
C H A P T E R 8

Edges and Interest Points

Sharp changes in image intensity are evidence that something interesting is hap-
pening. Such changes could be caused by a change in the color of the surface; a
shadow; a sharp change in the orientation of the surface (which changes how much
light it collects, Section 29.2.1); or an occluding contour (an image curve which sep-
arates object pixels from background pixels). These sharp changes occur at edges,
curves where the brightness changes particularly sharply (Section 8.1.1).

Traditionally, edges were used for inference based methods – a program would
observe some interesting structure in the edges, then draw conclusions about the
scene from them. Edges aren’t much used for inference anymore, but are still
useful for other purposes because they represent a form of summary of an image –
a representation in terms of edges is small, but contains a lot of information about
the image.

A really useful summary describes an image in terms of interest points. For
the moment, these are points in the image that are easy to find and that support
distinctive descriptions (as an example, the corners of texture patterns). Interest
points are important because they offer an extremely small representation of part
of the image that is very useful in practice and requires very little computation to
obtain. Mostly, two interest points in an image will have different representations
and mostly, if two interest points have the same representation, they come from
the same point in the scene. This means two interest points matching is quite
good evidence that the points actually correspond. In turn, interest points can
be used to register images to one another, or to register objects to images – one
matches the interest points, then computes a transformation using the matches
(Section 22.3). A similar process yields information about how a camera has moved
in a scene (Section 22.3), and information about the geometry of the scene itself
(Section 22.3). Reasoning about correspondence between interest points yields a
simple image classifier (Section 22.3), and a simple object detector (Section 22.3).

8.1 EDGES AND ORIENTATIONS

There are two useful representations that can be recovered from image gradients.
Edges are curves of edge points, where the brightness changes particularly sharply.
At edges, the gradient has a large magnitude, and the gradient magnitude is larger
than at most nearby points. Constructing edge points and edges out of them
is relatively straightforward (Section 22.3), but the edge points reported tend to
change when the image gets brighter or darker. The orientation of the image
gradient does not change. Further, local statistics of orientation tend to be quite
distinctive, so one can construct a useful representation of an image patch out of
gradient orientations (Sections 22.3 and 22.3).
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Red Green Blue Intensity

FIGURE 8.1: Edges almost always involve a change in image intensity, and so image
color can be ignored. Top row shows red, green and blue separations of an im-
age, together with the image intensity. Notice that the intensity of the separations
changes (for example, the sky is blue, so it is brighter in the blue separation and
darker in the red separation), but neighboring regions that are different in one color
separation are different in intensity, too. Center row shows gradient magnitude,
computed with derivative of gaussian filters (σ = 1). These have been scaled with a
single scale so that the largest magnitude is light (same scale applied to each separa-
tion and to intensity). While the magnitudes differ from separation to separation,
if there is a gradient of any magnitude in one separation, it appears in the intensity
image as well. Bottom row shows log of scaled gradient magnitude, with a scale
chosen to show gradients with small magnitude. Again, anything that appears in
one separation appears in the intensity image as well. This is just a fact about
color images, but it is a useful fact: edges can safely be considered an intensity
phenomenon. Image credit: Figure shows my photograph of Table Mountain.

8.1.1 Gradient-Based Edge Detectors

It is usually enough to find edges in intensity images. There is mostly no advantage
in looking for edges in RGB images. because (somewhat surprisingly) there are
very few isoluminant color edges – that is, color changes where the intensity does
not change. As Figure 8.1 shows, when there is a gradient in any color component,
there is almost always a gradient in the same place in the intensity image.

Intensity edges occur where the image intensity changes particularly sharply,
so the first step to find edges is to compute an estimate of the gradient magnitude
using a derivative of gaussian filter (Section 6.2.3). The gradient magnitude forms
thick trails in the image (Figure 8.2). It is not enough to report the gradient mag-



130 Chapter 8 Edges and Interest Points

FIGURE 8.2: The gradient magnitude can be estimated by smoothing an image and
then differentiating it. This is equivalent to convolving with the derivative of a
smoothing kernel. The extent of the smoothing affects the gradient magnitude; in
this figure, we show the gradient magnitude for the figure of a zebra at different
scales. At the center, gradient magnitude estimated using the derivatives of a
Gaussian with σ = 1 pixel; and on the right, gradient magnitude estimated using
the derivatives of a Gaussian with σ = 2 pixel. Notice that large values of the
gradient magnitude form thick trails.

nitude, because the edge that (say) separates a dark spot from a light background
is a curve around the boundary of the spot (rather than a smear of points).

Edge detectors report curves built out of grid points, where the grid for the
curves might be finer than the image grid. This works because gradient magnitude
values can be interpolated. You can find all edge curves on this grid by first mark-
ing every point as unvisited, then repeatedly starting the procedure below at any
remaining unvisited point.

First, check the start point. It is an edge point if it is a local maximum of the
gradient in the direction normal to the curve, otherwise you could move the point
to a location where the change in intensity is larger. This is easily checked for any
given point (Figure 8.3). If it is a local maximum, then it is an edge point if the
gradient magnitude against a threshold (details below). If the start point is not an
edge point, mark it as visited and get another unvisited start point.

Now assume the start point is an edge point. Building a curve from a start
point is straightforward. The start point is likely not the actual start or end of
the curve, so you need to look forward and backward. In each case, you produce
a candidate for the next edge point, then check and refine that candidate. If the
refined candidate is an edge point, you add it to the curve. If you can’t confirm any
candidate is an edge point, you stop adding points to the curve for this direction.
In either case, you mark every point you have looked at as unvisited.

Finding a candidate for the next edge point is relatively straightforward. Be-
cause edge points join up to form curves, it should be easy to find the next point
by searching along the tangent to the curve. The tangent should be normal to the
gradient, so the next point on the edge is easy to find (Figure 8.3). You need to
look along the tangent in the direction heading away from the last edge point, or
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FIGURE 8.3: The figure on the left shows how to tell whether a location is an edge
point. In this figure, the edge point grid is finer than the image grid by a factor
of two. The filled circles are points on the image grid (which are also on the edge
point grid), and the open circles are on the edge point grid. Currently, q is under
consideration as an edge point. The gradient is shown as a vector. To determine
whether the gradient magnitude is a maximum at q, the value of the magnitude
must be interpolated at both p and r, neither of which are grid points. If the value
at q is larger than both, q is an edge point. The figure on the right shows that, once
one has an edge point (the red point labelled q), the next point in the chain can be
found relatively easily. The tangent to the curve of edge points is perpendicular to
the gradient, so if q is an edge point, s and t are candidates for the next edge point.
In this case, I obtained q by searching from an earlier edge point (the unlabelled
red point next to q), so I know which way to go on the tangent. If the edge point
is at the start of a curve, you will need to look at either side along the tangent.
Gradient magnitudes that aren’t known are reconstructed by interpolation.

you will revisit points (Figure 8.3).

Various efficiencies are available. For example, you could search more aggres-
sively for a new start point by walking along the image gradient. Forming chains
of points using this general process is called nonmaximum suppression.

This procedure must look at how large the maxima are. You might apply a
threshold test to ensure that the maxima are greater than some lower bound, but
this leads to broken edge curves. The usual trick for dealing with this is to use
hysteresis. You use two thresholds and refer to the larger when starting an edge
chain and the smaller while following it. The trick often results in an improvement
in edge outputs. These considerations yield the procedure sketched in the box
below. Most current edge finders follow these lines.
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FIGURE 8.4: Edge points marked on the pixel grid for the image shown on the left.
The edge points on the center left are obtained using a Gaussian smoothing filter
at σ one pixel, and gradient magnitude has been tested against a high threshold
to determine whether a point is an edge point. The edge points at the center
right are obtained using a Gaussian smoothing filter at σ four pixels, and gradient
magnitude has been tested against a high threshold to determine whether a point
is an edge point. The edge points on the right are obtained using a Gaussian
smoothing filter at σ four pixels, and gradient magnitude has been tested against
a low threshold to determine whether a point is an edge point. At a fine scale,
fine detail at high contrast generates edge points, which disappear at the coarser
scale. When the threshold is high, curves of edge points are often broken because
the gradient magnitude dips below the threshold; for the low threshold, a variety of
new edge points of dubious significance are introduced.

Procedure: 8.1 Gradient-Based Edge Detection.

Form an estimate of the image gradient

Compute the gradient magnitude
While there are points with high gradient
magnitude that have not been visited
Find a start point that is a local maximum in the
direction perpendicular to the gradient
erasing points that have been checked

While possible, expand a chain through
the current point by:
1) predicting a set of next points, using

the direction perpendicular to the gradient
2) finding which (if any) is a local maximum

in the gradient direction
3) testing if the gradient magnitude at the

maximum is sufficiently large
4) leaving a record that the point and

neighbors have been visited
record the next point, which becomes the current point

end
end
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FIGURE 8.5: Orientations are important because (a) the orientation of the gradient
does not change when the image intensity changes and (b) different patterns tend
to have different orientations. On the left, two versions of the same image, at
different intensity, with every 10th orientation arrow plotted (otherwise the arrows
overlap and the image is hard to read). The directions of the gradient arrows are
fixed, whereas the size changes. On the right, two quite different simple images
with rose plots showing orientation patterns. In a rose plot, the size of a wedge
represents the relative frequency of that range of orientations. The rose plots are
different for these different patterns. Philip Gatward c○ Dorling Kindersley, used
with permission.

Remember this: Edges are image locations where intensity changes
strongly. An edge could be evidence of: an object boundary; a change in
surface orientation; a change in surface albedo; or a shadow. Edge points
are typically points where the gradient magnitude is a local maximum and
also large. They can be found by estimating the gradient using derivative of
gaussian filters. Edge points can be linked into edge curves. These curves
are improved by hysteresis in the threshold.

8.1.2 Orientations

As the light gets brighter or darker (or as the camera aperture opens or closes), the
image will get brighter or darker, which we can represent as a scaling of the image
value. The image I will be replaced with sI for some value s. The magnitude
of the gradient scales with the image, i.e., ||∇I|| will be replaced with s||∇I||. This
creates problems for edge detectors, because edge points may appear and disappear
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as the image gradient values go above and below thresholds with the scaling.

One solution is to represent the orientation of image gradient, which is un-
affected by scaling (Figure 8.5). The gradient orientation field depends on the
smoothing scale at which the gradient was computed. Orientation fields can be
quite characteristic of particular textures (Figure 8.5), and we will use this impor-
tant property to come up with more complex features below.

Remember this: The orientation of the image gradient is not affected
by scaling the image intensity. Different textures have quite different ori-
entation statistics.

8.2 INTEREST POINTS

One strategy for registering an image to another is to find corresponding pairs
of points and register those. Correspondence is important – registration requires
knowing which point in image 1 will go to which point in image 2. Appropriate
points, together with their neighborhoods, are usually called interest points. One
way to establish correspondence is to build a neighborhood around a point, describe
the contents of the neighborhood in a distinctive way, then match these descriptions.
For this to work, the neighborhood should behave appropriately when image 2 is a
translated, rotated and scaled version of image 1. Interest points have the following
important properties:

Localization: It must be possible to localize the point (ie tell where the point
is) by looking at an image window around the point. For example, a corner can be
localized; but a point along a straight edge can’t, because sliding a window around
the point along the edge leads to a new window that looks like the original. It must
be possible to find them reasonably reliably, even when image brightness changes.

Covariance: The location of the point must be covariant under at least some
natural image transformations. This means that, if the image is transformed, the
point will be found in an appropriate spot in the transformed image. Equivalently,
the points “stick to” objects in the image – if the camera moves, the point stays
on the object where it was, and so moves in the image. So if, for example, if I2 is
obtained by rotating I1, then there should be an interest point at each location in
I2 obtained by rotating the position of an interest point in I1.

Covariant neighborhood: It must be possible to compute a description of
the image in the neighborhood of the point, so the point can be matched. Ideally,
corresponding points in different images will have similar descriptions, and different
points will have different images. Computing this description requires that the
neighborhood associated with the interest point is covariant. So, for example, if
the image is zoomed in, the neighborhood in the image gets bigger; and if it is
zoomed out, the neighborhood gets smaller. Using a fixed size neighborhood when
the image zooms won’t work, because the neighborhood in the zoomed in image
will contain patterns that aren’t in the neighborhood in the zoomed out image.
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FIGURE 8.6: Interest points are neighborhoods in the image that can be described in
a way that is unaffected by translation, rotation and scale. The top row shows
two images of the same polygon lying on a leaf texture; the camera was rotated and
translated between pictures, and has zoomed in on the second image. The corner
of the polygon is a promising location to describe, because it can be localized. But
to obtain a description that can be compared from image to image requires cutting
out a neighborhood whose size changes appropriately when the image is zoomed
in or out (the dark circle on the two images), and knowing how to rotate those
neighborhoods into a comparable configuration (in this case, the filled gray circle
indicates the zero angle). Such neighborhoods can be compared by, for example,
translating, rotating and scaling them to a comparable configuration (A and B)
and then comparing a feature description of the contents of the neighborhood.

Figure 8.6 illustrates these ideas. You can write covariance as:

neighborhoods(transformation(I)) = transformation(neighborhoods(I)).

It is usual to require covariance under rotations, translations and scale, and I will
focus on that case.

8.2.1 Finding Corners

Interest points are usually constructed at corners, because corners can be localized
and are quite easy to find with a straightforward detector. At a corner, there are
two important effects. First, there should be large gradients. Second, in a small
neighborhood, the gradient orientation should swing sharply. Identify corners by
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FIGURE 8.7: The response of the Harris corner detector visualized for two detail
regions of an image of a box of colored pencils (left). Center block, left shows
the response of the Harris corner detector for one detail region. More positive
values are lighter. Right shows the responses overlaid on the original image. To
overlay this map, we added the images, so that areas where the overlap is notably
dark come from places where the Harris statistic is negative (which means that one
eigenvalue of H is large, the other small). Note that the detector is affected by
contrast, so that, for example, the point of the mid-gray pencil at the top of this
figure generates a very strong corner response, but the points of the darker pencils
do not, because they have little contrast with the tray. For the darker pencils, the
strong, contrasty corners occur where the lead of the pencil meets the wood. The
right block shows corners for a detail of pencil ends. Notice that responses are
quite local, and there are a relatively small number of very strong corners. Steve
Gorton c○ Dorling Kindersley, used with permission.

looking at variations in orientation within a window. In particular, the matrix

H =
∑

window

{
(∇I)(∇I)T

}
≈

∑
window

{
(∂Gσ

∂x ∗ ∗I)(
∂Gσ

∂x ∗ ∗I) (∂Gσ

∂x ∗ ∗I)(
∂Gσ

∂y ∗ ∗I)
(∂Gσ

∂x ∗ ∗I)(
∂Gσ

∂y ∗ ∗I) (∂Gσ

∂y ∗ ∗I)(
∂Gσ

∂y ∗ ∗I)

}

gives a good idea of the behavior of the orientation in a window (Figure 8.8). In
a window of constant gray level, both eigenvalues of this matrix are small because
all the terms are small (exercises). In an edge window, there will be one large
eigenvalue (from gradients at the edge) and one small eigenvalue (few gradients run
in other directions; exercises ). But in a corner window, both eigenvalues should
be large (exercises ).

The Harris corner detector looks for local maxima of

det(H)− k( trace(H)
2

)2

where k is some constant [?]; I used 0.5 for Figure 8.7. The response is unaffected
by translation and rotation (Figure 8.9). The product of the eigenvalues is det(H),
and the average of the eigenvalues is (trace(H)/2)2. The score is large when the
product is larger than k times the square of the average, so when both eigenvalues
are large. Notice that the response quite typically forms bright blobs centered on
corners. You must find a local maximum to get the location of a corner. Further,
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FIGURE 8.8: The matrix H, defined in the text, behaves rather like a covariance
matrix. The figure shows examples of three different cases for 3× 3 image windows
(the filled dots are the pixel locations). On the left, all gradients are small; verify
that, in this case, there will be two small eigenvalues. In the center, there are large
gradients, but all point in the same direction; verify, that in this case, there will be
one large and one small eigenvalue. On the right, there are large gradients that
point in a range of directions, as one would expect at a corner; verify that, in this
case, there will be two large eigenvalues.

each local maximum should suppress responses in a small neighborhood around
the local maximum to ensure you do not mark multiple corners too close together.
This local maximum should also exceed a threshold. The exercises develop a fairly
efficient procedure (exercises ).

8.2.2 The Scale of the Neighborhood

There are many ways of representing a neighborhood around an interesting corner.
Methods vary depending on what might happen to the neighborhood. In what
follows, assume that neighborhoods are only translated, rotated, and scaled (rather
than, say, subjected to an affine or projective transformation), and so without
loss of generality assume that the patches are circular. Obtaining a neighborhood
at a corner involves estimating the radius of the circle centered on the corner.
There is technical machinery available for the neighborhoods that result from more
complex transformations, but it is more intricate (see []). In most applications, the
construction here is sufficient.

To turn a corner into an image neighborhood, estimate the radius of the
circular patch (equivalently, its scale). The radius estimate should get larger pro-
portionally when the image gets bigger. For example, in a 2x scaled version of the
original image, the method should double its estimate of the patch radius. This
property helps choose a method. Center a blob of fixed appearance (say, dark on
a light background) on the corner, and then choose the scale to be the radius of
the best fitting blob. An efficient way to do this is to use a Laplacian of Gaussian
filter.

The Laplacian of a function in 2D is defined as

(∇2f)(x, y) =
∂2f

∂x2
+
∂2f

∂y2
.

It is natural to smooth the image before applying a Laplacian. Notice that the
Laplacian is a linear operator and is shift invariant (exercises ), meaning that
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FIGURE 8.9: The response of the Harris corner detector is unaffected by rotation
and translation. The top row shows the response of the detector on a detail of the
image on the far left. The bottom row shows the response of the detector on a
corresponding detail from a rotated version of the image. For each row, we show the
detail window (left); the response of the Harris corner detector, where more positive
values are lighter (center); and the responses overlaid on the image (right). Notice
that responses are quite local, and there are a relatively small number of very strong
corners. To overlay this map, we added the images, so that areas where the overlap
is notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). The arm and hammer in the
top row match those in the bottom row; notice how well the maps of Harris corner
detector responses match, too. c○ Dorling Kindersley, used with permission.

we could represent taking the Laplacian as convolving the image with some kernel
(which we write as K∇2). Because convolution is associative, we have that

(K∇2 ∗ (Gσ ∗ I)) = (K∇2 ∗Gσ) ∗ I = (∇2Gσ) ∗ I.

The reason this is important is that, just as for first derivatives, smoothing an
image and then applying the Laplacian is the same as convolving the image with
the Laplacian of the smoothing kernel. Figure 8.10 shows what happens for the
usual case where smoothing is Gaussian smoothing. This kernel looks like a dark
blob with a light ring around it on a gray background (closed form expression in
the exercises exercises ). As the scale of the Gaussian gets larger, the blob gets
bigger.

This means the Laplacian of Gaussian can be used to find the radius of the
neighborhood around a given corner located at i, j in I. Write Lσ for a Laplacian
of Gaussian kernel where the Gaussian has scale σ. Now, for each σ, place the
kernel on the image, centered at the corner, and compute

V (σ) =
∑
uv

Ii−u,j−vLσ;uv.

The σ that maximizes (or minimizes) V (σ) is the radius to use. This value has
strong covariance properties. Imagine image S is the same as I, but is upsampled
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FIGURE 8.10: The scale of a neighborhood around a corner can be estimated by find-
ing a local extremum, in scale of the response at that point to a smoothed Laplacian
of Gaussian kernel. On the left, a detail of a piece of fencing. In the center, a
corner identified by an arrow (which points to the corner, given by a white spot
surrounded by a black ring). Overlaid on this image is a Laplacian of Gaussian
kernel, in the top right corner; dark values are negative, mid gray is zero, and
light values are positive. Notice that, using the reasoning of Section ??, this filter
will give a strong positive response for a dark blob on a light background, and a
strong negative response for a light blob on a dark background, so by searching for
the strongest response at this point as a function of scale, we are looking for the size
of the best-fitting blob. On the right, the response of a Laplacian of Gaussian at
the location of the corner, as a function of the smoothing parameter (which is plot-
ted in pixels). There is one extremal scale, at approximately 2 pixels. This means
that there is one scale at which the image neighborhood looks most like a blob (some
corners have more than one scale). c○ Dorling Kindersley, used with permission.

factor of k. Then the value of σ chosen by this procedure for S will be k times
the value chosen for I. This is because the value is, essentially a dot-product (as
in Section 22.3), and scores the match between the image and the kernel. If the
image is upsampled by k, the best matching kernel should be just k times the scale.
This argument works for downsampling as well as upsampling, and is fine as long
as there is no serious loss of information in the upsampling or downsampling (which
is most of the time).

Searching for the right σ efficiently requires some care. If σ is large, then
the kernel will be large. It is better to apply a small kernel to a downsized image
than a large kernel to the original image, so construct a gaussian pyramid from the
image. A very large σ (say, half the image size) is implausible, so the pyramid does
not need too many layers. If there are enough interest points, it is more efficient
to convolve the image with the kernel then look at the values at relevant locations
than it is to apply the kernel at each interest point. These considerations lead to:

• Choose some values of σ to search, say σ ∈ {σ1, . . . , σn}. Construct Laplacian
of gaussian filters for these values.

• Construct a gaussian pyramid, downsampling by d for each layer.

• Convolve each layer of the pyramid with each of the filters.
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• As a result, you know the value of the Laplacian of gaussian at each interest
point for σ ∈

{
σ1, . . . , σn, dσ1, . . . , dσn, d

2σ1, . . .
}
. Interpolate these values

and choose the smallest σ that achieves a maximum or minimum of the in-
terpolate.

8.2.3 The Orientation of the Neighborhood

Some form of orientation histogram would be a natural representation of the texture
in the neighborhood, because it would be invariant to scaling of the image and
different for different textures – and so, one can hope, different image patches.
However, you cannot represent orientations in image coordinates (for example, using
the angle to the horizontal image axis), because the patch you are matching to might
have been rotated (as in Figure 8.6). You need a reference orientation so all angles
can be measured with respect to that reference (this is the filled gray circle in
Figure 8.6). A natural reference orientation is the most common orientation in the
patch. Compute a histogram of the gradient orientations in this patch, and find
the largest peak. This peak is the reference orientation for the patch. If there are
two or more peaks of the same magnitude, make multiple copies of the patch, one
at each peak orientation.

8.2.4 SIFT: Describing Neighborhoods with Histograms

The final step is describing the image within the neighborhood. There are some
important constraints on this representation:

• The representation should be detailed and distinctive, so that points that
don’t match have different representations.

• The representation should not change if the image gets somewhat brighter or
darker.

• The representation should be robust to small errors in the estimates of the
location, scale and orientation of the neighborhood.

The first two requirements motivate using orientations, because complex textures
will have complicated – and so distinctive – orientation fields, and because orien-
tation fields don’t change when the brightness changes. Very dark or very bright
neighborhoods probably can’t be described accurately. For dark neighborhoods,
quantization of the pixel values creates problems; for bright neighborhoods, some
pixel values will have saturated. This motivates some form of thresholding on the
gradient values.

Robustness to small errors suggests using some form of histogram. For ex-
ample, if the interest point finder makes small errors estimating the center, scale,
or orientation of the patch, then the rectified patch will shift slightly. As a result,
simply recording the gradient at each point yields a representation that changes
between instances of the patch. A histogram of gradients or of orientations will be
robust to these changes. But just constructing a histogram of the orientations is
not enough, because it confuses too many patterns with one another (for example,
a narrow vertical dark stripe will be confused with a broad vertical dark stripe).
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FIGURE 8.11: To construct a SIFT descriptor for a neighborhood, place a grid over
the rectified neighborhood. Each grid is divided into a subgrid, and a gradient es-
timate is computed at the center of each subgrid element. This gradient estimate
is a weighted average of nearby gradients, with weights chosen so that gradients
outside the subgrid cell contribute. The gradient estimates in each subgrid element
are accumulated into an orientation histogram. Each gradient votes for its orien-
tation, with a vote weighted by its magnitude and by its distance to the center of
the neighborhood. The resulting orientation histograms are stacked to give a single
feature vector. This is normalized to have unit norm; then terms in the normalized
feature vector are thresholded, and the vector is normalized again.
TODO: Source, Credit, Permission: SIFTPIC

Better is to break the neighborhood into overlapping bins and compute histograms
within the bins.

These considerations underly the very important SIFT descriptor (for Scale
Invariant Feature Transform). This is constructed out of image gradients, and
uses both magnitude and orientation. The descriptor is a set of histograms of
image gradients that are normalized to suppress the effects of change in illumination
intensity. The histograms expose general spatial trends in the image gradients in
the patch but suppress detail.

The standard SIFT descriptor is obtained by first dividing the rectified patch
into an n × n grid. Then subdivide each grid element into an m × m subgrid of
subcells. At the center of each subcell, compute a gradient estimate. The gradient
estimate is obtained as a weighted average of gradients around the center of the
cell, weighting each by (1−dx/sx)(1−dy/sy)/N , where dx (resp. dy) is the x (resp.
y) distance from the gradient to the center of the subcell, and sx (resp. sy) is the
x (resp. y) spacing between the subcell centers. This means that gradients make
contributions to more than one subcell, so that a small error in the location of the
center of the patch leads to a small change in the descriptor.

Now use these gradient estimates to produce histograms. Each grid element
has a q-cell orientation histogram. The magnitude of each gradient estimate is
accumulated into the histogram cell corresponding to its orientation; the magnitude
is weighted by a Gaussian in distance from the center of the patch, using a standard
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deviation of half the patch.
Concatenate each histogram into a vector of n × n × q entries. If the image

intensity were doubled, this vector’s length would double (because the histogram
entries are sums of gradient magnitudes). To avoid this effect, normalize this vector
to have unit length. Very large gradient magnitude estimates tend to be unstable
(for example, they might result from a lucky arrangement of surfaces in 3D so that
one faces the light directly and another points away from the light). This means
that large entries in the normalized vector are untrustworthy. To avoid difficulties
with large gradient magnitudes, each value in the normalized vector is thresholded
with threshold t, and the resulting vector is renormalized. Standard parameter
values are n = 4, m = 4, q = 8, and t = 0.2. There is now extensive experimental
evidence that image patches that match one another will have similar SIFT feature
representations, and patches that do not will tend not to.

Resources: Interest point detection and description There are a
number of useful resources for interest point detection and description:

• SIFT features are patented (US6711293B1), but the patent has ex-
pired. David Lowe (the inventor) provides a reference object code
implementation at http://www.cs.ubc.ca/~lowe/keypoints/.

• There are a number of interest point detectors (called keypoint
detectors) in OpenCV (https://docs.opencv.org/4.x/db/d27/
tutorial_py_table_of_contents_feature2d.html).

• There is a SIFT feature implementation in OpenCV. The page
at https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_

intro.html; deals with interest point detection and SIFT fea-
ture evaluation. Other descriptors are also implemented, see
https://docs.opencv.org/4.x/db/d27/tutorial_py_table_of_

contents_feature2d.html.

8.2.5 Alternative Neighborhood Descriptors

TODO: PCASift and others
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8.3 YOU SHOULD

8.3.1 remember these definitions:

8.3.2 remember these facts:

Edges: are image locations where intensity changes strongly; are
evidence of a variety of possible phenomena; and are easily
found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Gradient orientations are invariant to scaling intensity, and different
textures have different orientation patterns . . . . . . . . . . 134

8.3.3 remember these procedures:

Gradient-Based Edge Detection. . . . . . . . . . . . . . . . . . . . . 133

8.3.4 use these resources:

Resources for interest point detection and description . . . . . . . . 142

8.3.5 be able to:

• Describe what an edge detector does and how it does it.

• Describe what a corner detector does and how it does it.

• Describe how to construct an image neighborhood that is covariant to rota-
tion, translation and scale.

• Describe how features can be constructed in such a neighborhood.
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EXERCISES

QUICK CHECKS

8.1. Why do edge detectors look for a local maximum of the gradient magnitude?
8.2. Why is hysteresis helpful for edge detection?
8.3. Is the Harris corner detector invariant to changes of brightness?
8.4. Is the Harris corner detector invariant to rotations of the image?
8.5. Why do you need a local maximum of the Harris corner score?
8.6. Show the Laplacian is a linear operator.
8.7. Show the Laplacian is shift invariant.
8.8. To find the scale of a corner, you apply Laplacian of Gaussian filters at different

σ, and choose the scale that gives the maximal (or minimal) response. Why
should a filter that does this look like a dark blob with a light ring or a light
blob with a dark ring?

8.9. Show the Laplacian of a Gaussian with scale σ is rotationally symmetric. This
is much easier than it might seem (writing out an expression is a recipe for
frustration – think about what the graph of the function looks like).

8.10. Imagine you use a filter other than the Laplacian of Gaussian to find the scale
at a corner. Why would it need to be rotationally symmetric?

8.11. Is the scale estimated at a corner invariant to changes in intensity? (assume
you know where the corner is)

LONGER PROBLEMS

8.12. Write an expression for the Laplacian of a Gaussian with scale σ. Don’t forget
the normalizing constant, or you’ll get this wrong.

PROGRAMMING EXERCISES

8.13. This exercise builds a version of the Harris corner detector that is invariant to
changes in intensity, and evaluates it.
(a) The Harris corner detector computes

H =
∑

window

{
(∇I)(∇I)T

}
≈

∑
window

{
(∂Gσ

∂x ∗ ∗I)(∂Gσ
∂x ∗ ∗I) (∂Gσ

∂x ∗ ∗I)(∂Gσ
∂y ∗ ∗I)

(∂Gσ
∂x ∗ ∗I)(∂Gσ

∂y ∗ ∗I) (∂Gσ
∂y ∗ ∗I)(∂Gσ

∂y ∗ ∗I)

}

then reasons about its eigenvalues. If the image intensity scales by k ̸= 0
(so I goes to kI), what happens to H?

(b) You can estimate the intensity of the image over a patch by convolving
with a Gaussian of appropriate scale (look at Section 6.1.2 to see the trick
in slightly more detail). Show how to use this information to produce an
intensity independent version of H.

(c) Implement this intensity independent corner detector, and compare to a
Harris detector. Is there any improvement in the corners you locate? Is
it actually helpful to find corners in very dark bits of the image?


