
with that leaf.

A typical choice for D∗ is
√
D. Adapted from Hastie et al. (2009).

1. For b = 1 to B do

(a) Draw a bootstrap sample D∗ from D.
(b) Grow a decision tree Tb for D∗ using TrainDT modified such that, at

each recursive step, D∗ ≤ D out of the original D coordinates are picked
randomly as splitting candidates;

2. Output the trees {Tb, b = 1, . . . , B}.

Algorithm 14.6: Training a Random Forest.

Random forests. A simple method for improving the classification accuracy of
decision trees is bagging (or bootstrap aggregation): Given a dataset D consisting
of N points, a bootstrap sample D∗ is formed by randomly drawing N points with
replacement from D (the same point can be drawn several times, and some points
present in D might not appear in D∗). Bagging consists of constructing B bootstrap
samples, growing a decision tree for each one of them, and using a majority vote
among the trees for classification. This process can be shown to reduce the variance
of the prediction when the errors associated with the individual trees are uncor-
related. Random forests improve upon bagging by randomly selecting a subset of
the input variables at each recursive step of the training process (Algorithm 14.6).
The intended effect is to reduce the correlation between the constructed trees, thus
reducing the variance of their mean prediction. In practice, as shown in Hastie,
Tibshirani, and Friedman (2009) for example, random forests typically do not re-
quire pruning, and are easier to train and tune than boosting techniques, with very
similar performance for many problems.

After training, a new feature is classified using a majority vote among the
trees in the forest. As before, it is also possible to estimate the posterior probability
P (k|x) that x belongs to class k as the mean of the corresponding probabilities for
each tree.

14.5.3 Labeling Pixels

The objective is to construct a classifier that assigns to every pixel in a range image
one out of a few body parts, such as a person’s face, left arm, etc. There are 10
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FIGURE 14.20: Effect of the number of (left) training images and (center and right)
tree depth on classification accuracy on 5,000 synthetic depth images and 8,808 real hand-
labeled ones. Figure courtesy of Jamie Shotton. Reprinted from “Real-Time Human
Pose Recognition in Parts from Single Depth Images,” by J. Shotton et al., Proc. IEEE
Conference on Computer Vision and Pattern Recognition, (2011). c© 2011 IEEE.

main body parts in Kinect (head, torso, two arms, two legs, two hands, and two
feet), some of which are further divided into sub-parts, such as the upper/lower
and left/right sides of a face, for a total of 31 parts. The classifier is trained as a
random forest, using the features described in Section 14.5.1 and Algorithm 14.6,
but replacing the bootstrap sample used for each tree by a random subset of the
training data (2,000 random pixels from each one of hundreds of thousands of
training images).

One of the main features of the training process is in fact this data: Its pri-
mary source is a set of several hundred motion capture sequences featuring actors
engaged in typical video game activities such as driving, dancing, kicking, etc. Af-
ter clustering close-by pictures and retaining one sample per cluster, a set of about
100K poses is obtained. The measured articulation parameters are transferred (re-
targeted) to 15 parametric mesh models of human beings with a variety of body
shapes and sizes. Body parts defined manually in texture maps are also transferred
to these models (Figure 14.21, top), which are then skinned by adding different
types of clothing and hairstyle (Figure 14.21, center), and rendered from differ-
ent viewpoints as both depth and label maps using classical computer graphics
techniques (Figure 14.21, bottom).

Hundreds of thousands of labeled images can easily be created in this way.
The experiments described in Shotton et al. (2011) typically use 2,000 pixels per
image and per tree to train random forests made of three trees of depth 20, with
2,000 splitting coordinates and 50 thresholds per node. This takes about one day
on a 1,000-core cluster for up to one million training images. Experiments with
synthetic and real data show that increasing the size of the training sample improves
the classification rate, and suggest that increasing tree depth also helps, at least
for large datasets (Figure 14.20): The overfitting observed starting at depth 17 for
small datasets of 15K images disappears for the largest datasets with 900K images.
The best results are observed with 900K training images and trees of depth 20,
with a pixelwise classification rate of about 60%.
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FIGURE 14.21: Data generation process with, from top to bottom: sample models gener-
ated by retargeting the motion capture data on meshes corresponding to different body
types; models after skinning using different types of clothing and hairstyle; and rendered
depth maps together with their labels. Reprinted from “Real-Time Human Pose Recogni-
tion in Parts from Single Depth Images: Supplementary Material,” by J. Shotton et al.,
Proc. IEEE Conference on Computer Vision and Pattern Recognition, (2011). c© 2011
IEEE.
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14.5.4 Computing Joint Positions

The classifier described in the previous section assigns to each pixel some body
part, but this process does not directly provide the joint positions because there
is no underlying kinematic model. Instead, the position of each body part k could
(for example) be estimated as some weighted average of the positions of the 3D
points corresponding to pixels labeled k, or using some voting scheme. To improve
robustness, it is also possible to use mean shifts to estimate the mode of the following
3D density distribution:

fk(X) ∝
N∑

i=1

P (k|xi)A(pi) exp[−
1

σ2
k

||X −Xi||2],

where “∝” stands for “is proportional to,” Xi denotes the position of the 3D point
associated with pixel pi, and A(pi) is the area in world units of a pixel at depth
z(pi), proportional to z(pi)

2, so as to make the contribution of each pixel invariant
to the distance between the sensor and the user. Each mode of this distribution is
assigned the weighted sum of the probability scores of all pixels reaching it during
the mean shift optimization process, and the joint is considered to be detected when
the confidence of the highest mode is above some threshold. Since modes tend to
lie on the front surface of the body, the final joint estimate is obtained by pushing
back the maximal mode by a learned depth amount.

Figure 14.22 shows several results obtained on real data. Quantitative results
can be obtained by measuring the per-joint precision, measured by counting the
proportion of proposals within 0.1m of the true joint positions in hand-labeled
depth maps. Experiments using the same synthetic and real data as before shows
that the average per-joint precision over all joints and all test images is 0.914 for
the real data, and 0.731 for the synthetic one, which is much more challenging
due to a great variability in pose and body shape. In realistic game scenarios,
the precision of the recovered joint parameters is good enough to drive a tracking
system that smoothly and very robustly recovers the parameters of a 3D kinematic
model (skeleton) over time, which can in turn be used to effectively control a video
game with natural body motions.

14.6 NOTES

Excellent surveys of active range finding techniques can be found in Jarvis (1983),
Nitzan (1988), Besl (1989), and Hebert (2000). The model-based approach to edge
detection presented in Section 14.2.2 is only one of the many techniques that have
been proposed for segmenting range pictures using notions from differential geom-
etry (Fan, Medioni, & Nevatia 1987; Besl & Jain 1988). An alternative to the
computational molecules used to smooth a range image in that section is provided
by anisotropic diffusion, where the amount of smoothing at each point depends on
the value of the gradient (Perona and Malik 1990c). The method for segmenting
surfaces into (almost) planar patches presented in Section 14.2.3 is easily extended
to quadric patches (see Faugeras and Hebert [1986] and the problems). Extensions
to higher-order surface primitives is more problematic, in part because surface
fitting is more difficult in that case. There is a vast amount of literature on the
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FIGURE 14.22: Sample results with, from left to right, the input depth map, the color-
coded classification of pixel into body parts, and renderings of the recovered joint positions
from three different viewpoints. Reprinted from “Real-Time Human Pose Recognition in
Parts from Single Depth Images: Supplementary Material,” by J. Shotton et al., Proc.
IEEE Conference on Computer Vision and Pattern Recognition, (2011). c© 2011 IEEE.

latter problem, using superquadrics (Pentland 1986; Bajcsy & Solina 1987; Gross &
Boult 1988) and algebraic surfaces (Taubin, Cukierman, Sullivan, Ponce, & Krieg-
man 1994; Keren, Cooper, & Subrahmonia 1994; Sullivan, Sandford, & Ponce 1994)
for example.

Different variants of the ICP algorithm presented in Section 14.3.2 and Besl
and McKay (1992) have been developed over the years, including robust ones capa-
ble of handling missing data and/or outliers (Zhang 1994; Wheeler & Ikeuchi 1995),
and they have been applied to a number of global registration problems (Shum,
Ikeuchi, & Reddy 1995; Curless & Levoy 1996).

Alternatives to the Curless and Levoy (1996) approach to the fusion of multi-
ple range images include the Delaunay triangulation algorithm of Boissonnat (1984),
the zippered polygonal meshes of Turk and Levoy (1994), and the crust technique
of Amenta et al. (1998). The quaternion-based approach to the estimation of rigid
transformations described in this chapter was developed independently by Faugeras
and Hebert (1986) and Horn (1987a). The recognition technique discussed in Sec-
tion 14.4.1 is closely related to other algorithms using interpretation trees to con-
trol the combinatorial cost of feature matching in the two- and three-dimensional
cases (Gaston & Lozano-Pérez 1984; Ayache & Faugeras 1986; Grimson & Lozano-
Pérez 1987; Huttenlocher & Ullman 1987).

The spin images discussed in Section 14.4.2 have been used to establish
pointwise correspondences between range images and surface models. Related
approaches to this problem include the structural indexing method of Stein and
Medioni (1992) and the point signatures proposed by Chua and Jarvis (1996). The
original algorithm described in Section 14.4.2 has been extended in various direc-
tions: a scene can now be matched simultaneously to several models using principal
component analysis (Johnson and Hebert 1999), and learning techniques are used
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to prune false matches in cluttered scenes (Carmichael et al. 1999).
Kinect’s pose estimation algorithm is detailed in Shotton et al. (2011). Deci-

sion trees date back to the 1960s, and classical treatments can be found in (Breiman
et al. 1984; Quinlan 1993). The bootstrap was introduced in Efron (1979), bagging
was proposed in Breiman (1996), and random forests in (Amit & Geman 1997;
Breiman 2001). See Hastie et al. (2009) for a synthesis of these techniques.

PROBLEMS

14.1. Use Equation (14.1) to show that a necessary and sufficient condition for the
coordinate curves of a parameterized surface to be principal directions is that
f = F = 0.

14.2. Show that the lines of curvature of a surface of revolution are its meridians
and parallels.

14.3. Step model: compute zσ(x) = Gσ ∗ z(x), where z(x) is given by (14.2). Show
that z′′σ is given by Equation (14.3). Conclude that κ′′σ/κ′σ = −2δ/h in the
point xσ where z′′σ and κσ vanish.

14.4. Roof model: show that κσ is given by Equation (14.4).
14.5. The Rodrigues formula. Consider a rotation R of angle θ about the axis u (a

unit vector). Show that Rx = cos θx+ sin θu× x+ (1− cos θ)(u · x)u.
Hint: A rotation does not change the projection of a vector x onto the direction
u of its axis and applies a planar rotation of angle θ to the projection of x into
the plane orthogonal to u.

14.6. Use the Rodrigues formula to show that the quaternion q = cos θ
2 + sin θ

2u

represents the rotation R of angle θ about the unit vector u in the sense of
Equation (14.5).

14.7. Show that the rotation matrix R associated with a given unit quaternion
q = a+α with α = (b, c, d)T is given by Equation (14.6).

14.8. Show that the matrix Ai constructed in Section 14.3.2 is equal to

Ai =

(

0 yT
i − y′

i
T

y′
i − yi [yi + y′

i]×

)

.

14.9. As mentioned earlier, the ICP method can be extended to various types of ge-
ometric models. We consider here the case of polyhedral models and piecewise
parametric patches.
(a) Sketch a method for computing the point Q in a polygon that is closest

to some point P .
(b) Sketch a method for computing the point Q in the parametric patch x :

I × J → R
3 that is closest to some point P . Hint: use Newton iterations.

14.10. Develop a linear least-squares method for fitting a quadric surface to a set of
points under the constraint that the quadratic form has unit Frobenius form.

14.11. Show that a surface triangle maps onto a patch with hyperbolic edges in α, β
space.

PROGRAMMING EXERCISES

14.12. Implement molecule-based smoothing and the computation of principal di-
rections and curvatures.

14.13. Implement the region-growing approach to plane segmentation described in
this chapter.


