
C H A P T E R 3

Upsampling and Downsampling
Images

Changing the size of an image is an important operation that contains a
number of unexpected difficulties. In this chapter, the aspect ratio of the image
will be fixed. If you increase the number of pixels, you must supply intermediate
pixel values. If you decrease the number of pixels you lose information. Unless you
smooth the image before doing so, the lost information will very likely produce a
variety of unpleasant effects.

3.1 UPSAMPLING AND IMAGE INTERPOLATION

To upsample an image you increase the number of pixels in a grid. Some cases
are easy. To go from, say a 100 × 100 image to a 200 × 200 image, you could
simply replace each pixel with a 2× 2 block of pixels, each having the same value
as the original. This isn’t a particularly good strategy, and the resulting images
tend to look “blocky” (try it!). But upsampling by a factor that isn’t an integer
is more tricky. Consider going from 100 × 100 to 127 × 127. One way to do this
is to duplicate 27 rows, then duplicate 27 columns in the result; to do so requires
determining which columns to duplicate.

3.1.1 Inverse Warping and Interpolation

Alternatively, you might consider scanning the source (smaller - S) image and, for
each pixel, determining where it goes in the target (larger - T ) image. But there
are more pixels in the target than in the source, so this approach must lead to holes
in the predicted image. The correct alternative is to scan the target image and,
for each pixel, determine what value it should receive. This is known as inverse
warping. In the example, the i, j’th location of T must get the value of the i/1.27,
j/1.27’th location of S. In fact, most values requred are at locations that are not
integer values.

An interpolate is a function that (a) must have the same value as the original
image at the original integer grid points (b) can be evaluated at any point rather
than just the integer grid points. Write I(x, y) for an interpolate of an image I.

The simplest interpolate is nearest neighbors – take the value at the integer
point closest to the location whose value you want. Break ties by rounding up, so
you would use the value at 2, 2 if you wanted the value at 1.5, 1.5. As Figure 3.1
shows, this strategy has problems – the upsampled image looks blocky.

3.1.2 An Interpolation Framework

There are many different ways to interpolate. Write b(u, v) for a function that is
one at the origin (so b(0, 0) = 1) and is zero at every other integer grid point. There
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34 Chapter 3 Upsampling and Downsampling Images

FIGURE 3.1: On the left, a function interpolating a 2×2 image using nearest neigh-
bors. The dashed lines pass through grid points, and the dotted lines are halfway
between grid points. The function is zero away from the four boxes shown. Image
values are shown as filled circles. On the right, a bilinear interpolate of the same
data.

are many such functions. For the moment, choose one. Then

I(x, y) =
∑
ij

Iijb(x− i, y − j)

will be an interpolate (check you know why).
For nearest neighbors, define

bnn(u, v) =

{
1 for −1/2 ≤ u < 1/2 and −1/2 ≤ u < 1/2
0 otherwise

This fitted function looks like a collection of boxes, and is not continuous (Fig-
ure 3.1; exercises ()). Most widely used is bilinear interpolation. For this,
construct a function

bbi(u, v) =


(1− u)(1− v) for 0 < u ≤ 1 and 0 < v ≤ 1
(1 + u)(1− v) for −1 ≤ u ≤ 0 and 0 < v ≤ 1
(1 + u)(1 + v) for −1 ≤ u ≤ 0 and −1 ≤ v ≤ 0
(1− u)(1 + v) for 0 < u ≤ 1 and −1 ≤ v ≤ 0
0 otherwise

which is continuous, and again has the convenient property that bbi(0, 0) = 1, but
bbi = 0 for every other grid point (it looks a bit like a hat, Figure 3.1). The
interpolate is

I(x, y) =
∑
i,j

Iijbbi(x− i, y − j).

and it is a simple exercise to show that it has the properties required for an inter-
polate.

The construction above is a good way to think about interpolation (and can
be used to build more complicated interpolates, exercises ), but it is not the
best way to evaluate a bilinear interpolate.
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FIGURE 3.2: The choice of interpolate when upsampling can make a real difference.
Top left shows a detail from a picture. I have upsampled the image, then cropped
the upsamples (showing the top left corner) and zoomed them so you can see the
details. Center column shows a cropped 4x4 upsample using three different in-
terpolation methods and right column shows 8x8 upsamples by various methods.
Notice the significant blockiness in nearest neighbor interpolates (top row). Bi-
linear interpolates (second row) are much better, and bicubic interpolates (third
row) are different to bilinear interpolates, but not a major improvement. Image
credit: Figure shows my photograph of a facade in Stellenbosch.

Procedure: 3.1 Bilinear interpolation for an image

To find a value for I(i+ δ, j+ ϵ), where i and j are integers; 0 < δ < 1;
and 0 < ϵ < 1, use

I(i+ δ, j + ϵ) =


Iij(1− δ)(1− ϵ)+
Ii+1,j(δ)(1− ϵ)+
Ii,j+1(1− δ)(ϵ)+
Ii+1,j+1(δ)(ϵ)

 .

By a little manipulation, you can show that this procedure boils down to:
predict a value for I(i + δ, j) using a linear interpolate; predict a value for I(i +
δ, j + 1) using a linear interpolate; now linearly interpolate between these two to
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get a value for I(i+ δ, j + ϵ). Modern hardware is particularly efficient at bilinear
interpolation, and any reasonable software environment will be able to do this for
you, likely very fast indeed.

The choice of interpolate can make a real difference to the quality of the
result (Figure 3.2). More complicated interpolation procedures are possible. In
bicubic interpolation, the interpolate is cubic in δ and ϵ and depends on other
neighboring pixels (exercises ). Again, any reasonable software environment will
be able to do this for you. While this procedure is more complicated and slower, in
some applications the small improvements are justified. One occasionally important
difference between bicubic interpolation is that for a bilinear interpolate, the local
maxima are always at grid points, but for a bicubic interpolate, they may not
be (exercises ). Constructing more complicated interpolates is straightforward
but seldom worthwhile. Another application for interpolation is demosaicing: one
could interpolate, and then sample the interpolating function. The interpolation
procedures above need some minor adjustments because the unknown values are at
grid points (details in exercises ).

Remember this: Upsampling increases the size of an image. Upsample
by backward warping and interpolating. APIs offer the choice between three
main interpolation techniques are: nearest neighbors (quick and blocky);
bilinear interpolation (quick and much better); and bicubic interpolation
(somewhat slower, slightly better). The default is often nearest neighbors.

3.2 DOWNSAMPLING AND SMOOTHING

Reducing the size of an image by a fixed factor in each dimension is downsampling.
Downsampling an image appears to be straightforward. Just like upsampling, the
correct procedure is to scan the target image and, for each pixel, determine what
value it should receive using interpolation. If you downsample by an integer amount
(say, a factor of 2), you don’t even need to interpolate. But downsampling an image
like this can produce something that represents the image very poorly indeed. To
see this, take an image whose dimensions are divisible by two (or four, or eight, and
so on) then halve (or quarter, and so on) the size. To do this, you can simply take
every second (fourth, eighth, and so on) pixel in each direction. Figure 3.3 shows
effects that occur. Fine details can disappear or worse turn into coarse details.

3.2.1 Aliasing: Errors Caused by Downsampling

Figure 3.4 sketches a partial explanation for these effects. If there are too few
samples, patterns in the image can fall between the samples. The general term for
the kind of errors seen here is aliasing. In Chapter 22.3, we will be much more
precise about these issues. As Figure 3.4 illustrates, the key question is how many
samples you draw compared to how much detail there is in the function you are
sampling. The figure suggests a rough explanation for what is going wrong when
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Image downsampled by 4 downsampled by 8

FIGURE 3.3: Downsampling by just taking every k’th pixel in each direction reliably
leads to problems. The top row shows some effects on a stylized image, and the
bottom row shows results on a real photograph. The left image is the original;
center is a downsampled image obtained by taking every 4’th pixel, then printing
the image with larger pixels; right the original downsampled by taking every 8’th
pixel. Notice how detail is lost in the resampling process. For the stylized image,
some small boxes disappear (look on the edges of the image); others turn into large
boxes (lower right quarter of the downsampled by 8 image). For the real image,
notice the behavior of the details in the window above the door, and on either side
of the door. Image credit: Figure shows my photograph of a facade in Stellenbosch.

FIGURE 3.4: A visualization of how sampling problems arise. The underlying image
is a checkerboard, and the sample value is the value at the center of each of the small
gray circles. The checkerboards on the left and center left illustrates a sampling
procedure that appears to be successful. Whether it is or not depends on some details
that we will deal with later – but the count of checks will be correct in each case.
The sampling procedures shown on the center right and right are unequivocally
unsuccessful. The samples suggest that there are fewer checks than there are in
the original patterns. This illustrates two important phenomena: first, a successful
sampling scheme must sample data often enough; and second, unsuccessful sampling
schemes cause high-frequency information to appear as lower-frequency informa-
tion. For example, on the right, the sampling procedure represents a checkerboard
as a single dark region.
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FIGURE 3.5: Averaging can improve the representation produced by sampling. Left
a small checkerboard pattern sampled on a grid. Each sample is the value at the
center of the small gray circle. Though this will correctly represent the board in
this configuration, a small shift in the board with respect to the samples will result
in a dramatic shift in the representation (center left). Center right indicates
what happens when you obtain a sample by averaging in a window. The gray level
in the center of the window is my estimate of the average. Notice the edges of the
checks are now blurred, but the change when the board moves (far right) is much
less dramatic. The representation is somewhat improved.

one subsamples an image. Samples might be poorly aligned with the underlying
data, and so misrepresent it.

3.2.2 Smoothing

The downsampler needs to compute a value for the target image at i, j. This
location corresponds to the location u, v in the source image (so, for example, in
downsampling by two, u = 2i and v = 2j). Call the point u, v the query point.
Using the (possibly interpolated) value of the source image at this location may
not be a particularly good idea, because there might be an important detail close
to, but not at, the query point. An alternative is to use an average of the source
image function about the query point.

In the easiest case, downsample an image by a factor of two. At every second
pixel location in each direction, compute (say) an average of the (2k+1)× (2k+1)
window of pixels centered at that location and report that average rather than the
pixel value. A simple argument suggests that this should help: now the value of the
pixel in the subsampled image is affected by its neighbors in the original image, so
details that were missed by just taking every second pixel have a chance to appear
in the result. Figure 3.5 is a picture of this argument.

3.2.3 Downsampling by Two with Gaussian Smoothing

As Figures 3.5 and 3.7 show, just averaging nearby values helps, because small
structures that might otherwise have been missed will contribute to the downsam-
pled image. But if the window is, say, a 5x5 window, structures that are two grid
points away from the query point will have the same effect as structures that are
one grid point away. As Figure 3.6 illustrated, this means that, for example, sharp
edges will be misrepresented by the samples. This can be fixed by weighting the
average, so that points near the sample point have a higher weight than points far
from the sample point. The weighted average is formed as above, but the i, j’th
pixel in N is now the weighted average of a (2k− 1)× (2k− 1) window of pixels in
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FIGURE 3.6: Sampling with a weighted average makes significant changes in the
representation. On the left, a horizontal edge in an image, to be sampled using
averages. The circles show the support of the average at each sample for part of
a column of samples. These overlap, so showing all sample points makes for a
confusing figure. Center left shows one support per column for a set of rows
of samples crossing the edge. Center shows the unweighted average within these
supports; the gradient is fairly close to linear (it would be linear if the supports were
squares). This slow gradient suggests that the edge is rather smoother than it really
is. Center right the average within each circle is now weighted so that the center
of the circle has a fairly large weight, and the weight decreases for pixels further
from the center. Notice that now the representation has improved somewhat, as the
gradient is sharper and is about in the right place. Far right shows four choices
of weighting functions, each a gaussian of different σ (the number to the top left).
Larger σ values mean that pixels far from the center contribute (and so edges are
smoother); smaller σ values allow edges to be sharper, but may result in aliasing
effects.

S, centered on i, j.

A traditional weighting scheme is given by a one parameter family of functions,
derived from the normal distribution and widely called gaussians. The parameter
σ is sometimes called the scale and more usually called the sigma of the weights.
For downsampling by two, σ = 1 or σ = 1.5 are fair choices. In a 2k + 1 × 2k + 1
window, where the pixels are indexed starting at 1, the weights will be:

kij =
1

C
e
−
(

(i−k−1)2+(j−k−1)2

2σ2

)

where C is chosen so the weights sum to one. Figure 3.6 shows examples for four
different values of σ, using a 21× 21 window. In this figure, the largest value of the
weights is always the same so that you can see the difference in falloff. If I had not
scaled the weights like this, the windows would be mostly dark – bigger gaussians
have much smaller individual weights, so that all the weights sum to one. All this
yields the procedure in the box.



40 Chapter 3 Upsampling and Downsampling Images

Weights
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FIGURE 3.7: The effects shown in Figure 3.6 are quite visible in images. On the
far left, an image of stripes ranging from fine to coarse. Center left shows
pure subsampling, with no smoothing (if you think no detail has been lost, look at
the relative size of stripes). Center right shows a version of the image that has
been subsampled by 2, but now the value of each sample is an average within a
5x5 window centered on the relevant pixel. Notice how the unweighted average has
caused multiple lines to merge into a gray bar, and the relatively “slow” gradient
of the lines, which is most obvious on the horizontal lines. Far right, the average
in the sample is weighted with the set of weights show on the bottom right (these
weights have been rescaled so the largest weight is light). Notice how some – though
not all – of the vertical lines on the left have been resolved, and the faster gradient
at the top and bottom of the horizontal lines.

Procedure: 3.2 Downsampling by Two with Gaussian Smoothing

Given a source image S, size M ×N , construct a target image T , size
floor(M/2) × floor(N/2). Adopt the convention that for u or v out
of range, Suv = 0. Choose k (likely 3 or 4) and σ (likely 1 or 1.5).
Construct a Gaussian kernel G using these parameters. Now for each
1 ≤ i ≤ floor(M/2), 1 ≤ j ≤ floor(N/2), set

Tij =

s=k∑
s=−k

[
t=k∑
t=−k

[
S(2i+s),(2j+t)G(s+k+1),(t+k+1)

]]

Figure 3.7 shows the considerable improvement in subsampling that can re-
sult from using a set of weights. Figure 3.8 shows an annoying feature of using
unweighted averages to smooth. Unexpected fine details can appear, an effect
known as ringing. Gaussian smoothing suppresses ringing rather well. Section ??
explains where ringing comes from.
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Original Unweighted average Gaussian filtered

FIGURE 3.8: The effects shown in Figure 3.7 are quite visible in real images. The top
row shows: left a luxuriant beard; center, that beard smoothed with an unweighted
average; and right, that beard smoothed with a Gaussian. The bottom row shows
details of those images. Notice the narrow dark stripes that have appeared in the
version smoothed with an unweighted average. This version appears as if it is
both more smoothed than the Gaussian smoothed version, and as if it has gained
some very fine details (the stripes) out of the smoothing procedure. The unweighted
smoother is ringing.

3.2.4 Downsampling by a Small Factor with Gaussian Smoothing

You wish to downsample by a small factor, so taking an M ×N image to a R× S
image where 2 > M/R > 1, and N/S is very close to M/R. Doing so requires
smoothing, and it is sensible to use Gaussian weights with a small σ (between 1
and 2, depending on the application). But doing so also requires interpolation,
as the downsampling will require values that aren’t on the source grid. Interpola-
tion should strike you as likely to interact inefficiently with the weighting process.
A straightforward procedure yields a pre-smoothed version of the original image,
which you can then downsample using backward warping and interpolation.
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Procedure: 3.3 Downsampling an image by a small factor

Take the source image S, and form a new image N from that source.
The i, j’th pixel in N is now a weighted average of a (2k+1)× (2k+1)
window of pixels in S, centered on i, j. Organize the weights into
a small array – the mask, which you could obtain by evaluating the
Gaussian, as above – and form a new image N from the original image
and the mask, using the rule

Nij =
∑
uv

Ii−u,j−vWuv

This expression is the root of all sorts of interesting ideas (Chapter 5).
There are some problems when i or j or u or v are too big or too
small. Deal with these by asserting that I andW are zero for locations
outside the range. Evaluate N on an M × N grid. Now downsample
using backward warping and interpolation.

3.2.5 The Gaussian Pyramid

Now consider downsampling by a large factor. You could (but shouldn’t) smooth
with a gaussian with large σ, then downsample. This is not a good idea, because
the support of the gaussian is infinite, meaning that working with a 2k+1× 2k+1
window involves some truncation. As σ gets bigger, k will need to get bigger to
keep this truncation reasonable, so the smoothing process will be expensive. The
more efficient alternative is to smooth, downsample by two, then smooth the result
and downsample that by two and so on, until the image size is only slightly larger
than what you want. Then downsample that by a small factor.

A useful construction follows. In some applications (Section 15.1.3 and Chap-
ter 22.3), it will be useful to have versions of an image downsampled by different
factors. A gaussian pyramid is a collection of smoothed and downsampled repre-
sentations of an image. Downsampling is usually by a factor of either two or the
square root of two (so two rounds of downsampling halves the edge length of the
image). The name comes from a visual analogy. If we were to stack the layers on
top of each other, an inverted pyramid would result. The smallest image is the
most heavily smoothed. The layers are often referred to as coarse scale versions of
the image that forms the top layer.
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Procedure: 3.4 Building a Gaussian pyramid

Write Dσ for the operation that smoothes an image with a gaussian of
scale σ then downsamples it; U for the operation that upsamples an
image; and Gk for the k’th layer of a gaussian pyramid. This notation
suppresses by how much the image is downsampled, and what particular
interpolation you use in upsampling, because these aren’t important
here. An N level gaussian pyramid then can be written as:

G1 = I
. . .

Gk = Dσ(Gk−1)

. . .

GN = Dσ(GN−1).

3.2.6 The Laplacian Pyramid

One thing should trouble you about the gaussian pyramid of 3.2.5. There is re-
dundant information in the representation. Although some information is lost
in downsampling and then upsampling, it isn’t that much, because U(Gk) looks
rather a lot like Gk−1. This suggests using a representation where only the residual
Gk − U(Gk+1) is preserved.

Procedure: 3.5 Building a Laplacian pyramid

Write Dσ for the operation that smoothes an image with a gaussian of
scale σ then downsamples it; U for the operation that upsamples an
image; and Gk for the k’th layer of a gaussian pyramid. An N level
laplacian pyramid can be written as:

L1 = G1 − U(Dσ(G1))

. . .

Lk = Gk − U(Dσ(Gk))

. . .

LN = GN .

Figure 3.10 compares Gaussian and Laplacian pyramids. Each layer of a
Laplacian pyramid can be thought of as a representation of image information at a
particular scale. If a pattern in the image is too small for a layer, then it will have
been smoothed out; if it is too large, there will be little difference between Gk and
U(Dσ(Gk)) and it will be suppressed by the subtraction.
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512 256 128 64 32 16 8

FIGURE 3.9: A Gaussian pyramid of images running from 512x512 to 8x8. On the
top row, I have shown each image at the same size (so that some have bigger pixels
than others), and the lower part of the figure shows the images to scale. Notice that
an 8x8 pixel block at the finest scale might contain a few hairs; at a coarser scale,
it might contain an entire stripe; and at the coarsest scale, it contains the animal’s
muzzle.

3.2.7 Reconstruction from Pyramids

It is easy to get an image back from a Gaussian pyramid (take the biggest layer).
It is easy to get a gaussian pyramid from a laplacian pyramid, too, because GN =
Dσ(GN−1).
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512 32

FIGURE 3.10: A comparison of Gaussian and Laplacian pyramids. Top row shows
a five layer Gaussian pyramid, and bottom row a Laplacian pyramid derived from
it. Each image has been shown at the same size (so the pixels for the 32×32 layers
are larger). The image is on a scale 0-1 (dark-light). All but the coarsest layer in
the Laplacian pyramid have been shown on a scale where mid-gray is 0.5, negative
numbers are dark, and positive numbers are light. Image credit: Figure shows my
photograph of a striped mouse.

Procedure: 3.6 Recovering an Image from a Laplacian pyramid

Write

R1 = w(1)L1 +R2

. . .

Rk = w(k)Lk +Rk+1 . . .

RN = LN = GN .

If all the weights are 1, then R1 = I.

You can emphasize or de-emphasize some effects in the image by upweighting
or downweighting the relevant scale by choosing w(k). Using strongly different
weights for different scales doesn’t usually end well. For the example of Figure 3.11,
I used weights obtained by: (a) choosing some largest scale kx (in this case, kx = 3);
(b) choosing a weight α then (c) forming

w(k) =

(
1 +

[
α
max (kx − k, 0)

kx

])
.

Figure 3.11 shows how various choices of α either sharpen or smooth the image.
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Enhance (0.4) Suppress (-0.4)Original

FIGURE 3.11: Images can be reconstructed from Laplacian pyramids, and weight-
ing components can emphasize or smooth edges. The Laplacian pyramid of Fig-
ure 3.10, reconstructed into an image using the method of Section 3.2.6, with α = 0
(left; original image); α = 0.4 (center; emphasizes edges); and α = −0.4 (right;
smoothes edges).

Remember this: Downsample by smoothing, backwards warping and
interpolating. Downsampling without smoothing can create significant ef-
fects that weren’t in the original. Always smooth when downsampling, and
use a Gaussian unless you have very good reason not to. Gaussian pyra-
mids represent an image at multiple scales. Laplacian pyramids contain
less redundant information.
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3.3 YOU SHOULD

3.3.1 remember these facts:

Upsample by backward warping and interpolating. . . . . . . . . . . 36

Downsample by smoothing, backwards warping and interpolating . . 46

Cameras: Homogeneous coordinates . . . . . . . . . . . . . . . . . . 496

Cameras: Lines on the Projective Plane . . . . . . . . . . . . . . . . 498

Cameras: A Line from Points . . . . . . . . . . . . . . . . . . . . . . 499

Cameras: Projective spaces . . . . . . . . . . . . . . . . . . . . . . . 500

Cameras: Planes in Projective 3D . . . . . . . . . . . . . . . . . . . 500

Cameras: A Line from Points . . . . . . . . . . . . . . . . . . . . . . 501

Cameras: Planes in Projective 3D . . . . . . . . . . . . . . . . . . . 502

Cameras: Planes in Projective 3D . . . . . . . . . . . . . . . . . . . 503

Cameras: Perspective Camera Matrix . . . . . . . . . . . . . . . . . 504

Cameras: Orthographic Camera Matrix . . . . . . . . . . . . . . . . 504

Cameras: A general perspective camera . . . . . . . . . . . . . . . . 508

Cameras: A general perspective camera . . . . . . . . . . . . . . . . 508

Cameras: Focal point of general camera . . . . . . . . . . . . . . . . 513

Cameras: Focal Point Constrains Extrinsics . . . . . . . . . . . . . . 513

Cameras: Models of lens distortions . . . . . . . . . . . . . . . . . . 517

The fundamental matrix . . . . . . . . . . . . . . . . . . . . . . . . . 527

The fundamental matrix has rank 2 . . . . . . . . . . . . . . . . . . 531

The fundamental matrix is only meaningful up to scale . . . . . . . . 531

3.3.2 remember these procedures:

Bilinear interpolation for an image . . . . . . . . . . . . . . . . . . . 35

Downsampling by Two with Gaussian Smoothing . . . . . . . . . . . 40

Downsampling an image by a small factor . . . . . . . . . . . . . . . 42

Building a Gaussian pyramid . . . . . . . . . . . . . . . . . . . . . . 43

Building a Laplacian pyramid . . . . . . . . . . . . . . . . . . . . . . 43

Recovering an Image from a Laplacian pyramid . . . . . . . . . . . . 45

Calibrating a Camera using 3D Reference Points . . . . . . . . . . . 514

Calibrating a Camera using 3D Reference Points: Start Point . . . . 515

Obtaining an epipolar line from a fundamental matrix . . . . . . . . 530

Obtaining epipoles from a fundamental matrix . . . . . . . . . . . . 530

The 8 point algorithm for estimating the fundamental matrix . . . . 531

Triangulating by minimizing reprojection error . . . . . . . . . . . . 534

Correcting an estimate of an essential matrix . . . . . . . . . . . . . 535

Estimating camera rotation and translation from an essential matrix 537

Disambiguating odometry solutions . . . . . . . . . . . . . . . . . . . 538

3.3.3 be able to:

• Upsample an image without leaving holes using at least nearest neighbors or
bilinear interpolation.
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• Downsample an image by a small factor using Gaussian smoothing and inter-
polation.

• Construct a Gaussian pyramid.

• Construct a Laplacian pyramid.
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EXERCISES

QUICK CHECKS

3.1. Is a nearest neighbor interpolate continuous?
3.2. Is a bilinear interpolate continuous?
3.3. Define bbi(u, v) = f(u)f(v) where

f(u) =

{
(u−1)(u−2)(u+1)(u+2)

4 for −2 ≤ u ≤ 2
0 otherwise

.

Check that this an interpolate. Is this a useful interpolate? Why not?
3.4. Define bsinc(u, v) = f(u)f(v) where

f(u) =
sinπu

u
.

Check that this an interpolate. Why is this not a useful interpolate for recon-
structing images? Remember that

lim
x→0

sinx

x
= 1.

3.5. Can the effects of Figure 3.3 be controlled by interpolating before downsam-
pling? Why?

3.6. Recall the weights for Gaussian smoothing take the form

kij =
1

C
e
−
(

(i−k−1)2+(j−k−1)2

2σ2

)
.

Assume k > 5. What do you expect will happen if you use

kij =
1

C
e
−
(

(i−k−2)2+(j−k−2)2

2σ2

)

instead?
3.7. Imagine you decide to store each intensity image as a Gaussian pyramid, down-

sampling by 2. What is the worst (reasonable!) case for how much more space
it will take?

3.8. Imagine you decide to store each intensity image as a Laplacian pyramid,
downsampling by 2. Do you expect the pyramid to take a lot more space than
the original image? Why?

3.9. You wish to downsample an image by a factor of 9 in each direction. How
should you do this efficiently?

3.10. The coarsest scale images of Figure 3.10 have visible dark bars on some edges.
Where do these come from?

LONGER PROBLEMS

3.11. Write
I(x, y) =

∑
ij

Iijb(x− i, y − j)

for an interpolate.
(a) Check that this is an interpolate if b(u, v) is one at the origin (so b(0, 0) =

1) and is zero at every other integer grid point.
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(b) Define

bnn(u, v) =

{
1 for −1/2 ≤ u < 1/2 and −1/2 ≤ u < 1/2
0 otherwise

Check that this produces a nearest neighbors interpolate.
(c) Define

bbi(u, v) =


(1− u)(1− v) for 0 < u ≤ 1 and 0 < v ≤ 1
(1 + u)(1− v) for −1 ≤ u ≤ 0 and 0 < v ≤ 1
(1 + u)(1 + v) for −1 ≤ u ≤ 0 and −1 ≤ v ≤ 0
(1− u)(1 + v) for 0 < u ≤ 1 and −1 ≤ v ≤ 0
0 otherwise

.

Check that this produces a bilinear interpolate.
(d) Show that using

I(i+ δ, j + ϵ) =

 Iij(1− δ)(1− ϵ)+
Ii+1,j(δ)(1− ϵ)+
Ii,j+1(1− δ)(ϵ)+
Ii+1,j+1(δ)(ϵ)

 .
to find a value for I(i+ δ, j + ϵ) yields a bilinear interpolate. Here i and
j are integers; 0 < δ < 1; and 0 < ϵ < 1.

(e) Show that using

I(i+ δ, j + ϵ) =

 Iij(1− δ)(1− ϵ)+
Ii+1,j(δ)(1− ϵ)+
Ii,j+1(1− δ)(ϵ)+
Ii+1,j+1(δ)(ϵ)

 .
to predict a bilinear interpolate boils down to: predict a value for I(i+δ, j)
using a linear interpolate; predict a value for I(i+ δ, j + 1) using a linear
interpolate; now linearly interpolate between these two to get a value for
I(i+ δ, j + ϵ).

(f) Show that a bilinear interpolate is continuous everywhere, but has discon-
tinuities in first derivative.

(g) Show that a local maximum of a bilinear interpolate always occurs at a
grid point.

3.12. A simple model for interpolation of mosaiced data has a known value at points
(2i+ jmod2, j) for i and j integer points. Recall jmod2 is 0 if j is even and 1
if it is odd.
(a) Show that the known values lie on the grid sketched in Figure ??.
(b) Recall the basis function for a bilinear interpolate

bbi(u, v) =


(1− u)(1− v) for 0 < u ≤ 1 and 0 < v ≤ 1
u(1− v) for −1 ≤ u ≤ 0 and 0 < v ≤ 1
uv for −1 ≤ u ≤ 0 and −1 ≤ v ≤ 0
(1− u)v for 0 < u ≤ 1 and −1 ≤ v ≤ 0
0 otherwise

.

Show that

I(x, y) =
∑
i,j

I(2i+jmod2),jbbi(x− (2i+ jmod2), y − j).

is a bilinear interpolate of the mosaic.
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3.13. Write

W (x) =

 (2 + a)|x |3 − (3 + a)|x |2 + 1 for |x | ≤ 1

a|x |3 − 5a|x |2 + 8a|x | − 4a for 1 < |x | < 2
0 otherwise

(a) Show that W (1) = 1, and that W (x) = 0 for x any integer other than 1.
(b) Show that W is continuous everywhere.
(c) Show that W has continuous derivative everywhere.
(d) Show that

∑
ij Iijbbicub(u, v) is a bicubic interpolate of an image, where

bbicub =W (u)W (v).
(e) Recall you can use

I(i+ δ, j + ϵ) =

 Iij(1− δ)(1− ϵ)+
Ii+1,j(δ)(1− ϵ)+
Ii,j+1(1− δ)(ϵ)+
Ii+1,j+1(δ)(ϵ)

 .
to find a value for I(i + δ, j + ϵ) using a bilinear interpolate. Here i and
j are integers; 0 < δ < 1; and 0 < ϵ < 1. What function of δ and
ϵ would be used for the bicubic interpolate

∑
ij Iijbbicub(u, v), where

bbicub =W (u)W (v).
(f) What is a good choice of a? (you should write a program and do some

experiments; there are ups and downs for each available choice, but a =
−0.5 is popular).

(g) Write
∑

ij Iijbbicub(u, v) for a bicubic interpolate of an image, where

bbicub = W (u)W (v). Show the local maxima do not always occur at
gridpoints.

PROGRAMMING EXERCISES

3.14. (a) Find a natural image that shows strong aliasing effects when downsampled
by 2 without any smoothing. A good place to start is an image with many
thin, high contrast lines like the image of Figure 3.3.

(b) Collect a set of at least 300 natural images from the internet (for example,
you could use the Berkeley Segmentation Dataset at https://github.

com/BIDS/BSDS500). Downsample each by 2 without smoothing, then
upsample the result. Compute the mean squared difference between the
original and the upsampled downsampled image.

(c) Find the 10% of images with the largest difference. Can you characterize
them qualitatively?

(d) If you downsample by 4 without smoothing, then upsample by 4, does the
set of images with largest difference change? Equivalently, how well does
aliasing error for downsampling by 2 predict aliasing error for downsam-
pling by 4?

(e) Use the procedure of the previous subexercise to determine whether alias-
ing can cause pixels to change color, and how substantial these changes
can be.

3.15. Collect a set of at least 500 natural images from the internet (for example, you
could use the Berkeley Segmentation Dataset at https://github.com/BIDS/
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BSDS500). This exercise investigates how well smoothing works to suppress
aliasing when you downsample by 2.
(a) Split this dataset into a training subset and a test subset. Put 80% of the

images into the training set and 20% of the images into the test set. For
Gaussian filters with σ ∈ {0.5, 1, 1.5, 2} with size in {3, 5, 7, 9}, smooth
the image using the filter (one from a total of 16), downsample it by 2,
then upsample the result to the original size. Compute the mean squared
difference between the original and the upsampled downsampled image,
averaged over the training subset. Use this error to choose the “best”
filter.

(b) Now use the procedure of the previous subexercise to choose the “best”
filter on the test set. Is this the same filter as the “best” filter on the
training set?

3.16. Gaussian pyramids: Write a function that produces a Gaussian pyramid
from an image.
(a) Start with the easy case, where the image size is 2k × 2k and each layer

is half the size on edge of the previous layer.
(b) Extend your code to deal with the case where the image size is 2k × 2k

and each layer is 2(−1/m) the size on edge of the previous layer. Assume
0 < m < 4.

(c) Extend your code to deal with images of arbitrary dimension.
3.17. Laplacian pyramids: Write a function that produces a Laplacian pyramid

from an image. For each case, verify that you can: (a) recover a Gaussian
pyramid from your Laplacian pyramid; (b) recover the original image from
your Laplacian pyramid.
(a) Start with the easy case, where the image size is 2k × 2k and each layer

is half the size on edge of the previous layer.
(b) Extend your code to deal with the case where the image size is 2k × 2k

and each layer is 2(−1/m) the size on edge of the previous layer. Assume
0 < m < 4. You need to be careful with upsampling here to ensure that
an upsampled layer is the same size as the layer that was downsampled.

(c) Extend your code to deal with images of arbitrary dimension. You need
to be careful with upsampling here to ensure that an upsampled layer is
the same size as the layer that was downsampled.

(d) In which cases should you be able to recover the original image exactly?


