
C H A P T E R 4

Geometric Image Transformations

There are a number of important and useful geometric transformations of the plane
that can be applied to images. Image transformations are implemented in the
same way as subsampling: by scanning the pixels of the target and modifying
them using interpolates of pixels from the source. This means it is important
that transformations are invertible. Adopt the convention that a point x = (x, y)
is mapped by a transformation to the point u = (u, v) = (u(x, y), v(x, y)), and
u = (u, v) is mapped to x = (x, y) by the inverse. In vector notation, x is mapped
to u, and so on. Write A for a 2× 2 matrix, whose i, j’th component is aij .

4.1 GEOMETRIC TRANSFORMATIONS

You should either already know, or memorize, the following facts.

Definition: 4.1 Translation

Translation maps the point (x, y) to the point (u, v) = (x+ tx, y+ ty)
for two constants tx and ty. Here (x, y) = (u − tx, v − ty). In vector
notation,

u = x+ t and x = u− t.

Useful Fact: Translation preserves lengths and angles. Choose two
points x1 and x2. The squared distance from x1 to x2 is (x1−x2)

T (x1−x2);
but for a translation (u1−u2) = (x1−x2). A similar argument shows that
angles are preserved (exercises).

53

54 Chapter 4 Geometric Image Transformations

Definition: 4.2 Rotation

Rotation takes the point (x, y) to the point

(u, v) = x cos θ − y sin θ, x sin θ + y cos θ.

Here θ is the angle of rotation, rotation is anti-clockwise, and

(x, y) = u cos θ + v sin θ,−u sin θ + v cos θ.

Write R for a 2 × 2 rotation matrix (a matrix where RTR = I and
det(R) = 1); then

u = Rx and x = R−1u = RTu.

Useful Fact: Rotation preserves lengths and angles. Choose two points
x1 and x2. The squared distance from x1 to x2 is (x1−x2)

T (x1−x2); but
for a rotation (u1 − u2) = R(x1 − x2) and RTR = I. A similar argument
shows that angles are preserved (exercises).

Definition: 4.3 Euclidean transformations

A Euclidean transformation is a rotation and translation, so
(u(x, y), v(x, y)) = (x cos θ− y sin θ+ tx, v(x, y) = x sin θ+ y cos θ+ ty).
Euclidean transformations preserve lengths and angles (and so areas)
and are sometimes referred to as rigid body transformations. Here
(x, y) = ((u − tx) cos θ + (v − ty) sin θ,−(u − tx) sin θ + (v − ty) cos θ).
In vector notation, for R a rotation,

u = Rx+ t and x = RT (u− t).

Useful Fact: Euclidean transformations preserve lengths and angles
(you can think of a Euclidean transformation as a rotation followed by a
translation).

Section 4.1 Geometric Transformations 55

Definition: 4.4 Uniform scaling

For uniform scaling, (u, v) = (sx, sy) for s > 0. Here (x, y) =
(1/su, 1/sv). In vector notation,

u = sx and x = (1/s)u.

Useful Fact: Uniform scaling preserves angles, but not lengths (exer-
cises). Uniform scaling preserves ratios of lengths (exercises)

Definition: 4.5 Non-uniform scaling

For non-uniform scaling, (u, v) = (sx, ty) for s and t both positive,
and so (x, y) = (1/su, 1/tv). Write diag ((s, t)) for the matrix with s
and t on the diagonal. In vector notation,

u = diag ((s, t))x and x = diag ((1/s, 1/t))u.

Useful Fact: Non-uniform scaling will usually change both lengths and
angles.

Definition: 4.6 Affine transformations

Affine transformations are better written in vector notation. Write
A for an invertible 2× 2 matrix, and t for some constant vector. Then

u = Ax+ t and x = A−1(u− t).

Useful Fact: Affine transformations will usually change both lengths
and angles.

56 Chapter 4 Geometric Image Transformations

Definition: 4.7 Projective transformations

Projective transformations involve quite inefficient notation if one
does not know homogenous coordinates (Section ??), and writing them
in vector form is clumsy. Write pij for the i, j’th component of a 3× 3
matrix P that is invertible. Then[

u
v

]
=

[
p11x+p12y+p13

p31x+p32y+p33
p21x+p22y+p23

p31x+p32y+p33

]
.

The inverse transformation is obtained by applying the inverse of P to
u according to the recipe above. For a vector representation, write

P =

 pT
1 p13

pT
2 p23

pT
3 p33


for a 3× 3 array with inverse Q. Then

u =

 pT
1 x+p13

pT
3 x+p33

pT
2 x+p23

pT
3 x+p33

 and x =

 qT
1 u+q13

qT
3 u+q33

qT
2 u+q23

qT
3 u+q33


This definition means that, if P = λQ for some λ ̸= 0, then P and Q
implement the same projective transformation.

Useful Fact: All the classes of transformation described are special
cases of a projective transformation (exercises).

4.2 GEOMETRIC TRANSFORMATIONS OF IMAGES

You need to think carefully to apply a geometric transformation to an image. The
definition might suggest translating an M ×N image by (2, 2) by just changing the
labels of the pixel locations from 1 . . .M and 1 . . . N to 3 . . .M +2 and 3 . . . N +2.
Very little good will come from this approach. Instead, you transform the image
and put it in another image. So in the example, you’d have a target image, and
replace its pixel values with the image you were translating. This very minor point
is a source of some irritations, because you may need to keep track of where the
transformed image goes, otherwise it may disappear (not an exaggeration; example
below).

Section 4.2 Geometric Transformations of Images 57

1,1 1,N

M,1 1,1

1,N

M,1

FIGURE 4.1: The most common coordinate system for images, on the left mirrors
that for arrays. The origin is at the top left corner, and we count in pixels. This is
an M ×N image. I will use the convention Iij for points in this coordinate system,
so the top right pixel is I1M . It is usual for pixel locations to be indexed starting
at 1 (so 1 ≤ i ≤M and 1 ≤ j ≤ N). In some environments (notoriously, Python),
the index starts at 0; in others (eg Matlab), it starts at 1. Keep track of this point,
or you will lose some pixels. On the right, the origin is at the bottom left, and
the coordinate axes are more familiar. Converting from one coordinate system to
the other is straightforward, but not being consistent about the coordinate system
you are working in is an important source of simple, annoying errors. I will always
work in the coordinate system shown on the left.

4.2.1 General Points

Transformations are only meaningful with respect to a coordinate system. The
most common convention for image coordinate systems is strange at first glance.
This coordinate system is shown in Figure 4.1 on the left. The inversion of the y-
axis and of the order of coordinates is an annoying leftover from the way matrices
are indexed, but has quite good properties that will become apparent later. It is
quite usual to use this coordinate system, and I will do so in what follows. Readers
should be aware that there are a variety of alternative conventions, and the choice
of coordinate system has a significant effect on the expressions used to describe
image transformations.

Transformations always take a source image S which is sM × sN to a target
image T which is tM × tN . I will need to refer to image values both at integer
points – which I will write Sij – and at points that are possibly not integer points
– S(x, y). For points that are not integer points, care is required. If 1 ≤ x ≤ sM
and 1 ≤ y ≤ sN , then S(x, y) can be obtained by interpolation. Otherwise, some
care is required.

58 Chapter 4 Geometric Image Transformations

FIGURE 4.2: When you transform an image, you must put it in a target image.
The gray circles on the left represent the sample locations for a small image. On
the right, this is placed at various different locations in the larger image (black
samples). For translation to the green location, and using our current interpolation
procedure, there will be no problem pasting the image, but the pasted region will
be slightly smaller than the original. For the purple location, you will not see all
pixels on the pasted image, because some pixels fall outside the target image range.
This could be a desirable outcome. In the red location, you see no pixels from the
translated image.

As in Section 3.1, the correct general procedure is to scan the pixels of T and
then modify them using interpolates of pixels from S. This means it is important
that transformations are invertible, and both (u(x, y), v(x, y)) and (x(u, v), y(u, v))
are known. If you require that the value of S(x, y) is known if 1 ≤ x ≤ sM and
1 ≤ y ≤ sN , the image might shrink when you translate it. Figure 4.2 illustrates
this effect. The source image has been translated to the green location. If you scan
the target image (the bigger grid), and report a known value for S(x, y) only if
1 ≤ x ≤ sM and 1 ≤ y ≤ sN , you will lose pixels (exercises).

You could mitigate this effect by padding the source image so that you know
pixel values for 0 ≤ x ≤ sM and 0 ≤ y ≤ sN . An easy way to do this is to attach a
copy of the top row to the top of the image, and the leftmost column to the left of
the image. More sophisticated mitigations are out of scope.

Scanning the target image can create inefficiencies. Figure 4.2 shows an ex-
ample where the source image has been translated to lie outside the target image.
Applying this transformation by scanning the whole target image is wasteful. It
is usually a good idea to work out which values of u and v will lead to legitimate
pixels, and scan only those values. Doing this efficiently requires some care, and is
outside scope. An API will do all this for you.

4.2.2 Cropping, Pasting, Blending and Translation

Section 4.2 Geometric Transformations of Images 59

1052

632

(300, 500)

(100, 500)

(100, 800)

(300, 800)

FIGURE 4.3: The chicken in the left image has been cropped to yield the center
image (which is 162 × 187), then translated and pasted to various points in the
left image, to yield the images on the right. Note the choice of coordinate system
strongly affects the value of translation. The chicken’s origin is at the top left
hand corner, yielding the translations shown in the overlay (left image scales are
shown for reference). You should check you agree the translations indicated yield
the chickens shown. Image credit: Figure shows my photograph of jungle fowl in
Singapore.

Procedure: 4.1 Cropping

Cropping creates a smaller target image from a source image. One
specifies a crop window in the sM×sN source image by 1 ≤ xn, xx ≤M
and 1 ≤ yn, yx ≤ N . Here the vertices of the window are integers, and
there is no interpolation. The target image is an (xx − xn)× (yx − yn)
image. For 1 ≤ i ≤ xx − xn and 1 ≤ j ≤ yn − yx, we have

Tij = Si−xn,j−yn

60 Chapter 4 Geometric Image Transformations

Blended

Mask

FIGURE 4.4: The chickens of Figure 4.3 are simply pasted in the top row (as in
that figure, reproduced here for comparison; the arrow on the left shows a problem
with pasting not identified in that figure). In the bottom row, the chickens have
been blended using the blending mask shown. Note the pasting is much less obvious.
Image credit: Figure shows my photograph of jungle fowl in Singapore.

Procedure: 4.2 Pasting

Pasting replaces pixels in a target image with pixels from a source image
using a transformation. For each of a collection of pixel locations u, v
in T :

• compute x(u, v) and y(u, v);

• obtain p = S(x, y) by interpolation, reporting unknown if x, y falls
outside S;

• and, if p ̸= unknown, set Tuv = p.

It is a good idea, when pasting, to have a convenient representation of the
pixel locations. This is easy if, for example, the transformation is a translation, but
less so if it is a projective transformation. Pasting one image into another doesn’t
always yield good results, and you will often see visible lines on the outline of the
transformed source image. This effect can be controlled quite well by blending
using a mask.

Section 4.2 Geometric Transformations of Images 61

Procedure: 4.3 Blending

Blending replaces pixels in a target image with a weighted sum of their
original value and that of a pixel from a source image using a transfor-
mation and a specified set of weights. For each of a collection of pixel
locations u, v in T , where each has a weight w(u, v):

• compute x(u, v) and y(u, v);

• obtain p = S(x, y) by interpolation, reporting unknown if x, y falls
outside S;

• and, if p ̸= unknown, set Tuv = wp+ (1− w)Tuv.

A good way to obtain blend weights is to have a map of blending weights, the
same size as the source image. Typically, weights will be small at the boundary
and bigger in the interior. Managing the collection of pixel locations in case of
translation is particularly easy – you find the largest box of points that are in T
and where the inverse translation maps them to points in S (Figure ??). Notice
that even in this case, you can come up with a transformation that appears to have
no effect because translation can result in the source image ending up outside the
window of the target image.

Procedure: 4.4 Translating an image

Apply the recipe for either pasting or blending, using a translation as
the transformation.

Translation and pasting yield quite convincing composite images (Figure 4.3).
However, close scrutiny of the multi-chicken image shows boundaries of the window
where the translated chicken was pasted. These boundaries can be spotted because
the grass on the left of the chicken is a little darker than the grass on which it was
placed. Figure 4.4 indicates, blending can suppress problems at boundaries fairly
effectively.

4.2.3 Scaling

Uniform scaling either makes the image bigger (upsampling, Section 3.1) or
smaller (downsampling, Section 3.2).

Non-uniform scaling presents a combination of problems. If, say s > 1 and
t < 1, we are upsampling in one direction and downsampling in the other. If t is
relatively close to 1 (so there is not much downsampling), it is usually sufficient
to ignore the upsampling, apply a gaussian smoother to the source, then resample
with interpolation. If the downsampling is very aggressive, it may be better to
smooth in one direction only, which is beyond scope.

62 Chapter 4 Geometric Image Transformations

(0, 0)

(0, 187)

(162, 0)

(-90, 164)

(52, 241)

(142, 78)

(0, 0)

(1, 0)

(0, 1)
θ

FIGURE 4.5: Left shows the image coordinate system for reference, together with the
result of rotating coordinate axes clockwise by θ (which in this example is 0.5 radi-
ans, about 300). Notice that a significant chunk of the source image ends up with
negative coordinates. Right shows the original source rectangle from the cropped
chicken of 4.3 (recall this is 162×187) as an open rectangle, and the rotated source
rectangle in gray. The target image is then set up to enclose the whole result (im-
plicitly translating the rotated source image) and pixels are then scanned into the
target.

4.2.4 Rotation, Affine and Projective Transformations

These transformations present problems. One is that the transformation applied
by the API is sometimes not what you think (so you should check the manual).
Another problem is caused by the fact that the rotated image usually spans more
pixels in the coordinate directions than the source image (Figure 4.5).

Rotation is the transformation where it is most likely what you expect and
what the API does might diverge. Rotations about the origin tend to cause images
to disappear. For example, the grid of positive integer points by 1800 anti-clockwise
around the origin – all the grid points are still integer, but they are now all negative.
As a result, most APIs rotate an image about the center of the image, rather than
about the point 0, 0. You should interpret this as translating the image, rotating
the image, then translating it back (exercises).

There are other things to watch out for in APIs:

• The API might create an empty target image whose horizontal and vertical
spans are big enough to contain whole of the the transformed image, then
apply the transformation to the source image and paste it in the target image.
You will see all pixels in the source image, but there will be target pixels that
are unknown – typically, these contain zero. This option is common.

• The API might create an image as in the previous option, but then crop it

Section 4.2 Geometric Transformations of Images 63

Nearest Neighbors Bilinear

FIGURE 4.6: The chicken of Figure 4.3, rotated by 0.5 radians as in Figure 4.5,
showing the effect of different choices of interpolation. I have zoomed in on a
section of the tail feathers to make the difference more apparent. Image credit:
Figure shows my photograph of jungle fowl in Singapore.

to the largest rectangle that lies inside the known pixels. In this case, every
pixel comes from the source image, but you will miss some pixels. This option
is also common.

• The API will usually provide a way to choose the interpolate. This choice
has a real effect on the results (Figure 4.6).

64 Chapter 4 Geometric Image Transformations

Procedure: 4.5 Transforming an image

To apply a transformation F to an image I:

• The source image S is either I or a padded version of I.

• Write x1 = (1, 1)T , x2 = (sM , 1)
T , x3 = (sM , sN)T and x4 =

(1, sN)T for the four vertices of the source image.

• Compute ui = F(xi) for the result of applying the transformation
to these vertices. Now write un, ux for the smallest (resp. largest)
value of the first component of these points; similarly, vn, vx for
the smallest (resp. largest) value of the second component of these
points.

• T is now a (ceil(ux − un) + 1)× (ceil(vx − vn) + 1) image.

• Predict the range of T in which S will land.

• For each i, j in the that range of T

– Write (x(i, j), y(i, j))
T
= F−1((i, j)

T
).

– If 1 ≤ x ≤ sM and 1 ≤ y ≤ sN then

Tij ← S(x(i+ un − 1, j + vn − 1), y(i+ un − 1, j + vn − 1))

interpolating as required.

Optionally, crop T to the size of the largest axis aligned rectangle inside
the transformed source (exercises).

The choice of interpolate has a real effect (Figure 4.6).
Affine transformations follow the recipe for the rotation. However, an affine

transformation may involve a component of scaling, which might be non-uniform.
One way to see this is to apply a singular value decomposition to A which will yield

A = UΣVT

where U and V are rotations. But Σ is diagonal, and may be non-uniform. As long
as the values on the diagonal of Σ are not too different, and the smallest is not too
small, then one can apply a gaussian smoother to the source, and resample with
interpolation. A robust smoothing strategy is firmly beyond scope, however.

Projective transformations follow the same general recipe as rotations, but
smoothing is now tricky. For a general projective transformation, there might be
singular points, caused by a divide-by-zero. For geometric reasons, these projective
transformations do not arise in cases interesting to us (Section 22.3), and should be
seen as evidence of a problem elsewhere. Nasty smoothing problems occur because
at some pixels a projective transformation may upsample an image and at different
pixels downsample the image. For this effect, look at Figure 4.8 and consider what

Section 4.3 Alignment and Detection with Geometric Transformations 65

(0, 0)

(0, 187)

(162, 0)

(218, 235)

(56, 187)

(162, 48)

1, 0.3
0.3, 1

Nearest neighbors Bilinear

FIGURE 4.7: In the standard image coordinate system, the affine transformation
whose matrix is shown at the left is applied to the original chicken crop of Figure 4.3
(recall this is 162 × 187; the unfilled rectangle). The gray diamond indicates the
result. The target image is then set up to enclose the whole result, and pixels
scanned into the target. In this case, the source image was not smoothed, because
there is relatively little downsampling (the diamond is not much smaller than the
open rectangle). Center shows the result using nearest neighbors interpolation, and
right shows the result using bilinear interpolation. Look closely at the tail feathers
to see the difference.

happens if the transform scales the image as well. It is relatively straightforward
to predict at a given pixel whether downsampling is occuring, and the degree of
downsampling (exercises), meaning a gaussian pyramid is useful. At a pixel in
the target image, predict which location in the source image will be used; estimate
the degree of smoothing required; then look at the relevant layer of the gaussian
pyramid. This strategy is sometimes referred to as MIP-mapping.

Remember this: Transform a source image by: determining how big
the transformed image will be; constructing a target image that will span
the bits you want; then scanning the target, picking up pixels from the
source image using the inverse transformation. There are several different
possible choices of what pixels from the transformed image you want, and
APIs usually implement most.

4.3 ALIGNMENT AND DETECTION WITH GEOMETRIC TRANSFORMATIONS

Color photography is usually dated to the 1930’s when it first became available
to the public. In fact, James Clerk Maxwell described a method to capture a
color photograph in an 1855 paper. The procedure likely looks straightforward to
you: obtain three color filters, and take a picture of the scene through each of
these filters. Capturing these color separations presented a number of technical
challenges, and the first color photograph was taken by Thomas Sutton in 1861.

66 Chapter 4 Geometric Image Transformations

(0, 0)

(0, 187)

(162, 0)

1/3, 0, 0
-187/(3*162), 1/3, 187/3
-2/(3*162), 0, 1

(0, 187/3)

(0, 2*187/3) BilinearNearest neighbors

FIGURE 4.8: In the standard image coordinate system, the projective transformation
whose matrix is shown at the left is applied to the original chicken crop of Figure 4.3
(recall this is 162 × 187; unfilled rectangle). The gray region indicates the result.
Note that the projective transformation has taken the rectangular source to a shape
that is not even a parallelogram. The target image is then set up to enclose the whole
result, and pixels scanned into the target. In this case, the source image was not
smoothed, because there is relatively little downsampling (the gray region is not much
smaller than the open rectangle). Center shows the result using nearest neighbors
interpolation, and right shows the result using bilinear interpolation. Look closely
at the tail feathers to see the difference.

Actually displaying pictures obtained like this was tricky. One had to pass red
light through the red separation, green through the green, and blue through the
blue, then ensure all three resulting images lay on top of one another on screen.
Turning them into the image files we are familiar with is also tricky, because each
layer of the separation is typically a bit offset from the others (the camera moved
slightly between photographs), and each layer has aged and been damaged slightly
differently.

If you can score the similarity between two images, you can line up these
pictures to produce a color image by sliding green and blue to line up with red.
Similarly, you can detect things by sliding a window around an image and scoring
the similarity between the window and the image. If they are very similar, then
the image looks like the window at that location, and you may be able to declare
a detection.

4.3.1 Scoring an Overlap with a Cost Function

You can use the sum of squared differences SSD to score the similarity between the
overlapping parts of two images R and B. The definition is in a box.

Section 4.3 Alignment and Detection with Geometric Transformations 67

Squared error
Correlation Cosine distance

FIGURE 4.9: Top left shows a Gurnard, flashing its pectoral fins in alarm. Top
rest shows the color separations of this image (in red, green, blue order). The
image is slightly blue-green (taken at about 5 meters depth, where water absorbs
red light), and this shows as a darker red separation. Bottom shows how various
cost functions react to registering red to blue. The correct alignment is at 0, 0 and
the images are 257 by 323. Notice that: all the extrema are in the right place,
but the correlation and cosine distance must be maximized, and the squared error
minimized; the squared error changes relatively little from the best to the worst,
because the blue image is rather unlike the red; both cosine distance and correlation
are much more sensitive than SSD – they fall off much more quickly than the SSD
rises. Image credit: Figure shows my photograph of a Gurnard, at Long Beach in
Cape Town.

Definition: 4.8 The sum of squared differences or SSD

The sum of squared differences or SSD scores the similarity between
two images U and V of the same size (N ×M pixels) by

SSD(U ,V) =
∑

(Rij − Bij)2 .

For different offsets, the number of overlapping pixels is different. Given an
offset m,n, shift B by that offset. Write Bo for the set of pixels in this shifted
version of B that overlap R. Write Ro for the pixels in R that are overlapped by
the shifted version of B. Write No for the number of pixels in the overlap. Then
use the cost function

Creg(m,n;R,B) =
1

No
SSD(Ro,Bo)2.

Notice that normalizing by No is important; if you don’t, you will find that the
best match occurs when the overlap is smallest.

68 Chapter 4 Geometric Image Transformations

The SSD assumes that the images to be registered are very close to the same
when they are aligned. But color separations do not agree exactly when they
overlap – if they did, the image would be a monochrome image. It is useful to
have alternative cost functions that (a) will tend to be minimized or maximized
when the images are correctly registered and (b) change quite quickly when they
are not. Quite widely used alternatives are the cosine distance and the correlation
coefficient.

Definition: 4.9 The cosine distance

The cosine distance scores the similarity between two images U and V
of the same size (N ×M pixels) by

Ccos(U ,V) =
∑

(Aij ∗ Bij)√∑
A2

ij

√∑
B2ij

.

Definition: 4.10 The correlation coefficient

The correlation coefficient scores the similarity between two images U
and V of the same size (M ×N pixels) by

Ccorr(m,n) =

∑
[(Aij − µA) ∗ (Bij − µB)]√∑
(Aij − µA)

2
√∑

(Bij − µB)
2

where µA =
1

MN

∑
Aij and

where µB =
1

MN

∑
overlap

Bij .

Annoyingly, the cosine distance is largest when best, even though it’s called
a distance. Some authors subtract this distance from one (its largest value) to fix
this. The correlation coefficient is big for the best alignment. It corrects for the
mean of each image.

Each is in the range −1 to 1, and neither scales with the size of the overlap
neighborhood. Terminology in this area is severely confused. The cosine distance
isn’t a distance; it is sometimes referred to as normalized correlation; and sometimes
as correlation. Several functions similar to correlation are referred to as correlation.
Figure 4.9 shows how these cost functions behave when trying to register the red
and blue separations of an image. These separations will be fairly similar, but not
exactly the same.

Section 4.3 Alignment and Detection with Geometric Transformations 69

4.3.2 Aligning Color Separations by Translation

Separations are in register if they lie over one another exactly and so form a color im-
age. If they are out of register, objects will have slight, odd color halos. Early color
separations tend not to be in register. A class assignment, now hallowed by tradition
in computer vision, but likely to have originated with A. Efros in 2010, uses the pic-
tures of Sergei Mikhailovich Prokudin-Gorskii (1863-1944). Prokudin-Gorskii trav-
eled the Russian empire and took color photographs of many scenes. He left Russia
in 1918. His negatives survived and ended up in the Library of Congress. A digitized
version of the collection is available online at https://www.loc.gov/collections/
prokudin-gorskii/about-this-collection/ (look for the glass slides, which give
the R, G and B separations of each image). The assignment asks students to register
the color separations for some of these images.

There is a natural strategy: write a function that is smallest when the G
(respectively B) separation is in register with the R separation; now search for the
best value of the cost function obtained by small translations of the G (respectively
B) separation.

The search is easy when the separations are at relatively low resolution. The
offsets will be relatively small (a few pixels or so). It is then practical to simply
evaluate the cost function at a grid of translations, and choose the best (fussier
readers might interpolate, exercises). The remaining issue is the cost function.
Section 4.3.1 describes a number of possible cost functions.

This assignment requires care when one works with the high resolution ver-
sion of the scans. These are quite big, and there can be moderately large offsets.
Simply looking at each offset in turn will be hideously expensive (dealt with in
Section 15.1.3).

4.3.3 Elementary Object Detection, or Find the Chicken

Object detection is the problem of determining whether an object appears in an
image and where it is if it is there. There are a wide range of variants, explored
in much greater detail in Chapter 22.3; differences hinge on how one interprets the
word “object”, an alarmingly rich question.

A very simple object detector can be built out of the mosaic procedure. As-
sume A is an image which might contain an object, and B is a template – an example
image of the object to be detected. For every offset m,n where B lies inside A,
compute the cost function and store values in an array (the score array). Notice
that if the values are small, then at that offset, the overlapping bits of B and A
“look like” one another. If they “look like” one another sufficiently (test the cost
function against a threshold), declare that the object is present. Figure 4.10 shows
what the arrays look like for a variety of cost functions.

This detector will tend to overcount objects rather significantly. Shifting a
template by one or two pixels will not tend to change the cost function by much.
This means if the cost function is below threshold at m,n, it is likely to be below
threshold at neighboring points in the score array, too. This could mean you find
many instances of the object nearly on top of one another. A straightforward
procedure called non-maximum suppression deals with this. Find the smallest below
threshold value in the score array. Record an object present at that location, then

70 Chapter 4 Geometric Image Transformations

Target SSD Cosine Correlation

FIGURE 4.10: Translation and an image matching cost function yield an elementary
detector. Model the object – here, the chicken – using an image window (leftmost
column), then translate this window to each location in the image (top) and com-
pute the cost of the overlap. If the underlying image looks a lot like the chicken, you
will get a good value of the cost function (other columns. For SSD, a good value is
small – and so dark – for others it is large – and so light. This elementary detector
has serious problems. In the second row, the chicken template is darker than the
original image, and so SSD matches are not particularly good. Cosine distance and
correlation are less affected. But chickens don’t stay in a fixed configuration, and
if the chicken moves third row, all scores fall off. Image credit: Figure shows my
photograph of jungle fowl in Singapore.

suppress that location and all nearby values (nearby might mean, for example, all
values in a k × k window centered on the current best value in score array) by
setting all to a large value. Repeat this procedure until there are no more below
threshold values in the score array.

There are other good reasons this isn’t a good object detector. Look at Fig-
ure 4.10. The detector will only find chickens if they are in the same configuration
as the template, and on a grass background, and with the same lighting. Some of
this can be fixed with straightforward procedures. For some specialized applica-
tions, where very little computing is available, and where relatively few pixels lie
on the object, a detector built like this can be useful, but outside these applica-
tions different procedures are used. A large family of modern detectors are built on
this framework, with some crucial modifications: the cost function for evaluating
the match between an image window and the concept “chicken” is much more so-
phisticated than just comparing image pixels with template pixels and the search
procedure is more elaborate and more efficient (Chapter ??).

Section 4.3 Alignment and Detection with Geometric Transformations 71

Remember this: Color separations can be registered by using transla-
tions and a cost function that checks how well they are registered. There are
numerous useful cost functions. This procedure can be adapted to produce
a simple detector which is not particularly reliable.

72 Chapter 4 Geometric Image Transformations

4.4 YOU SHOULD

4.4.1 remember these definitions:

Translation . 53
Rotation . 54
Euclidean transformations . 54
Uniform scaling . 55
Non-uniform scaling . 55
Affine transformations . 55
Projective transformations . 56
The sum of squared differences or SSD 67
The cosine distance . 68
The correlation coefficient . 68

4.4.2 remember these facts:

Translation preserves lengths and angles 53
Rotation preserves lengths and angles 54
Euclidean transformation preserve lengths and angles 54
Uniform scaling preserves angles, but not lengths 55
Non-uniform scaling will usually change both lengths and angles . . 55
Affine transformations will usually change both lengths and angles . 56
All transformations described are special cases of projective trans-

formations . 56
A general recipe to transform a source image. 65
Applications of geometric image transformations to registration and

detection. 71

4.4.3 remember these procedures:

Cropping . 59
Pasting . 60
Blending . 61
Translating an image . 61
Transforming an image . 64

4.4.4 be able to:

• Remember the form of translations, rotations, Euclidean transformations,
uniform and non-uniform scaling, affine transformations and projective trans-
formations.

• Explain the main difficulties in transforming an image, and how they are
resolved.

• Compel an API to produce the transformation result you want, and under-
stand the difference between options.

• Register color separations with translations.

Section 4.4 You should 73

EXERCISES

QUICK CHECKS

4.1. Which transformations preserve angles?

4.2. Which transformations preserve lengths?

4.3. Could there be a family of transformations that preserves lengths, but not
angles? Why?

4.4. Assume that the 2×2 matrix N has the property NTN = I and det(N) = −1.
Check that there is some rotation R such that N = Rdiag ((1,−1)).

4.5. What happens if you apply diag ((1,−1)) to an image?

4.6. Figure 4.1 shows two image coordinate systems. What transformation takes
the coordinates of a point in the left-hand coordinate system to the coordinates
of the same point in the right-hand coordinate system?

4.7. Write R for a rotation matrix. Show that the transformation that takes x to
R(x− t) + t is a rotation about the point t.

4.8. Section 4.2.4 has “ As long as the values on the diagonal of Σ are not too
different, and the smallest is not too small, then one can apply a gaussian
smoother to the source, and resample with interpolation.” Explain.

4.9. Is the transformation that takes (x, y) to ((50x)/(x− 100), (50y)/(x− 100)) a
projective transformation?

4.10. For pixels near (25, 25), does the transformation that takes (x, y) to ((50x)/(x−
100), (50y)/(x− 100)) upsample or downsample an image?

4.11. For pixels near (75, 75), does the transformation that takes (x, y) to ((50x)/(x−
100), (50y)/(x− 100)) upsample or downsample an image?

4.12. Section 4.3.1 says: “ Notice that normalizing by No is important; if you don’t,
you will find that the best match occurs when the overlap is smallest.” Explain.

4.13. Explain why you don’t need to normalize the cosine distance by the size of the
overlap (Section 4.3.1).

LONGER PROBLEMS

4.14. Recall that if θ is the angle between two vectors v1 and v2, then

cos θ =
vT
1 v2√

vT
1 v1

√
vT
2 v2

(a) Show that translation preserves the angle between two vectors.
(b) Show that rotation preserves the angle between two vectors.
(c) Show that uniform scaling preserves the angle between two vectors.
(d) Show that uniform scaling preserves the ratio of any two lengths.

4.15. Write pij for the i, j’th component of a 3× 3 matrix P that is invertible. This

is a projective transformation of the image plane, which maps a point (u, v)T

to [
u
v

]
=

[
p11x+p12y+p13
p31x+p32y+p33
p21x+p22y+p23
p31x+p32y+p33

]
.

(a) Show that if p11 = p12, and all other pij = 0 except p33, then the trans-
formation is in fact a uniform scaling transformation.

74 Chapter 4 Geometric Image Transformations

(b) Show that if p31 = p32 = 0, p33 = 1, and the 2× 2 matrix

Q =

[
p11 p12
p21 p22

]
is orthonormal (ie QQT is the identity) then the transformation is in fact
a euclidean transformation.

4.16. Write x1 = (1, 1)T , x2 = (sM , 1)T , x3 = (sM , sN)T and x4 = (1, sN)T for
the four vertices of the source image. Compute ui = F(xi) for the result of
applying the transformation F to these vertices. Now write un, ux for the
smallest (resp. largest) value of the first component of these points; similarly,
vn, vx for the smallest (resp. largest) value of the second component of these
points.
(a) Show that if F is an affine transformation, the vertices ui are the vertices

of a parallelogram.
(b) Show that if F is an affine transformation, the parallelogram identified

by ui lies inside the axis aligned rectangle whose first coordinate u is in
the range un ≤ u ≤ ux and whose second coordinate v is in the range
vn ≤ v ≤ vx.

(c) Recall that a set S is convex if, for any x ∈ S and y ∈ S, and any
0 ≤ t ≤ 1, tx+ (1− t)y ∈ S. Show that an affine transformation maps a
convex set to a convex set.

4.17. Write x1 = (1, 1)T , x2 = (sM , 1)T , x3 = (sM , sN)T and x4 = (1, sN)T for the
four vertices of the source image. Assume F is a projective transformation,
given by [

u
v

]
=

[
p11x+p12y+p13
p31x+p32y+p33
p21x+p22y+p23
p31x+p32y+p33

]
..

Compute ui = F(xi) for the result of applying the transformation F to the
four vertices.
(a) Show that, if the line given by p31x+p32y+p33 = 0 does not intersect the

original image, then ui are the vertices of a quadrilateral. What happens
if the line does intersect the original image?

(b) Show that, if the line given by p31x + p32y + p33 = 0 does not intersect
the original image, then the quadrilateral whose vertices are ui is convex.
Show that this means it lies within the axis aligned rectangle whose first
coordinate u is in the range un ≤ u ≤ ux and whose second coordinate v
is in the range vn ≤ v ≤ vx.

4.18. Construct a projective transformation that downsamples the image at some
pixels and upsamples at others, using Figure 4.8 as a guide.

PROGRAMMING EXERCISES

4.19. Write a code that applies the transformation of Figure 4.8 to an image of
your choice. Compare the effects of using a bilinear interpolate and a nearest
neighbors interpolate.

4.20. A digitized version of the Prokudin-Gorskii photographs is available at https:
//www.loc.gov/collections/prokudin-gorskii/about-this-collection/ (look
for the glass slides). These give the R, G and B separations of each image.
You must write a program that registers separations.
(a) First, find a 64×64 RGB image on the internet or make one. Separate this

into three color separations, then write a code that aligns these separations

Section 4.4 You should 75

by searching translations for the one with the smallest SSD. You should
not need to search a large range of offsets. You can tell whether you have
the right answer in two ways: first, you shifted the layers with respect to
one another, so you know the right shift to register them; second, if you
look at the registered picture, the colors should be pure.

(b) Now take six of the Prokudin-Gorskii slides and reduce the size of each
separation to 64 × 64. Use your code to register the separations. The
easiest way to align the parts is to exhaustively search over a window
of possible displacements (say [-15,15] pixels independently for the x and
y axis), score each one using some image matching metric, and take the
displacement with the best score. Investigate the effects of using a different
metric on the alignment.

(c) Now use a Gaussian pyramid and a coarse to fine search to align the same
six slides at full resolution. Can you improve the result by considering
alignments at a subpixel resolution (i.e. an offset of, say, 1.5 pixels rather
than just an integer number of pixels)? Doing so will involve some thought
about interpolation.

4.21. Build and evaluate a simple chicken detector, along the lines of Section 4.3.3.
Can you improve its behavior by using more than one template for a chicken?

76 Chapter 4 Geometric Image Transformations

