CHAPTER 17

Learned Image Codes from
Denoising

Filters can be used to produce a description of an image patch in terms of
local patterns (Section 6.1), so you can build a code — the response of a set of filters
— that represents a pixel neighborhood. The deblurring procedures of Section 7.2.5
(or a little linear algebra exercises) suggest you can recover an image from a
set of filter responses (or code).

It is natural to want to generalize simple filter based pattern detectors into
codes that represent images. Simple filter based pattern detectors shouldn’t be
linear (recall the examples of Figure 6.1, where the ReLU distinguished between a
bright blob on a dark background and a dark blob on a light background). The
construction shouldn’t require explicit choice of filters — you want to choose the
code that performs best at one or more tasks, rather than reason about filters in
detail. This suggests that codes are most easily built with a task in mind.

A natural task is denoising. You would denoise an image by making a code
from it, then decoding that code. The simplest denoising process — apply a gaussian
filter to a noisy image — can be seen in this light (the noisy image is the code, and
the gaussian filter decodes this code). Although the simplest image denoising uses a
filter to estimate the value of a pixel at each location (Section 6.2), there are limits
to a linear denoising process (eg Section 6.2.2). A non-linear function of the image
(Section 7.2.2) yielded a fairly successful denoiser, suggesting that the decoding is
likely to be non-linear, too. All this suggests the following recipe: encode a noisy
image; decode the noisy image into a denoised image; and choose encoder and
decoder so that this process works reliably for many images.

This chapter sketches out a simple version of this extraordinarily powerful
recipe: how to build and choose simple encoders and decoders. The next chapter
adds enough detail so that you could build one that works acceptably. The recipe is
hugely powerful because it is adaptable. Chapter 7?7 describes a procedure to build
encoders that draws on the ideas of Chapter 10 and results in extremely effective
decoders that can be suborned to encode text as well as images. Chapter ?77?)
shows how to use it to predict a variety of useful things — depth, surface normal,
high resolution image, defogged image — from a single image. A small variation in
the recipe will label image pixels as to object (Chapter 22).

17.1 CONVOLUTIONAL ENCODERS

Recall from Section 5.1 that linear filters are a form of pattern detector. A natural
way to build an image representation is in terms of a range of patterns that (a)
commonly appear in images; (b) differ from image to image; (c) can be detected
accurately in noisy images; and (d) can represent all that is happening in any image.

310

17.1.1

Section 17.1 Convolutional Encoders 311

Kernel block 2

Feature
map 2

NN
7N X

Feature N.
map 1

Kernel block 1

FIGURE 17.1: Multi-channel convolution can be abstracted as a convolutional layer,
a linear operation that takes a block of data and produces a block of data. The
operation (details in Section 6.1.4) takes a N; channel block of data (where N; = 3
for a color image) with dimension N; X x Xy and a bank of N, kernels, each of which
is Ny x d x d. Apply each filter in the bank to the input block to produce one feature
channel of dimension 1 x X XY, and add the bias for that channel to each element.
Now stack each of these channels, to produce a block of data that is N, x X X Y.
Fized parameters are the input number of features N;; the output number of features
N,; the kernel size d; the stride s; and the padding p. I will describe these layers
as N;, N,,d, s,p in figures that follow. The detailed relationships between x, X and
d (etc.) depend on choices about stride, padding and so on exercises .

These patterns would need to be detected at different scales, because the image will
tend to zoom in or zoom out.

An encoder is a device that maps an image into a representation in terms of
patterns, patterns of patterns, etc. that are present, sometimes called a latent rep-
resentation. Convolution with some kernel is a very simple example of an encoder.
A simple pattern detector (convolution followed by ReLU) is a more interesting
example. Even more interesting is something that detects patterns of patterns.
Building a more sophisticated encoder is difficult if you choose the convolution
kernels by hand, however. The alternative is to learn these kernels.

Blocks and Convolutional Layers

Section 6.1.4 described multi-channel convolution, which takes a filter bank and a
3D block of features. There are two spatial dimensions, corresponding to x and y
in the image, and one dimension — usually referred to as the feature dimension —
comparable to the color channel in a color image. The result is another such 3D
block of data (Figure 17.1). The feature dimension of the new block is given by
the number of filters. The spatial dimensions are largely the same as that of the
original block, with small changes depending on the padding (Section 5.1.3) used.

In the original description of multichannel convolution, each kernel is placed

17.1.2

312 Chapter 17 Learned Image Codes from Denoising

at every sample point to compute the result. Skipping sample points appropriately
will have the effect of downsampling. The stride of a multichannel convolution
controls this skipping. If the stride is s, the kernel is placed at every s’th sample
point, meaning the block gets smaller for s > 1. It is often convenient to add some
offset to the result of each kernel in the filter bank. Doing so could, for example,
shift the operating point of the ReLLU for a given pattern — faint versions of the
pattern may get no response, as in Section 6.1.3. This constant is known as the
bias.

Write Zj, ;; for the k’th feature dimension at the 7, j’th location in the input
block which has feature dimension N;, K®) for the p’th kernel in the filter bank
which contains N, kernels, each of which is N; x d x d, B, for the bias of the p’th
kernel in the filter bank, and N, 4 for the p’th feature dimension at the ¢, r’th
location in the output block. Then

prqr = ZIk,sq*uysT*v’CI(fgv + Bp.

kuv

This operation is referred to as a convolutional layer. The values of the filter kernels
and the bias will be learned. Fixed parameters are the input number of features N;;
the output number of features N,; the kernel size d; the stride s; and the padding
(which doesn’t appear in this expression).

Convolutional layers turn blocks into blocks. The ReLU of Section 7?7, applied
elementwise, will also map a 3D block to another 3D block of the same dimensions,
and is another layer. In general, layers turn blocks into blocks, and further examples
of layers will appear later.

Remember this: A convolutional layer computes a multichannel con-
volution of an input block of data with a collection of filters to produce an
output block of data. The spatial size, number of filters, stride and padding
are prescribed, and the weights of the filters will be learned.

Convolutional Encoders

Now imagine applying a convolutional layer with stride one followed by a ReLU
to an image. Under some circumstances, it can prove advantageous to replace the
ReLU with some other nonlinear function (sometimes known as a activation). The
result is a block of data where, at each location, there is a measure of the goodness
of match between the image around that location and each of the filters in the
bank. This is a local description of the image, but it can be made much richer, by
passing the description into another convolutional layer followed by another ReLU.
The block that comes out can be thought of as detecting patterns of patterns —
structures that are more complicated than those encoded by a simple filter. This
block can usefully be passed into yet another convolutional layer, followed by yet
another ReLLU, and so on. If one applies multiple layers, the output block will be

Section 17.1 Convolutional Encoders 313

256xSxT
64x4Sx4T 128x2Sx2T
Image
Data blocks

!
|

Image

o
o
<
el
a
o
a

64,128,3,2, 1

el
<
)
e

Layers

Receptive
Fields

FIGURE 17.2: The architecture of a very simple convolutional encoder, visualized in
terms of data blocks (top - the notation f x x X y means the block has f channels
and spatial dimension x X y), layers (center - the notation N;, N,, d, s, p means
the convolutional layer accepts N; channels, produces N, channels, uses dxd filters,
has stride s and padding p) and receptive fields bottom. The thick lines represent
ReLU layers. I have arranged the filters so that the spatial dimension of the block
of features leaving the encoder is 1/4 of that arriving. As is typical, the data blocks
get spatially smaller but have larger feature dimension. What goes in is the image;
you should think of the mext block as pattern detector scores; the next as pattern-
of-pattern detector scores; and so on. Effective convolutional encoders are often
significantly deeper and involve further architectural practices, below.

significantly redundant, because the receptive fields for neighboring elements may
be moderately large, and will very largely overlap. A natural cure is to apply a
layer with stride 2 (or possibly even larger).

The window of pixels in the original image that is used to compute the value
at some location in a data block is referred to as its receptive field. Usually, all that
matters is the size of the receptive field, which will be the same for every location
in a given block if we ignore the boundary of the input image. The receptive field
of a location in the first convolutional layer will be given by the kernel of that layer.
Determining the receptive field for later layers requires some bookkeeping (among
other things, you must account for any stride or pooling effects, exercises). It
is known that the effective receptive field (the window of pixels that has a large
effect on the value) is much smaller than the receptive field, and some important
consequences flow from this point (Section ?7).

A convolutional encoder, as in Figure 17.3, consists of a sequence of convolu-
tional layers, each followed by a ReLU; most of the convolutional layers have stride

314 Chapter 17 Learned Image Codes from Denoising

1, but there are occasional layers with stride 2. Practice has shown that data blocks
should shrink spatially relatively slowly and grow in the feature dimension quite
fast. If you interpret a convolutional layer followed by a ReLLU as a pattern detec-
tor, this is natural. There are more kinds of patterns than there are pixels; and
there are more kinds of patterns of patterns than there are kinds of patterns. This
means the feature dimension should grow as a block moves through the encoder.
But patterns are bigger than pixels; and patterns of patterns are bigger than pat-
terns. This means that there will be fewer patterns of patterns in an image than
there will be pixels, so the data block should shrink in spatial dimensions.

Remember this: A convolutional encoder consists of a sequence of
convolutional layers, each followed by an activation. This activation is
almost always a ReLU. The stride of the layers is arranged so that the data
blocks get smaller spatially as one moves through the encoder. The number
of filters in each layer is arranged so that the feature dimension of the data
blocks increases as one moves through the encoder.

17.2 CONVOLUTIONAL DECODERS

17.2.1

The block of data that comes out of a convolutional encoder is a set of features.
The particular features are heavily dependent on the filter kernels in each layer,
but in principal could form an extremely rich and detailed image description. If it
is an image representation, you should be able to find the image that produced the
representation. You could search for the thing that is most like an image that also
produces the representation when you feed it into an encoder. The trick is to do
recover the image without search. This is the job of a decoder, which is a device
that maps the code back into an image.

Unfiltering to Decode

You can recover the original image from a filtered version with some caveats. You
might apply the strategy of Section 7.2.5, but now where the linear operator B is
replaced by whatever filter had been applied. A regularized reconstruction would
be linear and shift-invariant in the input, too, so the convolution theorem says there
is some filter that will unfilter the image.

Alternatively, you would find the Fourier transform of the filtered image,
divide by the Fourier transform of the filter, then inverse Fourier transform. Notice
that the convolution theorem means that doing so involves convolving the filtered
image with some other filter (apply an inverse Fourier transform to the reciprocal
of the Fourier transform of the original image). There are some obstacles that need
to be dealt with — there might be zeros in the Fourier transform of the filter, for
example — but the procedure should seem do-able. Either argument yields that
the image can be reconstructed by convolving with some filter, sometimes called a
reconstruction kernel. Equivalently, the reconstructed image consists of a weighted

17.2.2

Section 17.2 Convolutional Decoders 315

256xSxT

64x4SxAT 128x2Sx2T

Image
Data blocks
mage «— [||=]| «— [|}| =| <« Gl
- <]
- -3 =
g & g
A Layers

FIGURE 17.3: The architecture of a very simple convolutional decoder, visualized
in terms of data blocks (top), layers (center - the notation f, d x x X y, sN,
pM means [filters in the block, of spatial extent x X y, accepting a d dimensional
layer, with stride N and padding M). The receptive field of a decoder is are not
usually discussed, and I have omitted this here. The thin layers represent ReLU
layers. The gray layers represent upsampling by 2 in each dimension. The final
pale gray layer could be one of a number of things that are intended to deal with
the fact that images have a limited range, including the identity (more details in
Section 18.2). I have arranged the filters so that the spatial dimension of the block
of features leaving the decoder is 4 times that arriving. As is typical, the data blocks
get spatially bigger but have smaller feature dimension. What goes in is the data
block of codes; you should think of the next block as pattern-of-pattern-of-pattern
maker; the next as a pattern-of-pattern maker; and so on. Effective convolutional
decoders are often significantly deeper and involve further architectural practices,
below, but this picture covers the major features for now.

sum of copies of a particular pattern — the reconstruction kernel — placed at each
location.

Convolutional Decoders

The output of a convolutional decoder is a non-linear function of the image, so you
should expect a direct application of unfiltering won’t work (try it — it doesn’t).
If you think of the encoding as a map of where particular patterns of patterns of
patterns (etc.) occur, then you should be able to reconstruct the image by placing
the relevant patterns at each location. Do so by creating a layout of high level
patterns, then replacing the components of the high level patterns with a layout of
lower level patterns, and so on. At each stage, clip the layouts to avoid negative
values accumulating. This process of placing patterns is a convolutional layer, and
the clipping is a ReLU layer. So you could construct a sequence of convolutional
layers followed by ReLU’s. This would take data blocks and produce data blocks,
starting with the encoding and ending with an image.

One trick is necessary. The encoding is smaller in space dimensions than the

316 Chapter 17 Learned Image Codes from Denoising

image and has more feature channels. The sequence of layers must, on occasion,
make data blocks get bigger in space and smaller in feature channels. Smaller in
feature channels is easy to achieve: one just uses fewer filters. Bigger in space is
also easy to achieve: regard the data block as being like an image, and upsample
it as in Section 3.1 (there are other strategies). The resulting object is known as a
convolutional decoder.

Remember this: A convolutional decoder consists of a sequence of con-
volutional layers, each followed by an activation. This activation is almost
always a ReLU. Either an upsampler, or another arrangement ensures that
data blocks get larger spatially as one moves through the encoder. The num-
ber of filters in each layer is arranged so that the feature dimension of the
data blocks decreases as one moves through the encoder.

17.3 LEARNING BY DESCENT

17.3.1

What makes an encoder or a decoder work well is a good choice of filter banks. It
turns out that these can (and as far as anyone knows, should) be learned from data.
Generally, you adjust the filter banks until you get good behavior at some task,
where good behavior is measured using some cost function averaged over many
instances of the task. You can’t train an encoder to produce the right encoding
of an image, because you don’t know what that is. However, you could train an
encoder-decoder pair together, to form an autoencoder — something that accepts an
image, makes a code, and then reproduces the image from that code.

It isn’t enough to train the autoencoder to reproduce the image it is given;
there are many ways to do that, and most do not produce an interesting image
code. Instead, you train it to accept a noisy version of an image and produce a
clean version of that image. Doing so requires that the encoder computes a code
that (a) describes the image (if it didn’t, the decoding would fail) and (b) is robust
to noise (if it didn’t, it would produce something that wasn’t correctly denoised).
More important, the autoencoder should be able to denoise images that it hasn’t
seen in training — otherwise, it is capable of producing codes only for its training
images, which isn’t much help. Obtaining this generalization property takes care.

Learning by Descent on a Loss Function

Training the autoencoder requires choosing a set of filters for encoder and decoder
so that if you pass in a noisy version of an image, the output is close to the original,
noise-free image. You adjust the filters so that the measure of similarity is good for
a large number of images. Going further requires some notation.

Write £(+;4) for an encoder which accepts an image (in the - slot), produces
an encoding, and has parameters 1 (the filter banks). Write D(-; ¢) for a decoder
that accepts an encoding (- slot again), produces an image, and has parameters ¢
(the filter banks). Stack the ¥ and ¢ into one vector . Write S for a set of N
training images. The ¢’th image is Z;.

17.3.2

Section 17.3 Learning by Descent 317

The autoencoder produces some image O(Z,0) = D(E(Z;4); ¢) when given
Z. Write Z* for a noisy version of Z. Construct a cost function C(O(Z*,),Z;) that
compares the output of the auto-encoder to Z. This cost function is typically a
weighted combination of the L2 norm and the L1 norm (Section 7.2.4).

Now write

£s(0) = 1+ (0,0 7)

€S

for the loss — an average over a set S of images of the cost per image. The problem
is to find a # that produce an acceptably small value of the loss. In an ideal world,
S would be all possible images, but this isn’t practical. Instead, train on some
large set of images (the training set). If this set is large enough and representative
enough, expect that the autoencoder will also have low loss on other images, a
property called generalization.

Obtaining the best loss for a set of training images might look like an opti-
mization problem, but be careful. Optimization methods look for true optima (or
points that are very close to them). In this problem, a value of § that gives a low
loss may be better than the value that exactly minimizes the loss on the training
set. What is important is the autoencoder behaves well on new, future images —
equivalently, that the loss on some other, unknown, set of images is small. The
best value of # on the training set may well incorporate special properties of the
training set, and so behave badly on other sets, whereas a value of 8 that has low
loss on the training set might generalize.

Furthermore, viewed as a pure optimization problem, this problem is quite
hard. There will be a lot of filters, and so a lot of parameters, otherwise there might
not be a strong reason to learn the parameters. The objective is very expensive
to evaluate exactly, because autoencoders are regularly trained on hundreds of
thousands to millions of images. The objective £ is not quadratic (and, as the
encoder or decoder have ReLU’s in them, not even everywhere differentiable). A
second order method is hopeless, because there are a lot of parameters and so
the Hessian will be enormous. A conventional first order method is going to have
problems because evaluating the gradient would require summing over a very large
number of images and so is impractical. This means line search won’t work either.

Stochastic Gradient Descent

A family of first order methods is very successful at finding good values of 6. All
members of the family depend on the fact that a very good estimate of a population
mean can be obtained by drawing a small sample uniformly and at random, then
computing the mean of that sample. So, for example, the average weight of a mouse
(which isn’t a random variable, but could only be evaluated by weighing all mice
and averaging) could be estimated very accurately by drawing a random sample of
B mice and averaging their weights. The resulting average is a random variable,
with an approximately normal distribution, whose mean is the true mean and whose
standard deviation is % times the standard deviation of the population weight.
In the case of the loss function, choose a sample size B — usually called a batch size

17.3.3

318 Chapter 17 Learned Image Codes from Denoising

Training loss while learning for various steplengths of SGD 200 Validation loss while learning for various steplengths of SGD

— 5e3 — le-3valid
— le3 — le-4 valid
— led 1e-5 valid
8 les

Training loss
Validation loss

25 ——————————

0 20000 40000 60000 80000 0 20000 40000 60000 80000
Number of images Number of images

FIGURE 17.4: Choice of steplength or learning rate can have significant effects on
training. The curves show loss for a simple autoencoder in training. On the left,
training loss measured every 640 training images for a variety of steplengths. No-
tice: the loss is quite noisy (because the gradient is stochastic); for a large steplength
(5e-3), training can diverge (the curve disappears fairly fast, and a few batches later
the loss is NAN); and smaller steplengths produce slower descent (1e-4 never catches
up with 1e-3, and 1e-5 doesn’t come close). On the right, validation loss (evalu-
ated on images the autoencoder has never seen in training), computed every 6400
images. Notice the behavior of the validation loss is tracking that of the training
loss, which is a good sign — the autoencoder likely generalizes.

— draw B, a set of B images 7; drawn uniformly and at random, and form

1
VoLs(0) = 2 > VeC(O(T;},6),1))
JjEB

and use this as an estimate of
VoLls

to take a descent step. Write
VoLl
for this estimate. Choose a steplength 7,, for the n’th step, and the descent method

becomes R
0n+1 = en - nnv0£~

This is stochastic gradient descent or SGD.

Steplength and Learning Rate

Calling 7,, a steplength is dubious (the gradient isn’t a unit vector); an alternative
is to call it the learning rate (but it isn’t a rate).

A variety of considerations affect the choice of n,. First, you can’t set 1, by
linesearch, because you can’t evaluate the objective function efficiently (it may be
a sum over millions of images). If 7, is too big, the procedure can diverge (try it!
Figure 17.4). If 7, is too small, § doesn’t change very much (Figure 17.4). In the

Section 17.3 Learning by Descent 319

Training loss for simple steplength schedule, SGD Training loss for simple steplength schedule, SGD

— le3 — 2e3

— s5e4 — 2e4
led 25 2e-5

—— Reference

Training loss

- -

> i
Training loss

- —

° o

o
[
o
[

0.0

0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Number of images Number of images

FIGURE 17.5: In early training, a larger steplength will tend to have the advantage
of fast progress, but in later trainining a smaller steplength is preferred because
it will result in a finer scale search. Typically, one reduces the steplength with a
steplength schedule. On the left, the steplength has been halved every 100, 000
images. The improvement obtained by the first drop in steplength is clear, but that
from the second is harder to see. On the right, I started with a steplength of 2e-
3, and reduced by a factor of 10 every 100, 000 images. I then plotted a 20 item
moving average of the loss curve (which smoothes it significantly). Notice that even
with this smoothing, the loss with the larger steplength occasionally jumps up; and
there is a small but useful improvement from the second drop in steplength. You
can spot this improvement by comparing the curve with the horizontal reference line
that shows a constant loss value.

early stages of training, its likely a good idea to travel quite long distances, so 7,
should be large for small n. Similarly, after a large number of steps, it is likely
a bad idea to travel a long distance (among other reasons, the estimated gradient
might be wrong). It is known that, if (a) 7, — 0 as n — oo and (b) Y 1, — 00
as n — oo, then the sequence L(6,) will decrease toward the value of some local
minimum. Stripped of the notation, this should seem fairly obvious: if the distance
you can travel is arbitrarily long and the step you take decreases with time and
mostly you go downhill, eventually you’ll be close to some form of minimum.

For concreteness, here is one procedure for choosing 7,. Choose some value
that is small, but not too small (1e-3 has a following here). Take many steps using
that value. Now reduce the value, and continue. Repeat as necessary. One way to
reduce the value is to multiply by a constant. Typically, both the starting constant,
the number of steps, and the constant to multiply by are chosen by experiment.
The general procedure for choosing 7,, is known as step length scheduling or learning
rate scheduling. There is a rich variety of alternative methods in any reasonable
API, suggesting (correctly) that different choices work for different applications.
A crude — but surprisingly powerful — procedure for keeping track of the training
process is to plot the value of training loss as a function of the number of steps.
Typically, one averages for some number of steps, then plots. This plot — often
called a learning curve — can be monitored during training for signs of trouble like
divergence. Another useful plot is a plot of loss computed for a held out validation

17.3.4

320 Chapter 17 Learned Image Codes from Denoising

set. If this stays a lot larger than the training loss, that is a sign of trouble. There

are a variety of interesting procedures to adjust the gradient to improve descent
(Section ?7).

Evaluating the Gradient by Backpropagation

Descent requires forming

A 1 "
Vil =5 ;V(;C(O(Ij ,0),Z;)
J

There is an efficient recursion to compute this, because the predicted output is a
function of a number of layers. Each layer has its own set of parameters. Drop the
distinction between decoder layers and encoder layers and write the w’th layer as
Ly(+;0y) (here 6, consists of the elements of 6 apply to the w’th layer. Write all
this out layer by layer, keeping track of the blocks that move through the layers,
to get

D(E(ZT"4);0) = Brya

where
Bit1 = Li(Bu;0k)
By = Lp—1(Br-1;0,-1)
B = I

In this notation, computing the gradient is a straightforward application of the
chain rule, which leads to a recursion known as backpropagation. The derivation is
simple, but tedious, and is relegated to exercises . To evaluate the gradient, you
first evaluate each layer on its inputs (which are outputs of the previous layer); this
forward pass from the input to the output determines the value of each variable in
each layer. You need to do this to ensure you’re evaluating derivatives at the right
point.

Now write VoC for the gradient of the loss with respect to the prediction —
this is a vector if the prediction has been straightened into a vector. Write Jz.,,.0,,

for the derivative of the function L,, with respect to parameters 6,,, and Jz.5,,
for the derivative of the function L,, with respect to inputs B, (recall these are

Section 17.4 Losses and Generalization 321

matrices €xercises). You then have a recursion:

ul = Vvoc’
Vekc = ugij§0k
ul = ujJL.B,
Vo ,.C = | Jn 00,
u, = uZLlJLk_T-*_ﬁBk—T-%—l
VQkirC = uerk,T;aka

velc = uk*lJLl;el

This recursion means you evaluate gradients of each layer from the output to the in-
put, using the results of the forward pass; this is a backward pass, and is responsible
for the name.

Remember this: Train an autoencoder using stochastic gradient de-
scent on a loss. The loss is an average over examples of a function compar-
ing the output to the original, noise-free image. Stochastic gradient descent
approximates the true gradient — which is very expensive to compute — by
drawing a batch of examples at random, and computing the gradient for
that batch, then taking a step in the opposite direction. The size of the
step is determined by a scheduling algorithm, but typically starts large and
gets smaller. Individual steps do not necessarily improve the loss, but for
appropriate step sizes, the loss should drift down. The gradient is evaluated
using a recursion called backpropagation

17.4 LOSSES AND GENERALIZATION

17.4.1

Section 17.3.1 was deliberately vague about loss functions. The purpose of a loss
function is to “push” the parameters of a learned system in a helpful direction.
Keep in mind that the learning procedure follows approximate gradients, meaning
that the value of the loss is not usually particularly significant but the gradients
are crucial. They should push the system — right now, an autoencoder — to behave
in a desirable way. What is important is good behavior on a future test set, rather
than on the training set. The function used to measure performance on the test set
may not be a good — or even usable — loss function, so the loss function used for
training may need to be some kind of approximation of the performance measure.

L2 and L1 Losses

Loss functions typically evaluate residuals — the difference between what the system
provides and ground truth. The SSD loss compares a reconstructed training image

322 Chapter 17 Learned Image Codes from Denoising
R to the ground truth G by

CLa(R.G) =Y A},
ij

where A;; = Ry; — Gij is the residual. This is the square of the L2 norm of A, and
is sometimes (rather disreputably) referred to as an L2 loss. This might seem a
natural training loss, but it has an important disadvantage. Reconstructions from
an autoencoder trained with an SSD loss tend to be blurry; Figure 17.6 shows why.
The key issue is that the square of a small number is very small.

One way to discourage this blurring is to use an L1 loss as well. Recall from
Section 7.2.4 that using an L1 norm as a penalty for the gradient tends to cause the
gradient to have zeros, assuming the optimization process can cope exercises .
Using an L1 term, written

Ci(R,G) =Y |Aij|
i

will tend to encourage the residual to have zeros in it, and will tend to discourage
blurring (Figure ??). This occurs because the small differences that are cheap in
the L2 loss are now much more expensive.

Autoencoders are now usually trained with a weighted sum of L1 and SSD
losses. As Section 18.2 shows, a variety of other terms might appear as well. This
means that you must choose weights. The choice of these weights should have
effects on the behavior of the resulting autoencoder.

Here is a way to think about the relative weight of L1 and L2 loss (Section 77
discusses other cases). Assume the system is predicting one number, z, and the
intended prediction is t. The residual A is z — t. The weighted sum of losses is

alA? +b|Al.

This is often referred to as a L1/L2 loss. When |A| = b/a, the two losses have the
same value. As |A| grows, the SSD term dominates; similarly, as | A| shrinks, the
L1 term dominates. In turn, this suggests that if = is in the range 0 — 1, b/a should
be in this range too. If the residual is large, the SSD term should be important, so
b/a around 0.1 looks good.

Remember this: Training an autoencoder with an L2 loss alone tends
to produce blurred images, because the autoencoder can get a fairly small
loss value by putting a blurred edge in a slightly wrong location. Using a
weighted combination of L1 and L2 losses can help. If the error is small,
the L1 loss should dominate, encouraging small errors to move closer to
zero; if the error is larger, the L2 loss should dominate.

17.4.2

Section 17.4 Losses and Generalization 323

A
>
Z T,
=] 1%
Q b 2
~— * 1%
= '

!_ ‘:"'4
Position
Input Output

FIGURE 17.6: The L2 loss tends to produce blurry images. Assume some system is
trying to reproduce an image with a strong, sharp edge (top left). The green (full)
curve is a cross-section of the intensity through that edge. The red (big dashes)
reconstruction has high L2 loss, because it places a sharp edge in the wrong place,
and so is penalized by the square of a large error. The blue (small and smaller
dashes; dots) reconstructions are blurry, and place the edge in only about the right
place. Nonetheless, the L2 loss is for these is small, because it is the sum of squares
of small errors, and the square of a small number is even smaller. In turn, a
reconstruction that has sharp edges pays a high penalty for putting them in slightly
wrong locations, whereas a reconstruction that produces blurry edges will have a low
loss even if they are somewhat misplaced. Top right shows detail blocks of input
and output for two images. Notice the loss of detail (arrows). Image credit: Images
are my photographs of a cheerful dinner table and an enticing shop window.

Unhelpful Gradients means a Bad Loss

The main point of the exercise is not the loss function, but the gradient that it
provides the learned system. What you want is gradients that push the system
toward good behavior from any state. Such gradients don’t actually have to come
from a loss (Section ??; but this isn’t the usual case). Something that might at
first glance look like a usable loss may not be, if it provides unhelpful gradients.

Here is an example. The indicator function is a function that tests its argu-
ment against a condition, then reports 1 if the condition is true and zero otherwise.
For example,

I () = 1 ifz<0
[<0IT) =\ 0 otherwise

is 1 when x < 0 and 0 otherwise. Note some redundancy here; the condition usually
means it is obvious what the argument is, so it is quite usual to write Ij; <o rather
than Ij,g)(z). The following (BAD) choice of loss could be intended to force an

324 Chapter 17 Learned Image Codes from Denoising

L2 Output

FIGURE 17.7: The L1 loss tends to reduce blur in reconstructed images. Left shows
detail blocks from images; center shows the corresponding blocks from an autoen-
coder trained with SSD loss only; and right shows reconstructions from a simple
autencoder trained with an L1 loss only. The effect is small, but it is there (look at
the text in the shop window if you’re not convinced). Image credit: Images are my
photographs of a cheerful dinner table and an enticing shop window.

output to be non-negative:
Chad(@) = Y Iz, <
ij

(i.e. count the negative pixels). This (again, very bad) choice of loss is bad not
because it isn’t differentiable, but because it provides no gradient — for every value of
Z;; other than zero, the gradient is zero, and for the remaining case it is undefined.
Smoothing this loss very slightly to produce (say)

1
Cbad(z) = Z 1+ eaIij

)

(for a some large number, a > 0) does not help. Again, the gradient is tiny for most
image values. There is nothing to push the system to the right behavior unless it
is already very close.

A loss function that is not differentiable at some points is often not a serious
problem. because stochastic gradient descent doesn’t use an exact gradient. For
example, think about the L1 loss, which isn’t differentiable when the residual is
zero, and recall the notation of Section 17.3.4. The differentiability problem means

17.4.3

Section 17.4 Losses and Generalization 325

that for some example images, at some pixels, we do not know the value of the
gradient. These will be the pixels where the residual is zero. At other pixels, the
gradient is either 1 or —1. Apply the strategy of using either —1 and 1 for the value
of the gradient at the pixels where the residual is zero; you could choose randomly,
or always use one value. No problems result, from the following arguments:

e There are few such pixels, in few images. Any error that results will be
swamped by the noise in the gradient caused by random choice of examples.

o If the residual was very slightly different at that pixel, the gradient value you
used would be correct.

e This strategy properly represents the subgradient (only convincing if you
know what a subgradient is; it isn’t worth the trouble to expand this argument
for others).

Remember this: The loss doesn’t matter very much, but the gradients
are crucial. You want a loss that pushes the system toward good behavior
from wherever it is. It is not usually a problem if losses fail to be differen-
tiable at some points.

Cheating and Denoising

Training procedures are very effective at finding parameter values that produce
small training losses. These parameter values may not actually do what you expect.
This effect is sometimes known as cheating. The name is absurd, because cheating
occurs when training has found a way to get a small loss without doing what you
want it to do — your understanding has failed. Cheating is a common phenomenon
in learned systems, and a good rule of thumb is to assume the system is cheating
unless you have very strong evidence that it is not. This is equivalent to assuming
you don’t understand the system and losses as well as you think you do (often a
wise assumption).

Now assume you train an autoencoder to reproduce its input image. It is
likely to be able to do so without actually producing a useful image representation
— all it needs to do is pass the input values to the output. Experience shows
that searching for parameters using stochastic gradient descent is extraordinarily
powerful, and is perfectly capable of cheating like this. This is cheating because
the search has minimized the loss function, but the representation isn’t actually of
any use. Worse, adding layers, filters, and so on might simply increase the scope
for cheating while making it more difficult to understand the detailed structure of
any particular cheating strategy.

The autoencoder is able to cheat because it can pass on the input image.
Forcing it to denoise an image should result in something that produces reasonable
image codes. The encoding of the image should represent all that is important about

17.4.4

326 Chapter 17 Learned Image Codes from Denoising

the image, and should be robust — if the encoder is presented with a noisy version of
the image, it should produce the code for the original image. As Chapters 6 and 7
show, pixels near a particular image location contain a great deal of information
about the value at that location. Experience shows that making an autoencoder
denoise forces it to exploit everything it can in the neighborhood of a pixel when
it encodes the image, and so forces it to produce a usable code.

Remember this: Stochastic gradient descent involves an extremely pow-
erful search, so it is common that learned systems achieve low losses without
doing what you expect. You should always suspect that this cheating is oc-
curring unless you have evidence to the contrary. Forcing an autoencoder
to denoise is an effective apotropaic against cheating.

Generalization

A good autoencoder should denoise all images, not just the images it was trained
on. This property is an instance of a broader idea to do with learned systems, often
called generalization. The goal of training a learned system is to have it perform
well on inputs that are like its training data, but are not exactly the same. Being
precise about the meaning of “like ... but not exactly the same” is surprisingly
hard.

A system that fails to generalize has found a way to perform well on training
images, but not on any other. Typically, this occurs because the system relies on
a correlation that is present in the training data, but may not be present in other
data. For example, if the noise only changes some bright red pixels, the trained
autoencoder might cheat on any pixel that isn’t bright red. It is obvious that this
choice of noise model is bad, but there may be strong correlations in the training
data that are not obvious, and aren’t in all relevant data.

There are several strategies to encourage generalization that apply here. The
most basic involves using a great deal of training data. This is quite do-able for
image denoising, because it is relatively straightforward to obtain very large col-
lections of images (Section 22.3). However many images in your basic training set,
you can make this set look significantly bigger by augmentation, which creates new
images from old. For a denoising application, notice there are many operations you
can apply to an image that result in an image: cropping an image and resizing it;
left-right flipping it; up-down flipping it; or making it slightly brighter or slightly
darker. Further, you can make it hard for the system to cheat by memorizing ex-
amples. It is not a good idea to construct a dataset of noisy/clean pairs in advance,
because there might be some unexpected correlation between noise and image. In-
stead, apply noise to the image when a batch is formed (so the system could see
many different noisy versions of the same image).

Another strategy is to discourage large values in the filter coefficients, a prac-
tice known as regularization. Imagine two filters that get about the same response
from a range of real inputs. The one with smaller coefficients is likely a better

Section 17.4 Losses and Generalization 327

choice. The large coefficients appear to have no effect on real data (because the
filters get about the same response on a range of real inputs), but might produce
a large response on some new piece of data that is somewhat unlike the training
data. This large response is likely spurious; worse, it may cause a cascade of errors
where some other filter responds strongly to the spurious response.

Regularization can be implemented by adding a term to the loss that penalizes
the sum of squared parameter values, with a small weight (chosen by experiment,
Section ??). This is equivalent to adding a term to the gradient that “shrinks” the
weights (exercises), and so is often referred to as weight decay.

Another regularization strategy is dropout, where one randomly replaces el-
ements of a data block with zeros during training. This is intended to advantage
filters that are robust to error. Dropout will tend to disadvantage a filter that
relies too strongly on one input, because that input might be dropped out. Some
housekeeping is required to implement dropout properly, because the filter sees a
“smaller” input in training (where some inputs might be zeroed) than in test. A
good API will have a dropout implementation that takes care of this, and I leave
the topic to the manual of your API. Further strategies involve discouraging large
values in data blocks (normalization) and are dealt with in Section 18.3.3.

Remember this: You want the autoencoder to denoise images that
weren’t seen in training. This generalization can be hard to achieve. The
two main strategies to encourage generalization are (a) augmentation (mak-
ing the training dataset bigger by operations on the images) and (b) regu-
larization (which reduces the space of learned systems being searched by
ensuring filter coefficients aren’t too big or by randomly setting coefficients
to zero).

328 Chapter 17 Learned Image Codes from Denoising

17.5 YOU SHOULD
17.5.1 remember these facts:

A convolutional layer accepts an input block and produces an output

block using a learned set of filters. 312
A convolutional encoder consists of a sequence of convolutional lay-

ers, each followed by an activation. 314
A convolutional decoder consists of a sequence of convolutional lay-

ers, each followed by an activation. 316
Train using SGDonaloss. 321
L2 losses make blurred images; L1 losses help 322
Loss doesn’t matter much, gradients are crucial. 325
Always suspect cheating by learned systems 326

Encourage generalization by augmenting data and by regularization 327

17.5.2 remember these procedures:
17.5.3 be able to:

e Recognize a bank of filters as a way to represent small patterns in images.
e Denoise an image by smoothing with either Gaussian or median filters.

e Form a gradient estimate using derivative of Gaussian filters.

Use the model of sampled functions in simple calculations.

e Recognize interpolation as a convolution that passes from a sampled function
to a continuous function.

Section 17.5 You should 329

EXERCISES

QUICK CHECKS

17.1. You are given a filtered image. How would you recover the original? what
might go wrong?

17.2. A multichannel convolution with stride 1, kernel size 2d + 1, padding d and
N, filters accepts an N; X X X Y block. How big is the block that comes out?

17.3. A multichannel convolution with stride 2, kernel size 2d + 1, padding d and N,
filters accepts an N; x 2X x 2Y block. How big is the block that comes out?

17.4. A multichannel convolution with stride 1, kernel size 2d + 1, padding 0 and N,
filters accepts an N; x X x Y block. How big is the block that comes out?

17.5. A convolutional layer with stride 1 and kernel size 2d 4+ 1 is followed by a
second convolutional layer with stride 1 and kernel size 2d + 1. How big is the
receptive field for a feature in the second layer?

17.6. Section 17.3.4 says: “ Write JLw;gw for the derivative of the function L.,
with respect to parameters 6., and Jz,,.B,, for the derivative of the function
L., with respect to inputs By, (recall these are matrices)”. Why are these
matrices? what are the elements of the matrices?

17.7. You want to ensure that an autoencoder produces a non-negative number at
every location. Section 17.4.2 says that

1

ij
would be a bad choice of loss for a > 0 and large. What happens if a > 0 and
small? what happens if a < 07
17.8. Section 17.4.1 says: “Recall from Section 7.2.4 that using an L1 norm as a
penalty for the gradient tends to cause the gradient to have zeros, assuming
the optimization process can cope €Xercises .” Explain; do you expect
gradient descent on an L1 loss produce zeros?

LONGER PROBLEMS

17.9. This exercise derives backpropagation. Write the encoder-decoder pair

D(E(T;¢);¢) = Brya
where
Bi+1 = Ly(By;0y)
By, = Lg_1(Br—1;0k-1)
BT = T

and the loss C(O(Z;,0),Z;).

(a) Write VC for the gradient of the loss with respect to the prediction — this
is a vector if the prediction has been straightened into a vector. Under
some conventions, it is a row vector, but I will adhere to the convention
that every vector is a column vector. Show that

V,C(O(Z;,6), 1) = Vol Tp, 6,

330 Chapter 17

(b) Show that

Learned Image Codes from Denoising

V@k—lc(o(z;7 0)7Ij) = VOCTij;BkJLk—l;@k—l‘

(c) Use the last two subexercises to deduce the form of the recursion

T
up
Vo, C

T
uj

Ve, ,C

k

ur

Vo,_,C

C

1

Vg

V@CT
T

0 JL560,
T

uy JL,;B;,

T
ui JLk—Hek—l

T
urflekﬂ-ﬂ;Bkﬂdrl
LU/ SR

u,_1Jr,.6,

