
Foundations and TrendsR© in
Computer Graphics and Vision
Vol. 1, No 2/3 (2005) 77–254
c© 2006 D.A. Forsyth, O. Arikan, L. Ikemoto,
J. O’Brien, D. Ramanan
DOI: 10.1561/0600000005

Computational Studies of Human Motion:
Part 1, Tracking and Motion Synthesis

David A. Forsyth1, Okan Arikan2, Leslie
Ikemoto3, James O’Brien4 and Deva Ramanan5

1 University of Illinois Urbana Champaign
2 University of Texas at Austin
3 University of California, Berkeley
4 University of California, Berkeley
5 Toyota Technological Institute at Chicago

Abstract

We review methods for kinematic tracking of the human body in video.
The review is part of a projected book that is intended to cross-fertilize
ideas about motion representation between the animation and com-
puter vision communities. The review confines itself to the earlier stages
of motion, focusing on tracking and motion synthesis; future material
will cover activity representation and motion generation.

In general, we take the position that tracking does not necessarily
involve (as is usually thought) complex multimodal inference problems.
Instead, there are two key problems, both easy to state.

The first is lifting, where one must infer the configuration of the
body in three dimensions from image data. Ambiguities in lifting can
result in multimodal inference problem, and we review what little is
known about the extent to which a lift is ambiguous. The second is
data association, where one must determine which pixels in an image



come from the body. We see a tracking by detection approach as the
most productive, and review various human detection methods.

Lifting, and a variety of other problems, can be simplified by observ-
ing temporal structure in motion, and we review the literature on data-
driven human animation to expose what is known about this structure.
Accurate generative models of human motion would be extremely useful
in both animation and tracking, and we discuss the profound difficulties
encountered in building such models. Discriminative methods – which
should be able to tell whether an observed motion is human or not –
do not work well yet, and we discuss why.

There is an extensive discussion of open issues. In particular, we
discuss the nature and extent of lifting ambiguities, which appear to
be significant at short timescales and insignificant at longer timescales.
This discussion suggests that the best tracking strategy is to track a 2D
representation, and then lift it. We point out some puzzling phenom-
ena associated with the choice of human motion representation – joint
angles vs. joint positions. Finally, we give a quick guide to resources.



1
Tracking: Fundamental Notions

In a tracking problem, one has some measurements that appear at each
tick of a (notional) clock, and, from these measurements, one would like
to determine the state of the world. There are two important sources
of information. First, measurements constrain the possible state of the
world. Second, there are dynamical constraints – the state of the world
cannot change arbitrarily from time to time. Tracking problems are of
great practical importance. There are very good reasons to want to, say,
track aircraft using radar returns (good summary histories include [51,
53, 188]; comprehensive reviews of technique in this context include [32,
39, 127]).

Not all measurements are informative. For example, if one wishes
to track an aircraft – where state might involve pose, velocity and
acceleration variables, and measurements might be radar returns giving
distance and angle to the aircraft from several radar aerials – some of
the radar returns measured might not come from the aircraft. Instead,
they might be the result of noise, of other aircraft, of strips of foil
dropped to confuse radar apparatus (chaff or window; see [188]), or
of other sources. The problem of determining which measurements are
informative and which are not is known as data association.
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80 Tracking: Fundamental Notions

Data association is the dominant difficulty in tracking objects in
video. This is because so few of the very many pixels in each frame lie on
objects of interest. It can be spectacularly difficult to tell which pixels
in an image come from an object of interest and which do not. There are
a very wide variety of methods for doing so, the details of which largely
depend on the specifics of the application problem. Surprisingly, data
association is not usually explicitly discussed in the computer vision
tracking literature. However, whether a method is useful rests pretty
directly on its success at data association – differences in other areas
tend not to matter all that much in practice.

1.1 General observations

The literature on tracking people is immense. Furthermore, the prob-
lem has quite different properties depending on precisely what kind
of representation one wishes to recover. The most important variable
appears to be spatial scale. At a coarse scale, people are blobs. For
example, we might view a plaza from the window of a building or a
mall corridor from a camera suspended from the ceiling. Each person
occupies a small block of pixels, perhaps 10–100 pixels in total. While
we should be able to tell where a person is, there isn’t much prospect of
determining where the arms and legs are. At this scale, we can expect
to recover representations of occupancy – where people spend time,
for example [424] – or of patterns of activity – how people move
from place to place, and at what time, for example [377].

At a medium scale, people can be thought of as blobs with
attached motion fields. For example, a television program of a soccer
match, where individuals are usually 50–100 pixels high. In this case,
one can tell where a person is. Arms and legs are still difficult to local-
ize, because they cover relatively few pixels, and there is motion blur.
However, the motion fields around the body yield some information as
to how the person is moving. One could expect to be able to tell where
a runner is in the phase of the run from this information – are the legs
extended away from the body, or crossing?

At a fine scale, the arms and legs cover enough pixels to be
detected, and one wants to report the configuration of the body.
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We usually refer to this case as kinematic tracking. At a fine spatial
scale, one may be able to report such details as whether a person is
picking up or handling an object. There are a variety of ways in which
one could encode and report configuration, depending on the model
adopted – is one to report the configuration of the arms? the legs?
the fingers? – and on whether these reports should be represented in
2D or in 3D. We will discuss various representations in greater detail
later.

Each scale appears to be useful, but there are no reliable rules of
thumb for determining what scale is most useful for what application.
For example, one could see ways to tell whether people are picking
up objects at a coarse scale. Equally, one could determine patterns of
activity from a fine scale. Finally, some quite complex determinations
about activity can be made at a surprisingly coarse scale. Tracking
tends to be much more difficult at the fine scale, because one must
manage more degrees of freedom and because arms and legs can be
small, and can move rather fast.

In this review, we focus almost entirely on the fine scale; even so,
space will not allow detailed discussion of all that has been done. Our
choice of scale is dictated by the intuition that good fine-scale tracking
will be an essential component of any method that can give general
reports on what people are doing in video. There are distinctive features
of this problem that make fine scale tracking difficult:

• State dimension: One typically requires a high dimensional
state vector to describe the configuration of the body in a
frame. For example, assume we describe a person using a
2D representation. Each of ten body segments (torso, head,
upper and lower arms and legs) will be represented by a
rectangle of fixed size (that differs from segment to segment).
This representation will use an absolute minimum of 12 state
variables (position and orientation for one rectangle, and rel-
ative orientation for every other). A more practical version of
the representation allows the rectangles to slide with respect
to one another, and so needs 27 state variables. Considerably
more variables are required for 3D models.
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• Nasty dynamics: There is good evidence that such motions
as walking have predictable, low-dimensional structure [335,
351]. However, the body can move extremely fast, with large
accelerations. These large accelerations mean that one can
stop moving predictably very quickly – for example, jump-
ing in the air during a walk. For straightforward mechanical
reasons, the body parts that move fastest tend to be small
and on one end of a long lever which has big muscles at
the other end (forearms, fingers and feet, for example). This
means that the body segments that the dynamical model
fails to predict are going to be hard to find because they are
small. As a result, accurate tracking of forearms can be very
difficult.

• Complex appearance phenomena: In most applica-
tions one is tracking clothed people. Clothing can change
appearance dramatically as it moves, because the forces the
body applies to the clothing change, and so the pattern of
folds, caused by buckling, changes. There are two important
results. First, the pattern of occlusions of texture changes,
meaning that the apparent texture of the body segment can
change. Second, each fold will have a typical shading pattern
attached, and these patterns move in the image as the folds
move on the surface. Again, the result is that the apparent
texture of the body segment changes. These effects can be
seen in Figure 1.4.

• Data association: There is usually no distinctive color or
texture that identifies a person (which is why people are noto-
riously difficult to find in static images). One possible cue
is that many body segments appear at a distinctive scale as
extended regions with rather roughly parallel sides. This isn’t
too helpful, as there are many other sources of such regions
(for example, the spines of books on a shelf). Textured back-
grounds are a particularly rich source of false structures in
edge maps. Much of what follows is about methods to handle
data association problems for people tracking.
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1.2 Tracking by detection

Assume we have some form of template that can detect objects rea-
sonably reliably. A good example might be a face detector. Assume
that faces don’t move all that fast, and there aren’t too many in any
given frame. Furthermore, the relationship between our representation
of the state of a face and the image is uncomplicated. This occurs, for
example, when the faces we view are always frontal or close to frontal.
In this case, we can represent the state of the face by what it looks like
(which, in principle, doesn’t change because the face is frontal) and
where it is.

Under these circumstances, we can build a tracker quite simply.
We maintain a pool of tracks. We detect all faces in each incoming
frame. We match faces to tracks, perhaps using an appearance model
built from previous instances and also – at least implicitly – a dynam-
ical model. This is where our assumptions are important; we would
like faces to be sufficiently well-spaced with respect to the kinds of
velocities we expect that there is seldom any ambiguity in this match-
ing procedure. This matching procedure should not require one-one
matches, meaning that some tracks may not receive a face, and some
faces may not be allocated a track. For every face that is not attached
to a track, we create a new track. Any track that has not received a
face for several frames is declared to have ended (Algorithm 1 breaks
out this approach).

This basic recipe for tracking by detection is worth remembering.
In many situations, nothing more complex is required, and the recipe is
used without comment in a variety of papers. As a simple example, at
coarse scales and from the right view, background subtraction and look-
ing for dark blobs of the right size is sufficient to identify human heads.
Yan and Forsyth use this observation in a simple track-by-detection
scheme, where heads are linked across frames using a greedy algo-
rithm [424]. The method is effective for obtaining estimates of where
people go in public spaces.

The method will need some minor improvements and significant
technical machinery as the relationship between state and image mea-
surements grows more obscure. However, in this simple form, the
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Assumptions: We have a detector which is reasonably reliable
for all aspects that matter. Objects move relatively slowly with
respect to the spacing of detector responses. As a result, a detector
response caused either by another object or by a false positive
tends to be far from the next true position of our object.

First frame:
Create a track for each detector response.

N’th frame:
Link tracks and detector responses. Typically, each track gets
the closest detector response if it is not further away than some
threshold. If the detector is capable of reporting some distinguish-
ing feature (colour, texture, size, etc.), this can be used too.
Spawn a new track for each detector response not allocated to a
track.
Reap any track that has not received a measurement for some
number of frames.

Cleanup: We now have trajectories in space time. Link any
where this is justified (perhaps by a more sophisticated dynamical
or appearance model, derived from the candidates for linking).

Algorithm 1: The simplest tracking by detection

method gives some insight into general tracking problems. The trick of
creating tracks promiscuously and then pruning any track that has not
received a measurement for some time is a quite general and extremely
effective trick. The process of linking measurements to tracks is the
aspect of tracking that will cause us the most difficulty (the other
aspect, inferring states from measurements, is straightforward though
technically involved). This process is made easier if measurements have
features that distinctively identify the track from which they come.
This can occur because, for example, a face will not change gender
from frame to frame, or because tracks are widely spaced with respect
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to the largest practical speed (so that allocating a measurement to the
closest track is effective).

All this is particularly useful for face tracking, because face detec-
tion – determining which parts of an image contain human faces,
without reference to the individual identity of the faces – is one of
the substantial successes of computer vision. Neither space nor energy
allow a comprehensive review of this topic here. However, the typical
approach is: One searches either rectangular or circular image windows
over translation, scale and sometimes rotation; corrects illumination
within these windows by methods such as histogram equalization; then
presents these windows to a classifier which determines whether a face
is present or not. There is then some post-processing on the classifier
output to ensure that only one detect occurs at each face. This gen-
eral picture appears in relatively early papers [299, 331, 332, 382, 383].
Points of variation include: the details of illumination correction; appro-
priate search mechanisms for rotation (cf. [334] and [339]); appropriate
classifiers (cf. [259, 282, 333, 339] and [383]); building an incremen-
tal classification procedure so that many windows are rejected early
and so consume little computation (see [186, 187, 407, 408] and the
huge derived literature). There are a variety of strategies for detect-
ing faces using parts, an approach that is becoming increasingly com-
mon (compare [54, 173, 222, 253, 256] and [412]; faces are becoming
a common category in so-called object category recognition, see, for
example, [111]).

1.2.1 Background subtraction

The simplest detection procedure is to have a good model of the back-
ground. In this case, everything that doesn’t look like the background
is worth tracking. The simplest background subtraction algorithm is
to take an image of the background and then subtract it from each
frame, thresholding the magnitude of the difference (there is a brief
introduction to this area in [118]). Changes in illumination will defeat
this approach. A natural improvement is to build a moving average
estimate of the background, to keep track of illumination changes (e.g.
see [343, 417]; gradients can be incorporated [250]). In outdoor scenes,
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this approach is defeated by such phenomena as leaves moving in the
wind. More sophisticated background models keep track of maximal
and minimal values at each pixel [146], or build local statistical models
at each pixel [59, 122, 142, 176, 177, 375, 376].

Under some circumstances, background subtraction is sufficient to
track people and perform a degree of kinematic inference. Wren et al.
describe a system, Pfinder, that uses background subtraction to iden-
tify body pixels, then identifies arm, torso and leg pixels by building
“blobby” clusters [417]. Haritaoglu et al. describe a system called W4,
which uses background subtraction to segment people from an outdoor
view [146]. Foreground regions are then linked in time by applying
a second order dynamic model (velocity and acceleration) to propa-
gate median coordinates (a robust estimate of the centroid) forward in
time. Sufficiently close matches trigger a search process that matches
the relevant foreground component in the previous frame to that in the
current frame. Because people can pass one another or form groups,
foreground regions can merge, split or appear. Regions appearing, split-
ting or merging are dealt with by creating (resp. fusing) tracks. Good
new tracks can be distinguished from bad new tracks by looking for-
ward in the sequence: a good track continues over time. Allowing a
tracker to create new tracks fairly freely, and then telling good from
bad by looking at the future in this way is a traditional, and highly
useful, trick in the radar tracking community (e.g. see the comprehen-
sive book by Blackman and Popoli [39]). The background subtraction
scheme is fairly elaborate, using a range of thresholds to obtain a good
blob (Figure 1.1). The resulting blobs are sufficiently good that the
contour can be parsed to yield a decomposition into body segments.
The method then segments the contours using convexity criteria, and
tags the segments using: distance to the head – which is at the top of
the contour; distance to the feet – which are at the bottom of the con-
tour; and distance to the median – which is reasonably stable. All this
works because, for most configurations of the body, one will encounter
body segments in the same order as one walks around the contour
(Figure 1.2). Shadows are a perennial nuisance for background subtrac-
tion, but this can be dealt with using a stereoscopic reconstruction, as
Haritaoglu et al. show ([147]; see also [178]).
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Fig. 1.1 Background subtraction identifies groups of pixels that differ significantly from a
background model. The method is most useful for some some cases of surveillance, where
one is guaranteed a fixed viewpoint and a static background changing slowly in appearance.
On the left, a background model; in the center, a frame; and on the right, the resulting
image blobs. The figure is taken from Haritaoglu et al. [146]; in this paper, authors use
an elaborate method involving a combination of thresholds to obtain good blobs. Figure 1.2
illustrates a method due to these authors that obtains a kinematic configuration estimate
by parsing the blob. Figure from “W4: Real-time surveillance of people and their activities”,
Haritaoglu et al., IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, c© 2000
IEEE.

Fig. 1.2 For a given view of the body, body segments appear in the outline in a predictable
manner. An example for a frontal view appears on the left. Haritaoglu et al identify vertices
on the outline of a blob using a form of convexity reasoning (right (b) and right (c)), and
then infer labels for these vertices by measuring the distance to head (at the top), feet (at
the bottom) and median (below right). These distances give possibly ambiguous labels for
each vertex; by applying a set of topological rules obtained using examples of multiple views
like that on the left, they obtain an unambiguous labelling.Figure from “W4: Real-time
surveillance of people and their activities”, Haritaoglu et al., IEEE Trans. Pattern Analysis
and Machine Intelligence, 2000, c© 2000 IEEE.
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1.2.2 Deformable templates

Image appearance or appearance is a flexible term used to refer to
aspects of an image that are being encoded and should be matched.
Appearance models might encode such matters as: Edge position;
edge orientation; the distribution of color at some scale (perhaps as
a histogram, perhaps as histograms for each of some set of spatially
localized buckets); or texture (usually in terms of statistics of filter
outputs.

A deformable template or snake is a parametric model of image
appearance usually used to localize structures. For example, one might
have a template that models the outline of a squash [191, 192] or the
outline of a person [33], place the template on the image in about the
right place, and let a fitting procedure figure out the best position,
orientation and parameters.

We can write this out formally as follows. Assume we have some
form of template that specifies image appearance as a function of some
parameters. We write this template – which gives (say) image bright-
ness (or color, or texture, and so on) as a function of space x and some
parameters θ – as T (x|θ). We score a comparison between the image
at frame n, which we write as I(x, tn), and this template using the a
scoring function ρ

ρ(T (x|θ), I(x, tn)).

A point template is built as a set of active sites within a model
coordinate frame. These sites are to match keypoints identified in the
image. We now build a model of acceptable sets of active sites obtained
as shape, location, etc., changes. Such models can be built with, for
example, the methods of principal component analysis (see, for
example, [185]). We can now identify a match by obtaining image key-
points, building a correspondence between image keypoints and active
sites on the template, and identifying parameters that minimize the
fitting error.

An alternative is a curve template, an idea originating with the
snakes of [191, 192]. We choose a parametric family of image curves –
for example, a closed B-spline – and build a model of acceptable shapes,
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using methods like principal component analysis on the control points.
There is an excellent account of methods in the book of Blake and
Isard [41]. We can now identify a match by summing values of some
image-based potential function over a set of sample points on the curve.
A particularly important case occurs when we want the sample points
to be close to image points where there is a strong feature response –
say an edge point. It can be inconvenient to find every edge point in the
image (a matter of speed) and this class of template allows us to search
for edges only along short sections normal to the curve – an example
of a gate.

Deformable templates have not been widely used as object detec-
tors, because finding a satisfactory minimum – one that lies on the
object of interest, most likely a global minimum – can be hard. The
search is hard to initialize because one must identify the feature points
that should lie within the gate of the template. However, in tracking
problems this difficulty is mitigated if one has a dynamical model of
some form. For example, the object might move slowly, meaning that
the minimum for frame n will be a good start point for frame n + 1.
As another example, the object might move with a large, but near con-
stant, velocity. This means that we can predict a good start point from
frame n + 1 given frame n. A significant part of the difficulty is caused
by image features that don’t lie on the object, meaning that another
useful case occurs in the near absence of clutter – perhaps background
subtraction, or the imaging conditions, ensures that there are few or
no extra features to confuse the fitting process.

Baumberg and Hogg track people with a deformable template built
using a B-spline as above, with principal components used to determine
the template [33]. They use background subtraction to obtain an outline
for the figure, then sample the outline. For this kind of template, cor-
respondence is generally a nuisance, but in some practical applications,
this information can be supplied from quite simple considerations. For
example, Baumberg and Hogg work with background subtracted data
of pedestrians at fairly coarse scales from fixed views [33]. In this case,
sampling the outline at fixed fractions of length, and starting at the
lowest point on the principal axis yields perfectly acceptable correspon-
dence information.
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1.2.2.1 Robustness

We have presented scoring a deformable template as a form of least
squares fitting problem. There is a basic difficulty in such problems.
Points that are dramatically in error, usually called outliers and tra-
ditionally blamed on typist error [153, 330], can be overweighted in
determining the fit. Outliers in vision problems tend to be unavoid-
able, because nature is so generous with visual data that there is usu-
ally something seriously misleading in any signal. There are a variety of
methods for managing difficulties created by outliers that are used in
building deformable template trackers. An estimator is called robust
if the estimate tends to be only weakly affected by outliers. For exam-
ple, the average of a set of observations is not a robust estimate of the
mean of their source (because if one observation is, say, mistyped, the
average could be wildly incorrect). The median is a robust estimate,
because it will not be much affected by the mistyped observation.

Gating – the scheme of finding edge points by searching out some
distance along the normal from a curve – is one strategy to obtain
robustness. In this case, one limits the distance searched. Ideally, there
is only one edge point in the search window, but if there are more one
takes the closest (strongest, mutatis mutandis depending on application
details). If there is nothing, one accepts some fixed score, chosen to
make the cost continuous. This means that the cost function, while
strictly not differentiable, is not dominated by very distant edge points.
These are not seen in the gate, and there is an upper bound on the error
any one site can contribute.

An alternative is to use an m-estimator. One would like to score
the template with a function of squared distance between site and mea-
sured point. This function should be close to the identity for small val-
ues (so that it behaves like the squared distance) and close to some
constant for large values (so that large values don’t contribute large
biases). A natural form is

ρ(u) =
u

u + σ

so that, for d2 small with respect to σ, we have ρ(d2) ≈ d2 and for
d2 large with respect to σ we have ρ(d2) ≈ 1. The advantage of this
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approach is that nearby edge points dominate the fit; the disadvantage
is that even fitting problems that are originally convex are no longer
convex when the strategy is applied. Numerical methods are conse-
quently more complex, and one must use multiple start points. There
is little hope of having a convex problem, because different start points
correspond to different splits of the data set into “important” points
and outliers; there is usually more than one such split. Again, large
errors no longer dominate the estimation process, and the method is
almost universally applied for flow templates.

1.2.2.2 The Hausdorff distance

The Hausdorff distance is a method to measure similarity between
binary images (for example, edge maps; the method originates in
Minkowski’s work in convex analysis, where it takes a somewhat differ-
ent form). Assume we have two sets of points P and Q; typically, each
point is an edge point in an image. We define the Hausdorff distance
between the two sets to be

H(P,Q) = max(h(P,Q),h(Q,P ))

where

h(P,Q) = max
p∈P

min
q∈Q

|| p − q ||.

The distance is small if there is a point in Q close to each point in
P and a point in P close to each point in P . There is a difficulty with
robustness, as the Hausdorff distance is large if there are points with no
good matches. In practice, one uses a variant of the Hausdorff distance
(the generalized Hausdorff distance) where the distance used is the
k-th ranked of the available distances rather than the largest. Define
F th

k to be the operator that orders the elements of its input largest to
smallest, then takes the k’th largest. We now have

Hk(P,Q) = max(hk(P,Q),hk(Q,P ))

where

hk(P,Q) = F th
k (min

q∈Q
|| p − q ||)
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(for example, if there are 2n points in P , then hn(P,Q) will give the
median of the minimum distances). The advantage of all this is that
some large distances get ignored.

Now we can compare a template P with an image Q by determin-
ing some family of transformations T (θ) and then choosing the set of
parameters θ̂ that minimizes

Hk(T (θ) ◦ P,Q).

This will involve some form of search over θ. The search is likely
to be simplified if – as applies in the case of tracking – we have a fair
estimate of θ̂ to hand.

Huttenlocher et al. track using the Hausdorff distance [165]. The
template, which consists of a set of edge points, is itself allowed
to deform. Images are represented by edge points. They identify
the instance of the latest template in the next frame by searching
over translations θ of the template to obtain the smallest value of
Hk(T (θ) ◦ P,Q). They then translate the template to that location,
and identify all edge points that are within some distance of the cur-
rent template’s edge points. The resulting points form the template for
the next frame. This process allows the template to deform to take into
account, say, the deformation of the body as a person moves. Perfor-
mance in heavily textured video must depend on the extent to which
the edge detection process suppresses edges and the setting of this dis-
tance parameter (a large distance and lots of texture is likely to lead
to catastrophe).

1.3 Tracking using flow

The difficulty with tracking by detection is that one might not have a
deformable template that fully specifies the appearance of an object.
It is quite common to have a template that specifies the shape of the
domain spanned by the object and the type of its transformation, but
not what lies within. Typically, we don’t know the pattern, but we do
know how it moves. There are several important examples:

• Human body segments tend to look like a rectangle
in any frame, and the motion of this rectangle is likely
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to be either Euclidean or affine, depending on imaging
circumstances.

• A face in a webcam tends to fill a blob-like domain and
undergo mainly Euclidean transformations. This is useful for
those building user interfaces where the camera on the mon-
itor views the user, and there are numerous papers dealing
with this. The face is not necessarily frontal – computer users
occasionally look away from their monitors – but tends to be
large, blobby and centered.

• Edge templates, particularly those specifying outlines, are
usually used because we don’t know what the interior of the
region looks like. Quite often, as we have seen, we know how
the template can deform and move. However, we cannot score
the interior of the domain because we don’t know (say) the
pattern of clothing being worn.

In each of these cases, we cannot use tracking by detection as above
because we do not posess an appropriate template. As a matter of
experience, objects don’t change appearance much from frame to frame
(alternatively, we should use the term appearance to apply to properties
that don’t change much from frame to frame). All this implies that parts
of the previous image could serve as a template if we have a motion
model and domain model. We could use a correspondence model to link
pixels in the domain in frame n with those in the domain in frame n + 1.
A “good” linking should pair pixels that have similar appearances.
Such considerations as camera properties, the motion of rigid objects,
and computational expense suggest choosing the correspondence model
from a small parametric family.

All this gives a formal framework. Write a pixel position in the n’th
frame as xn, the domain in the n’th frame as Dn, and the transfor-
mation from the n’th frame to the n + 1’th frame as Tn→n+1(·;θn).
In this notation θn represent parameters for the transformation from
the n’th frame to the n + 1’th frame, and we have that xn+1 =
Tn→n+1(xn;θn).

We assume we know Dn. We can obtain Dn+1 from Dn as
Tn→n+1(Dn;θn). Now we can score the parameters θn representing the
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change in state between frames n + 1 and n by comparing Dn with
Dn+1 (which is a function of θn). We compute some representation
of image information R(x), and, within the domain Dn+1 compare
R(xn+1) with R(Tn→n+1(xn;θn)), where the transformation is applied
to the domain Dn.

1.3.1 Optic flow

Generally, a frame-to-frame correspondence should be thought of as
a flow field (or an optic flow field) – a vector field in the image
giving local image motion at each pixel. A flow field is fairly clearly
a correspondence, and a correspondence gives rise to a flow field (put
the tail of the vector at the pixel position in frame n, and the head at
the position in frame n + 1). The notion of optic flow originates with
Gibson (see, for example, [128]).

A useful construction in the optic flow literature assumes that image
intensity is a continuous function of position and time, I(x, t). We then
assume that the intensity of image patches does not change with move-
ment. While this assumption may run into troubles with illumination
models, specularities, etc., it is not outrageous for small movements.
Furthermore, it underlies our willingness to compare pixel values in
frames. Accepting this assumption, we have

dI

dt
= ∇I · dx

dt
+

∂I

∂t
= 0

(known as the optic flow equation, e.g. see [160]). Flow is represented
by dx/dt. This is important, because if we confine our attention to an
appropriate domain, comparing I(T (x;θn), tn+1) with I(x, tn) involves,
in essence, estimating the total derivative. In particular,

I(T (x;θn), tn+1) − I(x, tn) ≈ dI

dt
.

Furthermore, the equivalence between correspondence and flow sug-
gests a simpler form for the transformation of pixel values. We regard
T (x;θn) as taking x from the tail of a flow arrow to the head. At short
timescales, this justifies the view that T (x;θn) = x + δx(θn).
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1.3.2 Image stabilization

This form of tracking can be used to build boxes around moving objects,
a practice known as image stabilization. One has a moving object on
a fairly uniform background, and would like to build a domain such that
the moving object is centered on the domain. This has the advantage
that one can look at relative, rather than absolute, motion cues. For
example, one might take a soccer player running around a field, and
build a box around the player. If one then fixes the box and its contents
in one place, the vast majority of motion cues within the box are cues to
how the player’s body configuration is changing. As another example,
one might stabilize a box around an aerial view of a moving vehicle;
now the box contains all visual information about the vehicle’s identity.

Efros et al. use a straightforward version of this method, where
domains are rectangles and flow is pure translation, to stabilize boxes
around people viewed at a medium scale (for example, in a soccer
video) [100]. In some circumstances, good results can be obtained by
matching a rectangle in frame n with the rectangle in frame n + 1
that has smallest sum-of-squared differences – which might be found
by blank search, assisted perhaps by velocity constraints. This is going
to work best if the background is relatively simple – say, the constant
green of a soccer field – as then the background isn’t a source of noise,
so the figure need not be segmented (Figure 1.3). For more complex
backgrounds, the approach may still work if one performs background
subtraction before stabilization. At a medium scale it is very difficult to
localize arms and legs, but they do leave traces in the flow field. The sta-
bilization procedure means that the flow information can be computed
with respect to a torso coordinate system, resulting in a representation
that can be used to match at a kinematic level, without needing an
explicit representation of arm and leg configurations (Figure 1.3).

1.3.3 Cardboard people

Flow based tracking has the advantage that one doesn’t need an explicit
model of the appearance of the template. Ju et al. build a model of
legs in terms of a set of articulated rectangular patches (“cardboard
people”) [190]. Assume we have a domain D in the n’th image I(x, tn)
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Fig. 1.3 Flow based tracking can be useful for medium scale video. Efros et al. stabilize boxes
around the torso of players in football video using a sum of squared differences (SSD) as
a cost function and straightforward search to identify the best translation values. As the
figure on the left shows, the resulting boxes are stable with respect to the torso. On the
top right, larger versions of the boxes for some cases. Note that, because the video is at
medium scale, it is difficult to resolve arms and legs, which are severely affected by motion
blur. Nonetheless, one can make a useful estimate of what the body is doing by computing
an estimate of optic flow (bottom right, Fx, Fy), rectifying this estimate (bottom right,
F+

x , F −
x , F+

y , F −
y ) and then smoothing the result (bottom right, Fb+x , etc.). The result

is a smoothed estimate of where particular velocity directions are distributed with respect to
the torso, which can be used to match and label frames. Figure from “Recognizing Action
at a Distance”, Efros et al., IEEE Int. Conf. Computer Vision 2003, c© 2003 IEEE.

and a flow field δx(θ) parametrized by θ. Now this flow field takes D to
some domain in the n + 1’th image, and establishes a correspondence
between pixels in the n’th and the n + 1’th image. Ju et al. score∑

D

ρ(In+1(x + δx(θ)) − In(x))

where ρ is some measure of image error, which is small when the two
compare well and large when they are different. Notice that this is a
very general approach to the tracking problem, with the difficulty that,
unless one is careful about the flow model the problem of finding a
minimum might be hard. To our knowledge, the image score is always
applied to pixel values, and it seems interesting to wonder what would
happen if one scored a difference in texture descriptors.

Typically, the score is not minimized directly, but is approximated
with the optic flow equation and with a Taylor series. We have∑

D

ρ(I(x + δx(θ), tn+1) − In(x, tn))
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Fig. 1.4 On the left, a 2D flow based model of a leg, called a “cardboard people” model
by Ju et al [190]; there is a lower leg, an upper leg and a torso. Each domain is roughly
rectangular, and the domains are coupled with an energy term to ensure they do not drift
apart. The model is tracked by finding the set of deformation parameters that carve out a
domain in the n + 1’th frame that is most like the known domain in the n’th frame. On the
right, two frames from a track, with the left column showing the original frame and the
right column showing the track. Notice how the pattern of buckling folds on the trouser leg
changes as the leg bends; this leads to quite significant changes in the texture and shading
signal in the domain. These changes can be a significant nuisance. Figure from “Cardboard
People: A Parameterized Model of Articulated Image Motion”, Ju et al., IEEE Int. Conf.
Face and Gesture, 1996, c© 1996 IEEE.

is approximately equal to∑
D

ρ(
dI

dt
) =

∑
D

ρ(
∂I

∂x
δx(θn) +

∂I

∂y
δy(θn) +

∂I

∂t
)

(this works because ∆t = 1). Now assume that a patch has been marked
out in a frame; then one can determine its configuration in the next
by minimizing this error summed over the domain. The error itself
is easily evaluated using smoothed derivative estimates. As we show
below, we can further simplify error evaluation by building a flow model
with convenient form. To track an articulated figure, Ju et al. attach a
further term that encourages relevant vertices of each separate patch to
stay close. Similarly, Black et al construct parametric families of flow
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fields and use them to track lips and legs, in the latter case yielding a
satisfactory estimate of walk parameters [40]. In both cases, the flow
model is view dependent. Yacoob and Davis build a view independent
parametric flow field models to track views of walking humans [420].
As one would expect, this technique can be combined with others;
for example, the W4S system of Haritaoglu et al. uses a “cardboard
people” model to track torso configurations within the regions described
above [147].

1.3.4 Building flow templates

We have seen how to construct tracks given parametric models of flow.
But how is one to obtain good models? One strategy is to take a pool
of examples of the types of flow one would like to track, and try to find
a set of basis flows that explains most of the variation (for examples,
see [190]). In this case, and writing θi for the i’th component of the
parameter vector and Fi for the i’th flow basis vector field, one has

δx =
∑

i

θiFi.

Now write ∇I for the image gradient and exploit the optic flow
equation and a Taylor series as above. We get

ρ

(∑
i

θi((∇I)TFi) +
∂I

∂t

)
.

As Ju et al. observe, this can be done with a singular value decom-
position (and is equivalent to principal components analysis). A second
strategy is to assume that flows involve what are essentially 2D effects –
this is particularly appropriate for lateral views of human limbs – so
that a set of basis flows that encodes translation, rotation and some
affine effects is probably sufficient. One can obtain such flows by writing

δx =
(

u(x)
v(x)

)
=
(

a0 + a1x + a2y + a6x
2 + a7xy

a3 + a4x + a5y + a6xy + a7y
2

)
.

This model is linear in the parameters (the ai), which is convenient;
it provides a reasonable encoding of flows resulting from 3D motions
of a 2D rectangle (see Figure 1.5). One may also learn linearized flow
models from example data [420].
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Fig. 1.5 Typical flows generated by the model (u(x),v(x)T = (a0 + a1x + a2y + a6x2 +
a7xy,a3 + a4x + a5y + a6xy + a7y2)). Different values of the ai give different flows,
and the model can generate flows typical of a 2D figure moving in 3D. We write a =
(a0,a1,a2,a3,a4,a5,a6,a7). Divergence occurs when the image is scaled; for example,
a = (0,1,0,0,0,1,0,0). Deformation occurs when one direction shrinks and another grows
(for example, rotation about an axis parallel to the view plane in an orthographic camera);
for example, a = (0,1,0,0,0,−1,0,0). Curl can result from in plane rotation; for example,
a = (0,0,−1,0,1,0,0,0). Yaw models rotation about a vertical axis in a perspective camera;
for example a = (0,0,0,0,0,1,0). Finally, pitch models rotation about a horizontal axis in
a perspective camera; for example a = (0,0,0,0,0,0,1). Figure from “Cardboard People: A
Parameterized Model of Articulated Image Motion”, Ju et al., IEEE Int. Conf. Face and
Gesture, 1996, c© 1996 IEEE.

1.3.5 Flow models from kinematic models

An alternative method to build such templates is to work in 3D, and
exploit the chain rule, as in the work of Bregler and Malik [49, 48].
We start with a segment in 3D, which is in some configuration and
viewed with some camera. Each point on the segment produces some
image value. We could think of the image values as a function –
the appearance map – defined on the segment. This allows us to
see viewing the segment as building a mapping from the points on
the segment to the image domain. The image values are obtained by
taking each point in the image, finding the corresponding point (if
any) on the segment, and then evaluating the appearance map at this
point.
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Fig. 1.6 Bregler and Malik formulate parametric flow models by modelling a person as
a kinematic chain and then differentiating the maps from segment to image [49]. They
then track by searching for the parameter update that best aligns the current image pixels
with those of the previous frame under this flow model. There is no dynamical model.
This means that complex legacy footage, like these frames from the photographs of Eduard
Muybridge [270, 269], can be tracked. Muybridge’s frames are difficult to track because
the frame-frame timing is not exact, and the figures can move in quite complex ways (see
Figure 3.6). Figure from “Tracking People with Twists and Exponential Maps”, Bregler
and Malik, Proc. Computer Vision and Pattern Recognition, 1998, c© 1998 IEEE.

All this leads to an important formal model, again under the
assumption that motions in 3D do not affect the appearance map in any
significant way. We have a parametrized family of maps from points on
the body to the image. A flow field in the image is a vector field induced
by a change in the choice of parameters (caused by either a change in
joint configuration or a camera movement). We will always assume that
the change in parameters from frame to frame is small. At this point,
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we must introduce some notation. Write the map that takes points
on the segment to points in the n’th image as Ts→I(·;θn), where θn

are parameters representing camera configuration, intrinsics, etc. The
point p on the segment appears in image n at xn = Ts→I(p;θn) and in
image n + 1 at xn+1 = Ts→I(p;θn+1). The tail of the flow arrow is at
xn and the head is at xn+1. The change in parameters, ∆θ = θn+1 − θn

is small. Then the flow is

xn+1 − xn = Ts→I(p;θn+1) − Ts→I(p;θn) ≈ ∇θTs→I · ∆θ

where the gradient, ∇θTs→I , is evaluated at (p,θn).

1.3.5.1 Tracking a derivative flow model

The main point here is that the flow at xn can be obtained by fix-
ing the relevant point p on the object, then considering the map taking
the parameters to the image plane – the derivative of Ts→I(p; ·). This
is important, because the flow ∇θTs→I · ∆θ is a linear function of ∆θ.
We now have the outline of a tracking algorithm:

• Start at frame n = 0 and some known configuration θ0 = θ̂.
• Fit: Fit the best value of ∆θ to the flow between the frame n

and frame n + 1 using the flow model given by the derivative
evaluated at θn.

• Update: Update the parameters by θn+1 = θn + ∆θ and set
n to n + 1.

This should be seen as a primitive integrator, using Euler’s method
and inheriting all the problems that come with it. This view confirms
the reasonable suspicion that fast movements are unlikely to be tracked
well unless that sampling rate is high.

1.3.5.2 The flow model from the chain rule

In the special case of segments lying on a kinematic tree – a series of
links attached by joints of known parametric form, where there are no
loops – the chain rule means that the derivative takes a special form.
Each segment in a kinematic tree has its own coordinate system, and
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the joint is represented by a map from a link’s world coordinate system
to that of its parent. The parent of segment k is segment k − 1. They are
connected by a joint whose parameters at frame n are θk,n. In general, in
a kinematic tree, points on segments are affected by parameters at joints
above them in the tree. Furthermore, we can obtain a transformation
to the image by recursively concatenating transformations. Write the
camera as Tw→i. Then the transformation taking a point of link k in
frame n to the image can be written as

Tk→i = Tw→i ◦ Tk−1→w ◦ Tk→k−1.

Notice that the only transformation that depends on θk,n here is
Tk→k−1.

There is an advantage to changing notation at this point. Write
Tk→k−1 as Tk. The root of the tree is at segment one, and we can write
T1→w as T1 and Tw→i as T0. We continue to divide up the parameters
θ into components, θk,n being the components associated with segment
k in the n’th frame (θ0,n are viewing parameters in frame n). We can
now see the map from point p on segment k to the image as

Tk→i(p;θ) = T0(T1(T2(. . . ;θ2);θ1);θ0).

This is somewhat inconvenient to write out, and it is helpful to keep
track of intermediate values. Introduce the notation

pl = Tk→l(p;θ)

for the point p in the coordinate system of the l’th link.
Our transformations have two types of argument: the points in

space, and the camera parameters. It is useful to distinguish between
two types of derivative. Write the partial derivative of a transformation
T with respect to its spatial arguments as DT . In coordinates, T would
take the form (f1(x1,x2,x3,θ),f2(x1,x2,x3,θ),f3(x1,x2,x3,θ)), and this
derivative would be the matrix whose i, j’th element is ∂fi/∂xj . Sim-
ilarly, write the partial derivative of a transformation T with respect
to parameters θ as Dθ. If we regard θ as a vector of parameters whose
j’th entry is θj , then in coordinates this derivative would be the matrix
whose i, j’th element is ∂fi/∂θj .
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This orgy of notation leads to a simple form for the flow. Write the
flow at point x – which is the image of point p on segment k – in frame
n as v(x,θn). Then

v(x,θn) = DθT0(p0;θ0) · ∆θ0 + DxT0 ◦ DθT1(p1;θ1)∆θ1

. . . + DxT0 ◦ DxT1 ◦ . . .DxTk−1 ◦ DθTk(p;θk)∆θk.

Our indexing scheme hasn’t taken into account the fact that we’re
dealing with a tree, but this doesn’t matter; we need care only about
links on the path from the relevant segment to the root. Furthermore,
there is a relatively efficient algorithm for computing this derivative. We
pass from the leaves to the root computing intermediate configurations
pl for each point p and the relevant parameter derivatives. We then
pass from the root to the leaves concatenating spatial derivatives and
summing.

1.3.5.3 Rigid-body transformations

All the above takes a convenient and simple form for rigid-body trans-
formations (which are likely to be the main interest in human tracking).
We use homogeneous coordinates to represent points in 3D, and so a
rigid body transformation takes the form

T (p,θ) =
[

R t
0 1

]
p

where R is an orthonormal matrix with determinant one (a rotation
matrix). The parameters are the parameters of the rotation matrix and
the coefficients of the vector t. This means the spatial derivative is the
same as the transformation, which is convenient.

The derivatives with respect to the parameters are also relatively
easily dealt with. Recall the definition of the matrix exponential as
an infinite sum,

exp(M) = I + M +
1
2
M2 + M3 + . . . +

1
n

Mn . . .

where the sum exists. Now it is straightforward to demonstrate that if

M =
[

A t
0 0

]



104 Tracking: Fundamental Notions

and if A is antisymmetric, then exp(M) is a rigid-body transformation.
The elements of the antisymmetric matrix parametrize the rotation,
and the rightmost column is the translation. This is useful, because

∂ (expM(θ))
∂θ

=
(

∂M(θ)
∂θ

)
expM(θ)

which gives straightforward forms for the parameter derivatives.

1.4 Tracking with probability

It is convenient to see tracking as a probabilistic inference problem. In
particular, we have a sequence of states X0,X1, . . . ,XN produced by
some dynamical process. These states are unknown – they are some-
times called hidden states for this reason – but there are measure-
ments Y0,Y1, . . . ,YN . Two problems follow naturally:

• Tracking, where we wish to determine some representation
of P (Xk|Y0, . . . ,Yk);

• Filtering, where we wish to determine some representation
of P (Xk|Y0, . . . ,YN ) (i.e. we get to use ”future” measurements
to infer the state).

These problems are massively simplified by two important assumptions.

• We assume measurements depend only the hidden state, that
is, that P (Yk|X0, . . . ,XN ,Y0, . . . ,YN ) = P (Yk|Xk).

• We assume that the probability density for a new
state is a function only of the previous state; that is,
P (Xk|X0, . . . ,Xk−1) = P (Xk|Xk−1), or, equivalently, that Xi

form a Markov chain.

Now tracking involves three steps:
Prediction: where we construct some prediction of the future state

given past measurements, or equivalently, construct a representation of
P (Xk|Y0, . . . ,Yk−1). Straightforward manipulation of probability com-
bined with the assumptions above yields that the prior or predictive
density is

P (Xk|Y0, . . . ,Yk−1) =
∫

P (Xk|Xk−1)P (Xk−1|Y0, . . . ,Yk−1)dXk−1.
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Data association: where we use the predictive density – which is
sometimes called the prior – and anything else likely to be helpful,
to determine which of a pool of measurements contribute to the value
of Yk.

Correction: where we incorporate the new measurement into
what is known, or, equivalently, construct a representation of
P (Xk|Y0, . . . ,Yk). Straightforward manipulation of probability com-
bined with the assumptions above yields that the posterior is

P (Xk|Y0, . . . ,Yk) =
P (Yk|Xk)P (Xk|Y0, . . . ,Yk−1)∫

P (Yk|Xk)P (Xk|Y0, . . . ,Yk−1)dXk
.

1.4.1 Linear dynamics and the Kalman filter

All this is much simplified in the case that the emission model is linear,
the dynamic model is linear, and all noise is Gaussian. In this case,
all densities are normal and the mean and covariance are sufficient to
represent them. Both tracking and filtering boil down to maintenance
of these parameters. There is a simple set of update rules (given in
Algorithm 2; notation below), the Kalman filter.

Notation: We write X ∼ N(µ;Σ) to mean that X is a normal ran-
dom variable with mean µ and covariance Σ. Both dynamics and emis-
sion are linear, so we can write

Xk ∼ N(AkXk−1;Σ
(d)
k )

and

Yk ∼ N(BkXk;Σ
(m)
k ).

We will represent the mean of P (Xi|y0, . . . ,yi−1) as X
−
i and the

mean of P (Xi|y0, . . . ,yi) as X
+
i – the superscripts suggest that they

represent our belief about Xi immediately before and immediately after
the i’th measurement arrives. Similarly, we will represent the standard
deviation of P (Xi|y0, . . . ,yi−1) as Σ−

i and of P (Xi|y0, . . . ,yi) as Σ+
i . In

each case, we will assume that we know P (Xi−1|y0, . . . ,yi−1), meaning
that we know X

+
i−1 and Σ+

i−1.
Filtering is straightforward. We obtain a backward estimate

by running the filter backward in time, and treat this as another
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Dynamic Model:

xi ∼ N(Dixi−1,Σdi
)

yi ∼ N(Mixi,Σmi)

Start Assumptions: x−
0 and Σ−

0 are known
Update Equations: Prediction

x−
i = Dix+

i−1

Σ−
i = Σdi

+ Diσ
+
i−1Di

Update Equations: Correction

Ki = Σ−
i MT

i

[
MiΣ−

i MT
i + Σmi

]−1

x+
i = x−

i + Ki

[
yi − Mix−

i

]
Σ+

i = [Id − KiMi]Σ−
i

Algorithm 2: The Kalman filter updates estimates of the mean and
covariance of the various distributions encountered while tracking a
state variable of some fixed dimension using the given dynamic model.

measurement. Extensive detail on the Kalman filter and derived
methods appears in [32, 127].

1.4.2 Data association

Data association involves determining which pixels or image measure-
ments should contribute to a track. That data association is a nuisance
is a persistent theme of this work. Data association is genuinely difficult
to handle satisfactorily – after all, determining which pixels contribute
to which decision seems to be a core – and often very difficult – com-
puter vision problem. The problem is usually particularly difficult when
one wishes to track people, for several reasons. First, standard data
association techniques aren’t really all that much help, as for almost
every aspect the image domain covered by a person changes shape
very aggressively, and can do so very fast. Second, there seem to be a
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lot of background objects that look like some human body parts; for
example, kinematic tracking of humans in office scenes is very often
complicated by the fact that many book spines (or book shelves) can
look like forearms.

In tracking by detection, almost all computation is directed at data
association, which is achieved by minimizing ρ with respect to the tem-
plate’s parameters – the support of ρ identifies the relevant pixels. Sim-
ilarly, in tracking using flow, data association is achieved by choosing
the parameters of a flow model to get a good match between domains in
frames n and n + 1 – the definition of the domain cuts out the relevant
pixels. When these methods run awry, it is because the underlying data
association methods have failed. Either one cannot find the template,
or one cannot get good parameters for the flow model.

There are a variety of simple data association strategies which
exploit the presence of probability models. In particular, we have an
estimate of P (Xn|Y0, . . . ,Yn−1) and we know P (Yn|Xn). From this we
can obtain an estimate of P (Yn|Y0, . . .Yn−1), which gives us hints as to
where the measurement might be.

One can use a gate – we look only at measurements that lie in a
domain where P (Yn|Y0, . . . ,Yn−1) is big enough. This is a method with
roots in radar tracking of missiles and aeroplanes, where one must deal
with only a small number (compared with the number of pixels in
an image!) of returns, but the idea has been useful in visual tracking
applications.

One can use nearest neighbours. In the classical version, we have
a small set of possible measurements, and we choose the measurement
with the largest value of P (Yn|Y0, . . . ,Yn−1). This has all the dangers of
wishful thinking – we are deciding that a measurement is valid because
it is consistent with our track – but is often useful in practice. This
strategy doesn’t apply to most cases of tracking people in video because
the search to find the maximising Yn – which would likely be an image
region – could be too difficult (but see Section 3). However, it could be
applied when one is tracking markers attached to the body – in this
case, we need to know which marker is which, and this information
could be obtained by allocating a measurement to the marker whose
predicted position is closest.
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One can use probabilistic data association, where we use a
weighted combination of measurements within a gate, weighted using
(a) the predicted measurement and (b) the probability a measurement
has dropped out. Again, this method has the dangers of wishful think-
ing, and again does not apply to most cases of tracking people; how-
ever, it could again be applied when one is tracking markers attached
to the body.

1.4.3 Multiple modes

The Kalman filter is the workhorse of estimation, and can give useful
results under many conditions. One doesn’t need a guarantee of lin-
earity to use a Kalman filter – if the logic of the application indicates
that a linear model is reasonable, there is a good chance a Kalman
filter will work. Rohr used a Kalman filter to track a walking person
successfully, evaluating the measurement by matches to line segments
on the outline [322, 323].

More recently, the method tends not to be used because of concerns
about multiple modes. The representation adopted by a Kalman filter
(the mean and covariance, sufficient statistics for a Gaussian distri-
bution) tends to represent multimodal distributions poorly. There are
several reasons one might encounter multiple modes.

First, nonlinear dynamics – or nonlinear measurement processes,
or both – can create serious problems. The basic difficulty is that
even quite innocuous looking setups can produce densities that are
not normal, and are very difficult to represent and model. For exam-
ple, let us look at only the hidden state. Assume that this is one
dimensional. Now assume that state updates are deterministic, with
Xi+1 = Xi + εsin(Xi). If ε is sufficiently small, we have that for 0 <

Xi < π, Xi < Xi+1 < π; for −π < Xi < 0, −π < Xi+1 < Xi; and so on.
Now assume that P (X0) is normal. For sufficiently large k, P (Xk)
will not be; there will be “clumps” of probability centered around the
points (2j + 1)π for j an integer. These clumps will be very difficult to
represent, particularly if P (X0) has very large variance so that many
clumps are important. Notice that what is creating a problem here is
that quite small non-linearities in dynamics can cause probability to be
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concentrated in ways that are very difficult to represent. In particular,
nonlinear dynamics are likely to produce densities with complicated suf-
ficient statistics. There are cases where nonlinear dynamics does lead
to densities that can be guaranteed to have finite-dimensional suffi-
cient statistics (see [35, 83, 84]); to our knowledge, these have not been
applied to human tracking.

Second, there are practical phenomena in human tracking that tend
to suggest that non-normal distributions are a significant part of the
problem. Assume we wish to track a 3D model of an arm in a sin-
gle image. The elbow is bent; as it straightens, it will eventually run
into an end-stop – the forearm can’t rotate further without damage.
At the end-stop, the posterior on state can’t be a normal distribu-
tion, because a normal distribution would have some support on the
wrong side of the end-stop, and this has a significant effect on the
shape of the posterior (see Figure 2.5). Another case that is likely,
but not guaranteed, to cause trouble is a kinematic singularity.
For example, if the elbow is bent, we will be able to observe rota-
tion about the humerus, but current observation models will make this
unobservable if the elbow is straight (because the outline of the arm
will not change; no current method can use the changes in appear-
ance of the hand that will result). The dimension of the state space
has collapsed. The posterior might be a normal distribution in this
reduced dimension space, but that would require explicitly represent-
ing the collapse. The alternative, a covariance matrix of reduced rank,
creates unattractive problems of representation. Deutscher et al. pro-
duce evidence that, in both cases, posteriors are not, in fact, normal
distributions, and show that an extended Kalman filter can lose track
in these cases [90].

Third, kinematic ambiguity in the relations between 3D and 2D are
a major source of multiple modes. Assume we are tracking a human
figure using a 3D representation of the body in a single view. If, for
example, many 3D configurations correspond exactly to a single 2D
configuration, then we expect the posterior to have multiple modes.
Section 2 discusses this issue in extensive detail.

Fourth, the richest source of multiple modes is data associa-
tion problems. An easy example illustrates how nasty this problem
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can be. Assume we have a problem with linear dynamics and a
linear measurement model. However, at each tick of the clock we
receive more than one measurement, exactly one of which comes
from the process being studied. We will continue to write the states
as Xi, the measurements as Yi; but we now have δi, an indica-
tor variable that tells which measurement comes from the process
(and is unknown). P (XN |Y1..N , δ1..N ) is clearly Gaussian. We want
P (XN |Y1..N ) =

∑
histories P (XN |Y1..N , δ1..N )P (δ1..N |Y1..N ), which is

clearly a mixture of Gaussians. The number of components is expo-
nential in the number of frames – there is one component per history –
meaning that P (XN |Y1..N ) could have a very large number of modes.

The following two sections discuss main potential sources of multi-
modal behaviour in great detail. Section 2 discusses the relations
between 2D and 3D models of the body, which are generally agreed
to be a source of multiple modes. Section 3 discusses data association
methods. In this section, there is a brief discussion of the particle fil-
ter, a current favorite method for dealing with multi-modal densities.
There are other methods: Benes̆ describes a class of nonlinear dynam-
ical model for which the posterior can be represented with a sufficient
statistic of constant finite dimension [35]. Daum extends the class of
models for which this is the case ([83, 84]; see also [338] for an appli-
cation and [106] for a comparison with the particle filter). Extensive
accounts of particle filters appear in [93, 231, 319].
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Tracking: Relations between 3D and 2D

Many applications require a representation of the body in three dimen-
sions. Such a track could come from tracking with a 3D representation –
perhaps a set of body segments in 3D, modelled as surfaces, triangle
meshes or sample points – or by building a kinematic track in two
dimensions, then “lifting” it to produce a 3D track. If there is only one
camera, relations between the 2D figure and the 3D track are compli-
cated, and may be ambiguous. Ambiguities appear to be less significant
in the case where there are multiple cameras; we review this case only
briefly (Section 2.1).

The heart of the question is the number of possible 3D configura-
tions that could explain a single image. There is no doubt that there
are many if there is no motion information and if only geometric cor-
respondence information is used. In other cases, whether there is any
ambiguity is uncertain, and appears to depend quite precisely on the
circumstances of measurement. When reconstruction is ambiguous, one
expects to encounter multimodal distributions in a tracking problem
built around 3D representations, because several distinct inferred 3D
configurations could have the same likelihood.

111
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We discuss methods for reconstructing body configuration in 3D
from a single view (and perhaps a dynamical history) in considerable
detail in Section 2.2. This provides background information to under-
stand tracking methods that work on 3D body models (Section 2.3).

2.1 Kinematic inference with multiple views

If one has multiple views of the body, the problem of reconstruction
is considerably simplified. Ideally, the cameras are calibrated, in which
case the main difficulty is localizing body parts. At least conceptu-
ally, one could lift from one frame using some method chosen from
Section 2.2, then search all ambiguities, evaluating by backproject-
ing into the other view. It is more sensible to search configurations
with a cost function incorporating all views; this requires the cam-
eras be calibrated. There are generally two questions: the score used
to evaluate a particular reconstruction, and how to search for the best
reconstruction.

Scores can be computed by explicitly reconstructing a three-
dimensional structure from the views, then comparing the body
representation to that structure. Cheung et al. use a volumetric
reconstruction of the person – a quantized approximatation to the
visual hull – obtained using five views, and then encode kinematic
configuration by fitting a set of ellipsoids to the 3D reconstruction
with EM [65]; the process is realtime. Kehl et al. use an approximate
visual hull, estimated by intersecting cones over foreground regions
from between 4 and 8 calibrated cameras [193] (Figure 2.1). The recon-
struction is produced assuming a simple background, so that the cones
can be obtained. The body model is a textured 3D mesh, controlled by
a skeleton (Section 4.1); texture maps are obtained from a modelling
view. Tracking is by minimizing distance between the volumetric recon-
struction and sample points on the mesh (which are a function of the
skeleton’s kinematic parameters). The minimization procedure itself is
a sophisticated variant of stochastic gradient descent.

It is not necessary to construct the visual hull explicitly. There are
numerous methods that use the visual hull implicitly, by comparing
the reconstructed 3D model with the silhouette in each view. Carranza
et al. use an implicit representation, comparing the silhouette of the
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Fig. 2.1 Kehl et al. represent the body as a textured 3D mesh, controlled by a skeleton with a
texture map obtained from a modelling view. They obtain a volumetric reconstruction from
a set of calibrated cameras, then track the body by minimizing distance between sampling
points on the mesh and the volumetric reconstruction. The top row shows frames from
one camera with reprojected skeleton superimposed; the bottom row shows the surface
reconstruction at the left of each frame and the original volumetric reconstruction at the
right. The reconstruction is accurate, despite some difficulties in the volumetric measure-
ment. Figure from “Full Body Tracking from Multiple Views Using Stochastic Sampling”,
Kehl et al., Proc. Computer Vision and Pattern Recognition, 2005, c© 2005 IEEE.

3D reconstruction with silhouettes in each view using graphics hard-
ware [58]. This yields a cost function that can be evaluated very fast,
allowing real-time tracking.

Stereo matches can give greater depth precision than the visual
hull can provide. Plänkers and Fua estimate parameters for a model
of the body consisting of a skeleton, metaball muscle model, and skin
using stereo and, optionally, silhouette information [298]; the method
appears to work with a complex background. Delamarre and Faugeras
use a form of iterated closest point matching to produce forces that
drive a 3D segment model into correspondence with the silhouette in
three calibrated views [85, 86]. Drummond and Cipolla model the body
with quadric segments, and track by applying a linearized flow model
(as per Section 1.3.5; [48, 49]) to a search for edge points close to
projected sample points on the model [95] (see also [94] for more infor-
mation on the formalism, and [96, 97] for information about tracking
changes in camera parameters). Shahrokni et al. use a similar gen-
eral approach, but employ a novel texture segmentation model to find
silhouette points [345]. They search along a scan line near and approx-
imately normal to the predicted silhouette to find points where there
is a high posterior of a texture edge (see also an alternative method
for finding texture silhouettes using a classifier in [346]; and using an
entropy measure in [344]).
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Texture information can be registered to the body model. Starck
and Hilton obtain the best configuration of a 17 joint, meshed 3D
model of the human body to fit stereo, silhouette and feature matches
for each frame; texture is then reprojected onto the body (in [372]; see
also [149, 371]). The texture is then backprojected onto the reconstruc-
tion and composited to give a single texture map. In recent work, Starck
and Hilton show that correspondences between texture maps induced in
separate frames yield temporal correspondences and so information on
how relevant surfaces deform [373]. Models of this form allow relatively
straightforward synthesis of new views [374]. These methods are ori-
ented to performance capture, and appear to have been demonstrated
for simple backgrounds only.

In principle, texture information registered to the body should yield
a match score and improve matches, if the texture does not move with
respect to the skeleton. We are not aware of methods that use this cue,
though it may prove useful if one wants a detailed surface reconstruc-
tion of a model wearing tight garments. However, one can use a flow
model to register texture from frame to frame. Yamamoto et al. use a
linear flow model derived from the kinematic model (cf Section 1.3.5)
with three cameras to obtain good tracks from hand-initialized data;
they use three calibrated cameras [421]. The paper describes no difficul-
ties resulting from movement of texture with respect to the body, but
we expect that this effect significantly limits the precision of available
reconstructions (see also Figure 1.4, and the discussion in Section 1.1).
Theobalt et al. describe improved configurations obtained from the
method of Carranza et al. [58] by incorporating an optic flow model to
correct the estimates of configuration [390]. Subjects are not wearing
very tight clothing, and there again seem to be no difficulties resulting
from movement of texture with respect to the body.

Generally, search methods involve either standard optimization
techniques or fairly standard variants. However, Deutscher et al. use a
form of randomized search, described in greater detail in Section 2.3.1,
to align a 3D model with silhouette edges [88, 91]. Sigal et al. use a
form of belief propagation, described in greater detail in Section 2.3.1.1,
to infer configuration in three or four views; the method uses detectors
to guide a form of search [354]. Carranza et al. use a surface model,
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controlled by a 17 joint skeleton [58]. The search for a reconstruction
at a time instant uses the reconstruction at the previous instant as a
start point; however, because motion can be fast, and the sampling
rate is relatively slow (15 Hz, p 571), a form of grid search at each
limb separately is necessary to avoid local minima. A texture esti-
mate is obtained by rectifying all images to the surface model, and
blending.

The most comprehensive and recent discussion of 3D reconstruc-
tion from multiple views appears in two papers. Cheung et al. give an
extensive discussion of representations of the visual hull and methods
of obtaining them; the methods they describe can incorporate tempo-
ral information, color information, stereopsis and silhouette informa-
tion [63]. Cheung et al. then use these methods to build a body model
from a series of calibration sequences, which give both surface and skele-
ton information [64]. This model is then tracked by minimizing the sum
of two scores. The first compares the deformed body model with the
silhouettes in each image at a given timestep. The second compares
an object reconstruction obtained at a given timestep with the silhou-
ettes in each modelling frame. As authors note, there are 3D situations
that are either kinematically ambiguous or at least very difficult for a
tracking algorithm of this form. The first occurs when body parts are
close together (for example, an arm pressed against the torso) and may
lead to a self-intersecting reconstruction. This difficulty appears to be
intrinsic to the use of silhouette features. The second occurs when the
arm is straight, making rotation about the axis of the humerus ambigu-
ous. The difficulty is that the photometric detail is too weak to force
the method to the right configuration of the hand. Curiously, although
Mori and Malik have shown that one can obtain landmark positions
automatically [263], there appears to be no multiple view reconstruc-
tion work that identifies landmarks in several views (with, for example,
the method of Mori and Malik, Section 2.2.1) and builds a geometric
reconstruction this way.

Reducing configuration ambiguity is one reason to use multiple
cameras; another is to keep track of individuals who move out of view
of a particular camera. Currently, this is done at a coarse scale, where
people are blobs (e.g. [55, 197, 257]).
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2.2 Lifting to 3D

There are a variety of methods for lifting a 2D representation of the
body to 3D. Different methods draw from different bodies of tech-
nique (kinematics, statistics, computational geometry, optimization,
etc.), but the geometry of lifting gives clear bounds to what ambigu-
ities may appear (Subsection 2.2.1). The extent of ambiguity appears
to depend on whether the ambiguous reconstructions violate kinematic
constraints, and whether a dynamical history is available. The remark-
able fact is that reconstruction ambiguity seems to be either quite eas-
ily evaded or not to manifest itself at all. Thus, while many papers
advocate methods to manage ambiguity, almost any method appears
to work – one doesn’t see many records of systems failing due to ambi-
guity. This may be because experiments are poorly conducted; but it
is more likely that the implicit folk mythology – that ambiguous recon-
structions are quite easily avoided – is true. We discuss this point in
Section 5.1.1.

2.2.1 Geometric ambiguity and lifting by
kinematic inference

The way that people are imaged means that there are very few cases
where a scaled orthographic camera model is not appropriate. One such
case to keep in mind is a person pointing towards the camera; if the
hand is quite close, compared with the length of the arm, one may see
distinct perspective effects over the hand and arm and in extreme cases
the hand can occlude much of the body.

Regard each body segment as a cylinder, for the moment of known
length. If we know the camera scale, and can mark each end of the
body segment – we might do this by hand, as Taylor [387, 388] does
and Barrón and Kakadiaris [29, 30] do, or by a strategy of matching
image patches to marked up images as Mori and Malik do [263, 264] –
then we know the cosine of the angle between the image plane and the
axis of the segment, which means we have the segment in 3D up to a
twofold ambiguity and translation in depth (Figure 2.2 gives examples).
We can reconstruct each separate segment and obtain an ambiguity of
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Fig. 2.2 Two 3D reconstructions obtained by Taylor [387], for single orthographic views of
human figures. The image appears left, with joint vertices on the body identified by hand
(the user also identifies which vertex on each segment is closer to the camera). Center
shows a rendered reconstruction in the viewing camera, and right shows a rendering from
a different view direction. Figure from “Reconstruction of articulated objects from point
correspondences in a single uncalibrated image”, Taylor, Proc. Computer Vision and Pattern
Recognition, 2000, c© 2000 IEEE.

translation in depth (which is important and often forgotten) and a
two-fold ambiguity at each segment.

For the moment, assume we know all segment lengths and the
camera scale. We can now reconstruct the body by obtaining a recon-
struction for each segment, and joining them up. Each segment has a
single missing degree of freedom (depth), but the segments must join
up, meaning that we have a discrete set of ambiguities. Depending on
circumstances, one might work with from nine to eleven body segments
(the head is often omitted; the torso can reasonably be modelled with
several segments), yielding from 512 to 2048 possible reconstructions.
These ambiguities persist for perspective images; examples appear in
Figure 2.4.

Barrón and Kakadiaris show that anthropometric parameters can be
estimated as well [29, 30]. They do this by constructing a multivariate
Gaussian prior on segment lengths, which do not vary much in size
(a factor of 1.5 covers the range of human heights from four foot six to
six foot nine, which deals with the vast majority of adults). Ratios of
body segment lengths vary even less (e.g. see [13, 29, 30]). Barrón and
Kakadiaris assume that, in any view, two segments are close to parallel
to the image plane, meaning that the ratio of their image lengths is very
close to the actual length ratio. They construct a discrete set of possible
bodies, and use image length ratios to index into this set to obtain
a start point for an optimization procedure that obtains the actual
anthropometric parameters by choosing the set that agrees with the
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image, meets joint limit constraints, and has highest prior probability
(this could be seen as an MAP estimate).

The discrete ambiguities can be dealt with in a number of ways.
One could ask the user to identify the closer endpoint of each seg-
ment (Taylor [387], p. 681). One could simply choose, as Barrón and
Kakadiaris appear to do. In detail, their method uses each kinemati-
cally acceptable 3D reconstruction as a start point for the minimization
procedure described above, and chooses the reconstruction with best
value of the objective function. Since this procedure enforces kinematic
constraints but does not apply distinct weights to distinct kinematic
reconstructions, the unconstrained objective function must have a sym-
metry corresponding to the reconstruction ambiguity, and so the choice
depends largely on random factors within the optimization procedure.
It is important to notice that this doesn’t seem to cause any problems,
which suggests that substantial kinematic ambiguities might be rather
rare. We will pick up on this point in Section 5.

Mori and Malik deal with discrete ambiguities by matching [263,
264]. They have a set of example images with joint positions marked.
The outline of the body in each example is sampled, and each sample
point is encoded with a shape context (an encoding that represents
local image structure at high resolution and longer scale image structure
at a lower resolution). Keypoints are marked in the examples by hand,
and this marking includes a representation of which end of the body
segment is closer to the camera. The outline of the body is identified in
a test image (Mori and Malik use an edge detector; a cluttered back-
ground might present issues here), and sample points on the outline
are matched to sample points in examples. A global matching proce-
dure then identifies appropriate examplars for each body segment and
an appropriate 2D configuration. The body is represented as a set of
segments, allowing (a) kinematic deformations in 2D and (b) different
body segments in the test image to be matched to segments in different
training images. The best matching example keypoint can be extracted
from the matching procedure, and an estimate of the position of that
keypoint in the test image is obtained from a least-squares fit transfor-
mation which aligns a number of sample points around that keypoint.
The result is a markup of the test image with labelled joint positions



2.2. Lifting to 3D 119

Fig. 2.3 Mori and Malik deal with discrete ambiguities by matching test image outlines to
examplars, which have keypoints marked [263, 264]. The keypoint markup includes which
end of the segment is closer to the view. The images on the left show example test images,
with keypoints established by the matching strategy superimposed. The resulting reconstruc-
tion appears on the right. Figure from “Estimating Human Body Configurations using
Shape Context Matching”, Mori and Malik, IEEE Workshop on Models versus Exemplars
in Computer Vision 2001, c© 2001 IEEE.

Fig. 2.4 Ambiguous reconstructions of a 3D figure, all consistent with a single view, from
Sminchisescu and Triggs [363]. The ambiguities are most easily visualized by an argument
about scaled orthographic cameras, given in the text, but persist for perspective views as
these authors show. Note that the cocked wrist in the leftmost figure violates kinematic
constraints – no person with an undamaged wrist can take this configuration. Figure from
“Kinematic jump processes for monocular 3D human tracking”, Sminchisescu and Triggs,
Proc. Computer Vision and Pattern Recognition, 2003, c© 2003 IEEE.

and with which end of the segment is closest to the camera. A 3D
reconstruction follows, as above (Figure 2.3 gives some examples).

Current likelihood models compare some set of predicted with
observed image features (typically, silhouette edges), and so must have
multiple peaks corresponding to the ambiguities described. These peaks
appear in the posterior (Figure 2.5). While this makes the multiple
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(a) (b) (c)

Fig. 2.5 Several nasty phenomena result from kinematic ambiguities and from kinematic
limits, as Sminchisescu and Triggs [359, 362]. Ambiguities in reconstruction – which are
caused because body segments can be oriented in 3D either toward or away from the cam-
era, as described in the text – result in multiple modes in the posterior. The two graphs
on the left (a and b) show the fitting cost (which can be thought of as a log-likelihood)
as a function of the value of two state variables (scaled by their standard deviation). The
state variables refer to the kinematic configuration of the 3D model. Note the significant
“bumps” from the second mode (the vertical arrows). For reference, there is a quadratic
approximation shown as well. Note also the the significant deformations of modes resulting
from a kinematic limit (the horizontal arrows). This is caused by the fact that no prob-
ability can lie on the other side of the limit, so the mode must be “squashed”. Figure from
“Covariance Scaled Sampling for Monocular 3D Body Tracking”, Sminchisescu and Triggs,
Proc. Computer Vision and Pattern Recognition, 2001, c© 2001 IEEE.

peaks predictable, they are still a major nuisance. Typically, at each
peak in the likelihood there are some directions where the value of
the likelihood varies slowly (small eigenvalues in the Hessian). This is
because localization of either landmarks or silhouette points is difficult,
and large changes in the estimate of depth to a joint or of a limb angle
can result in small changes to image positions. The problem directions
tend to move a joint in depth (Figure 2.4).

2.2.2 Lifting by minimization

As we have seen (Section 2.1), if one has multiple views, the body con-
figuration can be reconstructed by minimizing an error between the
image and projected configuration in each view. A wide variety of view
errors are available, though most involve a comparison between inferred
outline points and an image silhouette. Sminchicescu and Telea show
that this approach can produce a reconstruction from a single view
([358]; see also [366]). Their error function includes a term to force
the projected body to cover as much silhouette as possible and a term
to force the projected body inside the silhouette. It is important to
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smooth the silhouette (from background subtraction), because noise
components on the silhouette boundary can produce a difficult opti-
mization problem. The silhouette is skeletonized and the skeleton is
then pruned and “inflated” using a form of distance transform. The
method produces good reconstructions, but must experience at least
reconstruction ambiguities similar to those experienced by kinematic
inference.

Randomized search is a reasonable strategy for attacking the min-
imization. Sminchisescu and Triggs describe various methods to bias
the likelihood function searched by a sampler so that the state will
move freely between local minima [360, 361, 365]. Sminchisescu and
Triggs exploit an explicit representation of kinematic ambiguities to
help this search, by making proposals for large changes of state that
have a strong likelihood of being good [364]. Lee and Cohen use a
markov chain Monte Carlo method to search the likelihood, using both
a set of image detectors and a model of kinematic ambiguities to pro-
pose moves; this gives a set of possible reconstructions for the upper
body [216] and the whole body [217].

2.2.3 Lifting by regression

Assume we are given a set of example pairs (xi,yi), where xi is a
vector of measurements of image properties and yi is the known 3D
configuration of the body for that measurement vector.

We can regard lifting as a regression problem – predict y for a
new set of image measurements x, using the training data. This regres-
sion problem has some nasty properties.

• Dimension: We expect x to be drawn from a high-
dimensional space. Worse, we expect that the possible x that
we can observe lie on a relatively low-dimensional subspace
of the original space. For example, we expect to see arms
and legs in a limited range of configurations; we expect to
see people with arms of similar appearance; we expect to see
people with legs of similar appearance; and so on.

• Metric distortion: We do not expect that the distance
between xi and xj necessarily reflects the distance between
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yi and yj . For example, two quite distinct body configura-
tions could have very similar images (as a result of geometric
ambiguities Section 2.2.1).

• Multiple values: Worse, we could have two distinct values
of y that are correctly associated with a single value of x,
(as a result of the discrete ambiguity of Section 2.2.1).

Notation: To avoid dealing with isolated constants, we will assume
that one component of x always has the value 1.

2.2.3.1 Lifting using the nearest neighbour

The simplest regression method is to use the value associated with
the nearest neighbour. Athitsos and Sclaroff determine 20 kinematic
configuration parameters from an image of a hand by matching the
image to a set of examples [20, 21]. Examples cover a wide range of
viewing conditions, and the cost of obtaining the best match (in a total
of 107,328 images) limits the number of distinct hand configurations
to 26.

One can incorporate dynamical information into the distance
cost matching entire 3D motion paths to 2D image tracks. Howe
computes a match cost frame by frame, by comparing rendered
motion capture data from the CMU Motion Capture collection
(http://mocap.cs.cmu.edu/) with image silhouettes [164]. Views are
again assumed lateral and orthographic, and are sampled every 10o

around the body. Translation and scale could be handled either by
sampling, or by obtaining estimates from a bounding box. The com-
parison is scored with a chamfer distance. Write

H(S1,S2) =
∑
p∈S1

min
q∈S2

d(p,q)

(noting a similarity with the Hausdorff distance, Section 1.2.2.2), θl

for the 3D configuration of the l’th frame of motion capture data with
respect to the camera (meaning that rotation, translation and scale are
encoded here), Pθl for the set of pixels covered by a rendering of θl, and
PSj for the pixels lying in the j’th silhouette. The comparison between
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θl and Sj is now scored as

M(θl,Sj) = H(Pθl ,PSj ) + H(PSj ,Pθl).

Now write the (unknown) value of θ at time i as Θi – this value
could be any one of the available θl. Howe then constructs a cost link-
ing frames of motion capture ∆(Θi,Θi−1); this cost could include a
charge for extreme camera motions, though the paper does not explic-
itly describe this (the cost used charges for large changes in body con-
figuration). The motion is lifted by applying dynamic programming to

C(Θ1, . . . ,ΘN ) =
N∑

i=2

∆(Θi,Θi−1) +
N∑

i=1

M(Θi,Si).

There are too many frames of motion capture to implement an exact
dynamic programming solution, and we allow only values θl of Θi such
that M(θl,Si) is less than some threshold. The method appears to
produce solutions that are unambiguous, which is consistent with the
view that 3D reconstruction ambiguities are probably a phenomenon of
short, rather than long, time-scales. There is also some useful evidence
that reconstruction errors or uncertainties do not propagate over long
time-scales (Figure 2.6). However, there is no attempt to use either
N-best dynamic programming or beam search to identify 3D recon-
structions that have cost comparable to the best cost, but are signifi-
cantly different.

2.2.3.2 Snippets and cameras

This work suggests that, while a single frame reconstruction might be
ambiguous, a match from a short 2D track to a short 3D track might
not be (in Section 5, we lay out evidence it is not). Howe et al. compare
projected motion capture data with image tracks, but now use posterior
inference to estimate dynamic parameters [163]. These parameters are
an encoding of “snippets” – 11 frames of motion capture data – which
are clustered using a mixture of Gaussians. Each 11 frame section of the
track produces a snippet with maximal posterior, and the snippets are
blended into one another to give a 3D reconstruction. While authors
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Fig. 2.6 Howe’s formulation lifts to 3D by comparing projected motion capture data with
image silhouettes [164]. There is a frame-frame cost for the reconstruction, and the final
3D lift is obtained by dynamic programming. In a formalism like this, one could reasonably
fear that a mistaken reconstruction in one frame might result in an entirely wrong path.
In practice, this does not occur. The graph is obtained by constraining the first lifted frame
of a sequence to each of a 1000 different (incorrect) states; the plot shows the number of
distinct states found in the succeeding frames for each path, as a function of frame. The
local image evidence quickly overwhelms the effect of history; by the 10’th frame, there
are only two distinct states. Figure from “Silhouette Lookup for Automatic Pose Track-
ing”, Howe, Proc. IEEE Workshop on Articulated and Non-Rigid Motion, 2004, c© 2004
IEEE.

acknowledge the tracker loses track after a while, the lifting procedure
appears to be robust and effective.

Ramanan and Forsyth use a similar approach, but apply constraints
to camera dynamics, too ([313]; see also [315]). They assume that
views are lateral, estimate scale and translation from the image, and
sample the remaining camera parameter (rotation about the vertical
axis). They constrain the camera speed, and charge for large motions
in three dimensions. The best matching sequence can then be obtained
by dynamic programming. The method cannot recover the motion in
depth of the root, but successfully recovers the configuration of the
body with respect to the root and all root parameters but depth.
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The discrete ambiguity in configuration is handled by incorporat-
ing information about surrounding frames into the match cost. In
particular, the cost of matching a given image frame with a given
motion capture frame is averaged over a window of image (resp. motion
capture) frames centered around the frame under consideration. This
means that the match uses an implicit (in the collection of motion
capture) dynamical model to resolve these discrete ambiguities, at the
cost of not being able to lift configurations that are not in the motion
capture data.

The charge for camera rotation is reasonable, because cameras do
not usually swing around the body by very large amounts, but it is
also important, because Ramanan and Forsyth’s model does not match
heads and so has difficulty telling which way the body is facing for
lateral views, particularly when the limbs are in line with the body
(Figure 2.7). This results in a lateral view of a standing person can
be interpreted as facing either right or left; the camera rotation charge
means that, if the person walks off – and so reveals the direction in
which they are facing – this information can be propagated.

2.2.3.3 Regressing pose against the image

Rosales and Sclaroff use of a collection of local experts (“special-
ized mappings”) to regress hand configuration against image appear-
ance [325]. Shakhnarovich et al. train with a data set of 3D configu-
rations and rendered frames, obtained using POSER (a program that
renders human figures, from Creative Labs). They show error rates on
held out data for a variety of regression methods applied to the pool of
neighbours obtained using parameter sensitive hashing. Generally, per-
formance improves with more neighbours, with using a linear (rather
than constant) locally weighted regression, and if the method is robust.
The best is a robust linear locally weighted regression. Their method
produces estimates of joint angles with RMS errors of approximately
20o for a 13 degree of freedom upper body model [347]; a version of this
approach can produce full 3D shape estimates [141]. Liu et al. demon-
strate a full body reconstruction from silhouettes in five views using a
similar regression model; the reconstruction is not evaluated directly,
but is used to control motion synthesis [318].
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Fig. 2.7 Left frames are taken from a walking sequence, matched to motion capture data
using the method of Ramanan and Forsyth [313]. Matches are independent from frame to
frame. Note that the lateral view of the body (far left) is ambiguous, and can be recon-
structed inaccurately. This ambiguity does not persist, because the camera cannot move
freely from frame to frame. Right frames show reconstructions obtained using dynamic
programming to enforce a model of camera cost. The correct reconstruction is usually avail-
able, because the person does not stay in an ambiguous configuration. The frames are taken
from a time sequence, and the graphs below show an automatically computed annotation
sequence – facing left vs. facing right – as a function of time. Note that the case on the left
shows an essentially random choice of direction when the ambiguity is present (the person
appears to flip from facing left to facing right regularly). This is because the free rota-
tion of the camera means the ambiguity appears on a per-frame basis. For the case on the
right, the smoothing created by charging for fast camera rotations means that the labels
change seldom (and are, in fact, correct). Figure from Ramanan’s UC Berkeley PhD thesis,
“Tracking People and Recognizing their Activities”, 2005, c© 2005 D. Ramanan

2.2.3.4 Disambiguation with the immediate past

A major difficulty with this procedure is the possibility that a single set
of image features may predict multiple poses. This could be a result of
weaknesses in image features – for example, it is hard to tell which way
the actor is facing in a lateral view of a standing person with current
image features – but is more likely the consequence of the kinematic
ambiguities described above. Reconstructions performed in the past
could disambiguate the current reconstruction. Brand links images with
motion capture by fitting HMM’s to both motion capture data and
image data; these HMM’s share a dynamical model [47]. The HMM’s
are fitted with a variant fitting algorithm which tends to obtain models
with relatively low entropy (there is some discussion in [47]; more in [45,
46]). Reconstruction in 3D is obtained by inferring a state sequence
from image data, then choosing a sequence of emitted states from the
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motion capture model, using a smoothed approximation rather than
the Viterbi sequence.

We could think of pose as lying on a set of distinct “sheets”, each
of which is a single valued function of image features, and then build
distinct models for each sheet. This leads to tricky problems in iden-
tifying the sheets, however. Agarwal and Triggs observe that the pose
in the previous frames, if correctly computed, should give a good guide
to the current pose – one is unlikely to jump from sheet to sheet in a
single frame [3, 6]. This observation implies that, while yt(xt) might be
a multiple valued function, yt(xt,yt−1,yt−2) is not. At reasonable sam-
pling rates, the pose in the last two frames should give a fair estimate
of the pose in the current frame. Agarwal and Triggs first construct a
regressed estimate of the pose in frame t, ŷt from yt−1 and yt−2 using
a linear regression. They then compute a regression estimate of yt from
xt and ŷt, using a regression vector machine trained with a variant algo-
rithm. The method produces estimates of joint angles with RMS errors
of 4o for 55 degrees of freedom (3 angles per joint for an 18 joint skele-
ton, and 1 orientation DOF with respect to the camera). We expect the
method to behave badly at singularities of the pose (Figure 5.1). In a
more recent paper, Agarwal and Triggs encode the “sheets” implicitly
with a latent variable, and obtain improved reconstructions [5].

2.3 Multiple modes, randomized search and
human tracking

We have clear evidence that tracking a 3D representation of the body
can result in multiple modes in the posterior and that these modes do
not look Gaussian locally (Figure 2.5; but see Section 5). The need to
manage these modes has spawned a number of methods, all of which
are forms of randomized search. The core method is the particle filter.
We have refrained from an exposition, as the idea is described in detail
in several recent publications (e.g. [93, 140, 175, 201, 203, 231, 319]).

Particle filters should be seen as a form of randomized search. One
starts a set of points that tend to be concentrated around large values
of the posterior. These are pushed through the dynamical model, to
predict possible configurations in the data. The result is a sampled
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representation of the prior. The predictions are compared to the data,
and those that compare well are given higher weights, yielding a sam-
pled representation of the posterior. This simple view provides some
insight into why particle filters in their most basic form are not partic-
ularly well adapted to kinematic tracking.

There is a problem with dimension. The state vector for most kine-
matic tracking problems must be high dimensional. One expects to
encounter at least 20 degrees of freedom (one at each knee, two at each
hip, three at each shoulder, one at each elbow and six for the root)
and quite possibly many more. This means that mismatches between
the prior and the likelihood can generate serious problems. Such mis-
matches are likely for three reasons.

First, the body can move quickly and unexpectedly, meaning that
probability must be quite widely spread in the prior to account for large
accelerations. It is hard to be clear on how much uncertainty there is
in the state of the body at some time given the past, and there are
fair arguments either way (Section 5.1.4). However, fast movements do
occur, and current methods are forced to have fairly diffuse dynamical
models to cope with them.

Second, the likelihood has multiple peaks, which can be very narrow.
Narrow peaks occur because some body segments – forearms are a
particularly nasty example – have relatively small cross-section in the
image, and so only a small range of body states will place these seg-
ments in about the right image configuration. Multiple peaks occur
because there tend to be numerous objects that look somewhat like
body segments (long, narrow, parallel sides, constant colour). We are
now using the predictions of the prior to find the largest narrow peak
in a high-dimensional likelihood – for this to have any hope of success,
the predictions need to be good or to occur in very large numbers.
But we know the predictions will be poor, because we know people can
generate fast, unexpected movements.

Third, detectors used to produce a likelihood model may be
inaccurate. This can result in small errors in inferred state, which in
turn produce potentially large changes in state from frame to frame.
As Sminchicescu and Triggs point out ([362], p. 372), this suggests
using a relatively diffuse dynamical model as an insurance policy.
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The key idea in particle filters is the randomized search. One might
abandon, or at least de-emphasize, probabilistic semantics, and focus
on building an effective search of the likelihood. The key difficulties are
that the peaks in the likelihood are narrow (and so easy to miss) and
that the configuration space is high-dimensional (so that useful search
probes may be difficult to find). The narrow peaks in the likelihood
could be dealt with by annealing, and good search probes may be found
by considering the ambiguity of 3D reconstructions. We review these
approaches in Section 2.3.1.5.

2.3.1 Randomized search with particle filters

There are a series of approaches to deal with problems created by the
dimension of the state space. First, we could refine the search using
importance sampling methods. Second, we could use sequential infer-
ence methods to obtain more efficient samples of the prior. Third,
we could build lower-dimensional dynamical models. Finally, we could
build more complex searches of the likelihood.

2.3.1.1 Importance sampling

Importance sampling is a method to concentrate samples in places
that seem likely to be useful. Assume we have a distribution g(Xt) from
which we can draw samples, and which is a better guide to the likelihood
than the prior P (Xt|Y0, . . . ,Yt−1) is. We can then draw samples Xti

from g(Xt). Then the set of samples(
Xti,

P (Xt = Xti|Y0, . . . ,Yt−1)P (Yt|Xt = Xti)
g(Xti)

)

is a representation of the posterior. Given several plausible importance
functions, one could use a mixture of these functions and the prior as an
importance function. Drawing samples from this mixture is straightfor-
ward; one draws a sample according to the mixing weights, and uses this
to choose a sampling strategy. Image observations are a natural source
of importance functions. Isard and Blake use this approach to track
hands and forearms [174], using a skin detector to build an importance
function. Rittscher and Blake use importance sampling methods to
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track contours of motions drawn from two classes (pure jump and half
star jump); the tracker maintains a representation of posterior on the
motion class, which can be used to distinguish between motion classes
successfully [320]. Forsyth uses edge detector responses as a source of
proposal mechanisms to find simple boundaries [119], and Zhu et al. –
who call the approach data driven MCMC – use image observations to
propose segmentations [399, 400, 429]. We are not aware of the method
being used for kinematic tracking; however, it is a way to unify the more
successful kinematic tracking methods of Section 3.2 with particle filter
based inference.

If one models a person with a tree-structured kinematic model, then
identifying each body segment in the image is a matter of dynamic
programming (we discuss this issue in greater detail in Section 3.2.3).
However, adding temporal dependencies produces a structure that does
not allow for simple exact inference, because the state of a limb in frame
t has two parents: the state in time t − 1, and the state of its parent in
frame t (Figure 2.8). Loopy propagation is a method for approximate
inference on graphical models which are not trees. One constructs a
spanning tree, passes messages with the usual algorithm on that span-
ning tree, and then repeats for other choices of spanning tree. This is
an approximation, because some probabilities are overestimated as a
result of cycles in the graph; experiment shows that, under many cir-
cumstances, the approximation gives usable and helpful results. Useful
accounts of this method appear in [268, 413, 425].

Sigal et al. use loopy propagation, representing messages passed
between nodes using a set of particles [354]. Their template is a 3D
model of a person with links both in time and in space learned from
data. The likelihood is modelled with a conditional exponential model,
where

P (Y|X) ∝ exp

(
−
∑

i

λigi(X,Y)

)

with parameters λi learned from data. Such models, often called max-
imum entropy models and quite popular in the language mod-
elling community, are commonly fitted by maximizing likelihood (which
requires computing the partition function), using an algorithm known
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Fig. 2.8 If one models a person with a kinematic chain, then determining where a given
person appears in a static image involves inference on a tree structured graphical model.
On the left, a graphical model illustrating this point. In the usual language of graphical
models, open nodes represent unknowns, arrows represent dependencies, and shaded nodes
represent measurements. Each open node encodes the state (for example, image position;
image position and orientation; 3D position, orientation and scale; and so on) of the body
segment implied by the label (t: torso; lul: left upper leg; and so on). The arrow represents
a model of P (variable at head|variable at tail). The filled nodes represent various detector
responses. Notice that each open node has at most one parent, so the open nodes form
a tree, so that inference is a matter of dynamic programming (or, equivalently, message
passing; Section 3.2.3 or a text such as [118, 244]). On the right, we show what happens
when one has temporal dependencies. We show only two frames (there’s enough clutter
in the drawing), and the gray arcs are temporal links. The graphical model becomes much
more complex. Most open nodes now have two parents, a spatial parent and a temporal
parent, and this means that exact inference is impractical.

as iterative scaling (see [36, 81, 183, 297, 326]). Sigal et al. use a series
of detectors which are tuned to body parts (but not, in the nature of
such detectors, particularly reliable; otherwise there’d be nothing to
do) to produce an importance function. Some percentage of messages
passed to limb nodes are drawn from this importance function, giving
strong suggestions about the configuration in 3D of a particular body
segment. They demonstrate tracks of people in 3D from three views.
Unusually, there is a strong evaluation component, which we describe
in Section 3.3.

2.3.1.2 Partitioned sampling

Partitioned sampling is a variant of importance sampling that uses
a sequence of samples within each time slice. Assume that the state
vector X has several components; notation etc. is much simpler if we
assume only two, and the more general case follows, so we shall work
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Fig. 2.9 Sigal et al. build a 3D model of a person as a set of segments [354]. Again, the
state of each segment but the root has two parents – the corresponding segment in the
previous frame, and that segment’s parent in the model (left). This yields an inference
problem that is too difficult in general to do exactly. Sigal et al. track in multiple views
using a form of particle filter adapted for loopy belief propagation. The image likelihood
is a conditional exponential model. Authors use a combination of segment detectors and
uniformly distributed samples to propose likely configurations of limbs in the image; these
are incorporated in the inference procedure as importance functions. The figure on the
right shows camera outputs with superimposed information for two of four views (rows);
column (a) shows limb segments proposed by the detector; (b) shows proposals from a
uniform distribution; (c) shows samples from the belief distribution after 30 frames of
belief propagation; and (d) shows the state with the highest belief. Figure from “Tracking
loose-limbed people”, Sigal et al., Proc. Computer Vision and Pattern Recognition, 2004,
c© 2004 IEEE.

with two and write X = (x1,x2). We will also drop the subscript for
time to simplify notation. Now assume that we have an importance
function I(X) that is a good guide to the likelihood (what this means
will become apparent), and can be factored as I(X) = I1(x1)I2(x1,x2)
Now if ui is a set of IID samples of P (x1), then

(ui, I1(ui))

represents a probability distribution proportional to P (x1)I1(x1). Take
this representation and resample with replacement according to the
weights, to obtain (uj ,1) which must also be a representation of that
distribution. Now obtain vkj , which are IID samples of P (x2|x1 = uj).
Then

((vkj ,uj), I2(uj ,vkj))

represents a probability distribution proportional to P (x2|x1)P (x1)
I1(x1)I2(x1,x2). Take this representation and in turn resample with
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replacement according to the weights, to obtain (vlj ,1), which is also
a representation of that distribution. Finally,

(
(vlj ,uj),

P (Y |X = (vlj ,uj))
I1(uj)I2(uj ,vlj)

)

represents the posterior. Notice that we have omitted various if’s, and’s
and but’s to do with the support of the importance function and so on,
to get to this point. The advantage of this strategy is that we have
guided the search of the likelihood using our importance function; in
particular, the first resampling step discards particles that lie in spots
where there is evidence – supplied by the importance function – that
the marginal of the posterior will be small. Throwing these particles
away allows means that, when we elaborate the particles to represent
the whole state, the resulting particles should tend to lie in places where
the likelihood is large. Of course, all this depends on the quality of our
likelihood functions. MacCormick and Isard track hands using parti-
tioned sampling [242]. MacCormick and Blake use this method to track
multiple objects [240, 241], where one needs a method to avoid both
tracks lying on the same object. The importance functions are obtained
by considering each object separately, and the likelihood function is a
mixture of three cases: no objects in the tracker gate, one object in the
tracker gate, and two objects in the tracker gate. Again, we are aware
of no kinematic trackers of humans that use this method, but see it
as a way to unify the more successful kinematic tracking methods of
Section 3.2 with particle filter based inference.

2.3.1.3 Lower dimensional state models

Sidenbladh et al. build a 3D model of a human as a kinematic chain,
with state encoded as the configuration and velocity of each element
of this chain with respect to its parent, and the root with respect to
the camera [351]. Each segment of the model has an attached encoding
of appearance, and the likelihood is computed by comparing a render-
ing of the state with the image, using the appearance encoding. There
is a separate constant likelihood term for self-occluded segments, and
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Fig. 2.10 Sidenbladh et al. use particle filters to track a 3D model of a walking person, using
a reduced dimensional dynamical model fitted to motion capture data of walking people. This
means that the dynamics are more predictable, and so the search of the likelihood is more
effective; the difficulty is that one must know the activity before being able to track. On the
left, a track of a walking person who turns during the walk. The 3D reconstruction of this
track is shown below left. On the right, a “track” of a walking person, initialized as on
the left, but now ignoring image data; this illustrates the strength of the prior. In particular,
the “track” continues to walk, but does not turn when the subject turns. Figures 6 and 7
from H. Sidenbladh, M.J. Black, D.J. Fleet, “Stochastic Tracking of 3D Human Figures
using 2D Image Motion,” Proceedings of European Conf on Computer Vision, volume II,
2000, pages 702–718, Springer LNCS 1843, with kind permission of Springer Science and
Business Media.

a discount term for foreshortened segments, because foreshortening of
a segment causes texture foreshortening. The tracker is initialized by
hand. Tracks are obtained using a straightforward particle filter, using
a random walk dynamical model and also using a dynamical model
specialized to walking. This walking model is obtained by principal
components analysis on motion captured walk data. The appearance
model appears to have dynamics to account for changes in illumination;
the authors point out that this advantage over a fixed appearance tem-
plate comes at the cost of potentially increased tracker drift. The ran-
dom walk model is shown to track a two segment arm with reasonable
success, but authors indicate that more complex kinematic models are
difficult to track this way. The advantage of a low dimensional model of
walking dynamics is that the effective dimension of the state space at
the k + 1’th frame is relatively small, and this relatively tight motion
prior allows quite good tracking of a walking figure (Figure 2.10). The
difficulty with this approach is that one might need to choose which
activity is occuring to be able to track it, and that seems difficult to do.
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2.3.1.4 Probabilistic searches of the posterior

Choo and Fleet implement a more extensive search of the posterior
using a Markov chain Monte Carlo (MCMC) method [67]. They inter-
pret the particles at a particular step as a set of initial states for an
MCMC sampler; this sampler then runs independently on each state.
Any such sampler will eventually produce a fair sample of the poste-
rior. It is reasonable to expect that running an MCMC sampler on a
set of particles will produce IID samples of the posterior. These can, in
turn, be passed through the particle filter and refined again. Choo and
Fleet use Duane et al. ’s hybrid Monte Carlo method to obtain sam-
ples (see [99, 272]; there is a brief account in [117]), but other methods
might be used. The method is used to compute 3D configurations from
images of markers. It has not been shown to cope with the dramatic
problems with local maxima one associates with texture and clutter,
and it seems unlikely that it can. The difficulty here is that it may
take very many steps of the MCMC method to produce samples that
have “forgotten” their start point. In practice, it is extremely difficult
for such a sampler to pass from one local maximum of the posterior
to another; this means that such a sampler is unlikely to overcome the
problems created by a posterior with many narrow peaks (see [129]; in
some applications, for example where there is a symmetry in the pos-
terior, this may not be a nuisance [117], but one cannot rely on MCMC
methods to discover all peaks in a posterior without quite strong proofs
of good mixing behaviour).

2.3.1.5 Annealing

A variety of search strategies are available. One strategy is to launch an
annealed search of the likelihood. We do this by defining a set of inter-
mediate weighting functions, to obtain w0(X) = P (Y|X), w1(X), . . .,
wM (X), where wk is a somewhat smoother version of wk+1. At any time
step we have ui a set of IID samples of P (X). Instead of weighting these
samples by the likelihood, we weight by wM . We resample with replace-
ment according to the weights and reset the weights to one, yielding
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Fig. 2.11 Deutscher et al. [88] track a moving person in 3D using an annealed particle filter.
In effect, particles are passed through the dynamic model, then weighted with a smoothed
version of the likelihood. They are resampled according to weights, then perturbed randomly
and weighted using a less heavily smoothed likelihood. This concentrates particles in regions
where the likelihood is likely to be high. The process continues for some number of layers
of annealing. The figure shows tracks for a particular set of frames using three different
algorithms. On the left, a straightforward particle filter, which loses track fairly quickly
because searching a peaky likelihood using a smooth prior doesn’t work well. In the center,
the results of one layer of annealing. Notice that the right leg is poorly tracked, but the
track has improved. On the right, the results from ten layers of annealing. Notice the
much improved track. The particles no longer have any probabilistic semantics, however,
and the ability of the method to deal with clutter and texture – which can hugely complicate
the likelihood function – is not proven. Figure from “Articulated Body Motion Capture by
Annealed Particle Filtering”, Proc. Computer Vision and Pattern Recognition, Deutscher
et al., 2000, c© 2000 IEEE.

uj . We take each sample and add noise drawn from a normal distribu-
tion with zero mean. We now weight the resulting samples using wM−1.
This process continues until each sample is weighted using the likeli-
hood. Deutscher et al use this scheme to track a person moving using
a 3D model viewed with multiple cameras [88, 91] (Figure 2.11). The
likelihood is evaluated using both image values within and edge points
near the projected outline; annealing in effect uses a smoothed version
of this (very peaky) likelihood function to guide samples toward peaks
in the likelihood. This method can be given exact probabilistic seman-
tics by interpreting the annealing procedure as an importance func-
tion, an observation due to Neal [271, 273, 274]. Deutscher et al. have
shown that performance improvements are available by using parti-
tioning methods together with an annealed particle filter (Figure 2.12).
All examples show isolated persons on black backgrounds; there is no
evidence that the annealing is powerful enough to cope with the rich
range of local likelihood peaks that can result from, say, texture or
clutter.
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Fig. 2.12 Deutscher et al ([91]; see also [89]) show that one can use partitioning methods
with the annealed particle filter. They track a 3D model of a person in a single view. On
the left, a track and the inferred 3D configuration for a running person. On the right,
a track and the inferred 3D configuration for a person doing a handstand. Again, there
are no probabilistic semantics, and again the ability of the method to deal with clutter and
texture is not proven. Figure from “Automatic Partitioning of High Dimensional Search
Spaces Associated with Articulated Body Motion Capture”, Proc. Computer Vision and
Pattern Recognition, Deutscher et al., 2001, c© 2001 IEEE.

2.3.2 Multiple probes from covariance analysis

One difficulty with a sampled model of the posterior is that we don’t
know if there are larger values of the posterior close to each sample.
We could regard each sample as a plausible start point for a search
of the posterior. We are now no longer building a set of particles that
explicitly represents the posterior in the sense above, but are using
multiple states to represent the prospect that the posterior is multi-
modal. Each state lies on a mode in the posterior, and we attempt to
ensure that all modes have a state. The origins of this approach lie
with Cham and Rehg [61], who use it to track a 2D kinematic model
of the body.

Sminchisescu and Triggs elaborate this search by analysis of the
Hessian of the log-posterior [359, 362]. They track a 3D model of a
person, which has parameters giving the kinematic configuration, rel-
ative proportions of segments, and deformations of the surface skin.
Sminchisescu and Triggs do not use a dynamical model. However, they
do encode joint limits, and so must represent a model of P (Xk|Yk)
(which we call the posterior in what follows; note that only the current
measurement is involved). They regard the reconstruction at frame
k − 1 as an initial point for a search of the posterior at frame k.
The likelihood is evaluated by comparing projected model points with
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image points, using values of edges and other image features. What
is known about state is represented by a collection of tuples; the i’th
tuple (ci,µi,Σi), contains a weight ci, a state value µi and a covariance
matrix Σi. Each state value gives the state at a mode of the likelihood.
The covariance is the Hessian of the negative log-posterior at the mode,
and the weight is the value of the posterior at the mode. Weights are
normalized to sum to one.

This information is propagated from the k − 1’th frame to the k’th
frame by using these tuples to launch searches of the likelihood. The
search proceeds by:

• Choosing a tuple to propagate by drawing one of the
initial tuples randomly according to the weight. Assume we
have drawn tuple i.

• Computing a local covariance scaling by obtaining the
k directions in the Σi where the least change in posterior is
likely – these directions are those in which the state is most
uncertain – by a singular value decomposition, and comput-
ing the restriction of Σi to this space; call the result Σ

′
i.

• Generating a new tuple by generating a sample s dis-
tributed as N(µi,sΣ

′
i) for some scale parameter s (it is wise

to have s > 1). We start an optimization procedure for the
posterior at s; this produces s

′
. The weight for the new tuple

is the value of the posterior at this point; the mean is s
′
; and

the covariance is the Hessian of the negative log-posterior
at s

′
.

These steps are repeated multiple times, to produce a set of tuples rep-
resenting the posterior. This set is pruned to remove tuples that rep-
resent the same mode – the states will be the same – and the result
represents the new posterior. Numerous variants of this method are
possible; for example, it is natural to produce a large pool of tuples,
prune duplicates, and then keep only the K best. Performance com-
parisons between these methods appear in [362].



3
Tracking: Data Association for Human Tracking

Tracking people is a means to an end, and trackers should be assessed
in that way. Human trackers should be reasonably accurate, start auto-
matically (hardly any practical application can use trackers that can’t
be started automatically), run for long times without any particular
difficulties, and not rely excessively on implausible assumptions about
background, etc. These are the correct criteria by which to judge.

In our opinion, the literature has, until quite recently, placed
too much emphasis on probabilistic inference machinery, while pay-
ing insufficient attention to the (possibly dull but certainly essential)
vision problems implied by data association. Furthermore, this infer-
ence machinery may, in fact, be being used to solve a non-problem
(Section 5.1.2).

Early human trackers, which used quite straightforward match-
ing methods, (for example, Hogg’s 1983 paper [159]; Rohr’s 1994
tracker [323]) could produce kinematic tracks for people moving with-
out sudden accelerations on reasonably simple, high-contrast back-
grounds if started manually. The advantages of a known, simple
background have been thoroughly explored (Section 1.2.1). The more
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recent trackers we have described use more complex inference machin-
ery, but without any great change in competence.

Improvements in competence seem to have come with increased
attention paid to tracking by detection schemes. These are well estab-
lished in, say, face tracking. For example, one can build a fairly satis-
factory face tracker by simply running a face detector on frames, and
linking over time; smart linking schemes built around affine invariant
feature patches can result in very satisfactory tracks [357]. Tracking
by detection is now capable of building good human kinematic tracks,
without relying on background subtraction.

3.1 Detecting humans

Human detection is difficult, and important. It is difficult because
people (usually!) wear clothing of widely varying appearance; because
changes in body configuration can result in dramatic changes in appear-
ance; and because different views result in dramatic changes in appear-
ance. There are several important applications. A huge literature now
deals with methods to detect pedestrians automatically, because this is
a function that autonomous or semi-autonomous motor-cars will need.
There is a substantial literature on detecting and interpreting gestures
for human-computer interaction purposes. There is a smaller but grow-
ing literature on using various human detection and description meth-
ods for understanding the content of various multi-media datasets.
There is a small but occasionally startling literature on methods for
detecting sexually explicit images. Interest in these areas is not con-
fined to academia; in each of these areas, there are both research efforts
by established companies and start-up companies appearing regularly.

No published method can find clothed people wearing unknown
clothing in arbitrary configurations in complex images reliably, though,
as we shall see, there is reason to believe that this situation will change.
The first standard approach to this problem involves matching to one
or a family of templates, which might use either spatial or tempo-
ral information (or both). We review this area in Section 3.1.1 and
Section 3.1.2. The second standard approach is to identify parts of a
person and then reasoning about an assembly of these parts to identify
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the person. We distinguish between two types of method, according to
the type of part: First, one may use parts that are semantic in origin
(“arms”, “legs”, “faces”, and so on), and we review this approach in
Section 3.1.3. Second, one may use parts that are defined by statistical
criteria (for example, they form a good codebook for representing the
image of the person), and we review this approach in Section 3.1.4.

3.1.1 Finding people by matching static templates

Approximately half-a-million pedestrians are killed by cars each year
(1997 figures, in [125]). Car manufacturers and governments have an
interest in ensuring that cars are less dangerous, and there is a con-
siderable body of research on automated pedestrian detection. Gavrila
gives an overview of the subject in [125], which covers cues such as
radar, infrared, and so on, which have practical importance but are of
no interest to us. For our purposes, this is an example of person detec-
tion that may be simpler than the general problem, and is certainly
important.

At relatively low resolution, pedestrians tend to have a characteris-
tic appearance. Generally, one must cope with lateral or frontal views
of a walk. In these cases, one will see either a “lollipop” shape – the
torso is wider than the legs, which are together in the stance phase of
the walk – or a “scissor” shape – where the legs are swinging in the
walk. This encourages the use of template matching.

Papageorgiou and Poggio represent 128x64 image windows with a
modified wavelet expansion, and present the expansion to a support
vector machine (SVM), which determines whether a pedestrian is
present [292]. SVM’s are classifiers, trained with positive and nega-
tive examples. For a brief informative discussion of SVM’s see [402]
or [70]. More extensive information appears in [340, 348, 401], and dis-
cussion in the context of a variety of other classifiers is in [148]. The
training data consists of windows with and without people in them;
each positive example is scaled such that the person spans approxi-
mately 80 pixels from shoulder to foot. A variety of image representa-
tions are tested, with the modified wavelet expansion applied to colour
images performing significantly better than wavelet expansions applied
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to grey-level images, low resolution pixel values for grey-level images,
principal components analysis representations of grey-level images, and
the like. The strength of these wavelet features appears to be that
they emphasize points that are, rather roughly, outline points. This
yields a method for exploiting the restricted range of contours without
explicitly encoding contour templates. The wavelet expansion can be
reduced in dimension to obtain a faster, though somewhat less accu-
rate, matcher. There are several variants of this approach in the liter-
ature [279, 280, 287, 288, 290, 291].

Zhao and Thorpe use stereopsis to segment the image into blocks,
then present each block to a neural network [428]. The stereo cue acts
as a variant of background subtraction, because there are typically sub-
stantial discontinuities in depth between pedestrian and background.
A comparison of this system with that of Papageorgiou et al. (the ver-
sion in [287]) suggests it is more accurate, possibly because the stereo
segmentation reduces the number of windows that must be searched.

There are a variety of systems that use edge templates explicitly.
Gavrila describes an approach that matches image contours against
a hierarchy of contour templates using a chamfer distance [126].
The method is oriented to real-time detection. The image is passed
through an edge detector, and then passed through a smoothed dis-
tance transform (see [31]); a template is evaluated by computing the
sum of distance transform values at template feature points, so that
a small value results in a match. One needs numerous templates for
such a method to be successful (distinct views; distinct phases in
the walk), and Gavrila organizes the set of templates into a hier-
achy using an agglomerative clustering method rather like k-means.
Each node of the hierarchy contains a summary template (summaries
at nodes deeper in the hierarchy encode more spatial detail), and a
representation of the distance of the examples from that summary.
Matching proceeds by computing a cost to the representative node at
the current level, and testing this against a threshold to determine
whether to expand that node or not. A verification step uses radial
basis functions to classify those image windows that appear to match
edge templates. Gavrila et al. describe an improved version of this
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method, using stereo cues and temporal integration [123]. Broggi et al.
describe a method that uses vertical edges, the characteristic appear-
ance of the head and shoulders, and background subtraction to identify
pedestrians [50].

Wu et al. build random field models of image windows with and
without a pedestrian, and then detect using a likelihood ratio [419].
Shape is encoded with a random field, and measurements are assumed
to be conditionally independent given the shape and some deformation
parameters. There is a search over scale, translation and orientation.
The considerable technical difficulties involved in evaluating the like-
lihood are dealt with using a variational approximation. One would
expect a performance penalty for using a generative formalism in what
is, in essence, a discriminative problem (does this window contain a
pedestrian or not?), but ROC curves suggest the method is compara-
ble with strong recent discriminative methods in performance.

Dalal and Triggs give a comprehensive study of features and their
effects on performance for the pedestrian detection problem [79]. The
method that performs best involves a histogram of oriented gradi-
ent responses (a HOG descriptor). This is a variant of Lowe’s SIFT
feature [238]. Each window is decomposed into blocks (large spatial
domains) and cells (smaller spatial domains). A histogram of gradient
directions (or edge orientations) is computed for each cell. In each block,
a measure of histogram “energy” is computed, and used to normalize
the histogram for each cell in the block. This supplies a modicum of
illumination invariance. The detection window is tiled with an over-
lapping grid, within each cell of which HOG descriptors are computed,
and the resulting feature vector is presented to an SVM. Dalal and
Triggs show this method produces no errors on the 709 image MIT
dataset of [292]; they describe an expanded dataset of 1805 images.
The paper compares HOG descriptors with the original method of
Papageorgiou and Poggio [292]; with an extended version of the Haar
wavelets of Mohan et al. [260]; with the PCA-Sift of Ke and Sukthankar
([198]; see also [255]); and with the shape contexts of Belongie
et al. [34]. There is considerable detailed information on tuning of
features.
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3.1.2 Templates that include motion

Static templates most likely work because the outlines of pedestrians
tend to be of limited complexity. While it would be nice to have a
formal notion of what this meant, the appropriate comparison is with
arbitrary views of people in arbitrary configurations (say, the figure
skater of Figure 3.9). Pedestrians also tend to move in quite restricted
ways – they are typically either standing or walking. Niyogi and Adelson
point out that, if one forms an XYT image – a stack of frames,
registered as to camera motion, originally due to Baker [25] – these
motions produce quite distinctive structures (Figure 3.1), which can be
used to identify motions [278] or recover some gait parameters [277].
Polana and Nelson consider spatial patterns of motion energy, which
also have a characteristic structure [306]. There is a substantial lit-
erature on the characteristic appearance of human motion fields; a
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Fig. 3.1 On the left, an XYT image of a human walker. The axes are as shown; the stack
has been sliced at values of Y, to show the pattern that appears in the cross section. Notice
that, at the torso there is a straight line (whose slope gives an estimate of velocity) and
at the lower legs there is a characteristic “braid” pattern, first pointed out by Niyogi and
Adelson [278]. On the right, a series of estimates of the spatial distribution of motion
energy (larger white blocks are more energy) for different frames of a walk (top) and a run
(bottom); the frame is rectified to the human figure by translation, and one image frame
from each sequence is shown. Notice that, as Polana and Nelson point out, this spatial
distribution is quite characteristic [306]. Figure from “Recognizing Activities”, Polana and
Nelson, Proc. Int. Conf. Pattern Recognition, 1994, c© 1994 IEEE. Figure from “Analyzing
Gait with Spatiotemporal Surfaces”, Niyogi and Adelson, Proc. IEEE Workshop on Nonrigid
and Articulated Motion, 1994, c© 1994 IEEE.
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good start is [44, 223, 224, 225, 300, 301, 302, 303, 304, 305]. Par-
ticular efforts have been directed to periodic motion; one might con-
sult [62, 73, 74, 75, 76, 137, 138, 229, 230, 236, 341, 342, 389].

This characteristic structure can be used to detect pedestrians in
a variety of ways. Papageorgiou and Poggio compute spatial wavelet
features for the frame of interest and the four previous frames, stack
these into a feature vector, and present this feature vector to an SVM,
as above [289]. The result is a fairly significant improvement in detec-
tion rate for a given false positive rate. The performance improvements
that Dalal and Triggs obtain by careful feature engineering (as above)
are probably available here, too. The features encode motion implicitly
(by presenting the frames in sequence), but not explicitly.

Viola et al. use explicit motion features – obtained by computing
spatial averages of differences between a frame and a previous frame,
possibly shifted spatially – and obtain dramatic improvements in detec-
tion rates over static features ([405, 406]; see also the explicit use of
spatial features in [72, 283, 284], which prunes detect hypotheses by
looking for walking cues). This work uses a cascade architecture,
where detection is by a sequence of classifiers, each of which operates
only on windows accepted by the previous classifier. The classifiers are
engineered so that they each have a low false negative rate, so that
classifiers early in the cascade reject many windows, and so that the
overall cascade is accurate. Features are sums of spatial averages over
box-shaped windows in space and time, and so can be evaluated in large
numbers extremely quickly; the techniques of classifier and features are
due to Viola and Jones [404, 407, 408].

Dimitrijevic et al. build a spatio-temporal template as a list of
spatial templates in time-order [92]. The spatial templates are edge
templates giving the silhouette of the figure, and are matched with
a chamfer distance, as above. The spatial templates and the spatio-
temporal templates (which are acceptable sequences of spatial tem-
plates) are obtained by rendering skinned motion capture data against
a blue background from a wide variety of views. The match is scored
by computing the time average of chamfer distances. The detector is
trained to detect the portion of the walk cycle where both feet are on
the ground (other frames could be handled by various forms of temporal
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interpolation or tracking; see also Section 3.2.3.2). The paper describes
a variety of optimizations helpful to obtain a reasonable speed.

3.1.3 Traditional parts

Detecting pedestrians with templates most likely works because pedes-
trians appear in a relatively limited range of configurations and views.
It appears certain that using the architecture of constructing features
for whole image windows and then throwing the result into a classi-
fiers could be used to build a person-finder for arbitrary configurations
and arbitrary views only with a major engineering effort. The set of
examples required would be spectacularly large, for example. This is
unattractive, because this set of examples implicitly encodes a set of
facts that are relatively easy to make explicit. In particular, people are
made of body segments which individually have a quite simple struc-
ture, and these segments are connected into a kinematic structure which
is quite well understood.

All this suggests finding people by finding the parts and then rea-
soning about their layout – essentially, building templates with complex
internal kinematics. The core idea is very old (for example, one might
consult [9, 10, 38, 152, 246, 281]) but the details are hard to get right
and important novel formulations are a regular feature of the current
research literature. It is currently usual to approach this question in
terms of 2D representations, which represent a view of a person as a
set of body segments – which could be represented as image rectangles –
linked by rotary (and perhaps translational) joints.

The advantage of these 2D kinematic templates is that they are
relatively easy to learn. Learning 2D kinematic templates requires the
relative scale of body segments, link probabilities, and an appearance
encoding for each body segment. It is relatively straightforward to
obtain scale information from static images. Link probabilities can be
modelled in a variety of ways. It is usually better to represent trans-
lation as well as rotation of a link with respect to another; if we now
use a distribution that is flat, or near to, within a useful range, we are
preferring no legal kinematic configuration over any other. This isn’t
in accord with reality – most of the time in most footage, people are
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walking – but is convenient because it doesn’t lock us into any par-
ticular activity. In this form, link probabilities can be modelled using
either static images or anthropometric information.

3.1.3.1 Discriminative approaches

The first difficulty is that simply identifying the body parts can be
hard. This is simplified if people are not wearing clothing, because skin
has a quite distinctive appearance in images. Forsyth et al. then search
for naked people by finding extended skin regions, and testing them
to tell whether they are consistent with body kinematics [114, 116].
The method is effective on their dataset (and can be extended to find
horses [115]), but is not competitive with more recent methods for
finding “adult” images (which typically use whole-image features [14,
43, 182, 423]). Ioffe and Forsyth formalize this process of testing, and
apply it to relatively simple images of clothed people [170, 172]. Their
procedure builds a classifier that accepts or rejects whole assemblies of
body components; this is then projected onto factors to obtain derived
classifiers that can reject partial assemblies that could never result in
acceptable complete assemblies. Sprague and Luo use this approach to
find clothed people in more complex images, by reasoning about image
segments [370].

Mohan et al. use a discriminative approach not only to identify good
assemblies of parts (as above), but also to find body parts [260]. SVM’s
are trained to detect the whole left arm, the whole right arm, the legs
and the head/shoulders (see Figure 3.2); because these body compo-
nents are relatively large, and because the work focuses on pedestrians,
it is possible to search for them in an image centered frame – one can
inspect vertical boxes of the right size and aspect ratio to tell whether
an arm is present. The SVM part detectors produce a score (distance
to the separating hyperplane). For each 128x64 window, the top score
for each type of part is placed in a slot in a vector, which is presented
to a further SVM. Geometric consistency is enforced by finding the top
score for each type of part over a subset of the window to be classi-
fied. The approach is applied to pedestrian images, and outperforms
the methods of [279, 290].
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Fig. 3.2 Mohan et al. use SVM’s to find major body parts (left arm, right arm,
head/shoulders and legs) as in the training examples shown on the top. They then use
these SVM’s to search frames for components; the response of all part SVM’s in each win-
dow is pooled and then presented to an SVM which identifies whole figures. On the bottom,
examples showing good detects; the whole body window is outlined with lines, and the part
windows with dashed lines. Figure from “Example-Based Object Detection in Images by
Components”, Mohan et al., IEEE T-PAMI, 2001, c© 2001 IEEE.

3.1.3.2 Generative approaches

Naked people are easier to find, because identifying body parts is easier.
If we had an encoding of the appearance of the individual parts, this
would simplify finding people, because identifying an instance involves
dynamic programming; but, done in a straightforward fashion, this is
slow because the likelihood evaluation is slow. Felzenswalb and Hutten-
locher show how one may use distance transforms to speed this pro-
cess up substantially [108, 109]. In particular, assume that the model
is built out of a set of components, the i’th of which has some con-
figuration. We assume that the components are linked in a tree of n

nodes. Then to find the best instance, we can discretize the config-
urations – assume that we use m sample points – and do dynamic
programming. However, this will cost O(nm2), which is unattractive
because m is likely to be quite big, particularly if the configurations
are high-dimensional. Felzenswalb and Huttenlocher show that, as long
as the link cost has a particular form, the cost-to-go functions encoun-
tered in the dynamic programming problem are, in fact, generalized
distance transforms, and so can be computed in O(m) time (so that
the whole thing costs O(nm), which is a useful improvement). The
paper demonstrates these models being used in two contexts: finding
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Fig. 3.3 A pictorial structure is a 2D model of appearance as a kinematic tree of segments.
Each segment has configuration variables which encode the spatial support of the segment –
for example, position and orientation – a local appearance model – for example, the color of
a segment – and there is a cost associated with each edge in the tree – for example, the cost of
finding a lower leg far from an upper leg. One can find the best instance of such a structure
by discretizing the configuration variables for each segment, then using dynamic program-
ming. Felzenswalb and Huttenlocher show that, for properly defined segment-segment costs,
the cost-to-go function in the dynamic programming can be evaluated more cheaply than
one would expect, meaning that localization can be fast [108, 109]. Figure from “Efficient
Matching of Pictorial Structures”, Felzenszwalb and Huttenlocher, Proc. Computer Vision
and Pattern Recognition, 2000, c© 2000 IEEE.

people and finding cars. People are modelled with rectangles of fixed
size and known color (appearance is modelled with image color) and
can be localized quite effectively (Figure 3.3). Kumar et al. extend
this model to incorporate boundaries into the likelihood and use loopy
belief propagation to apply it to arbitrary graphs (rather than trees);
the method is applied to pictures of cows and horses [212].

3.1.3.3 Mixed approaches

Ronfard et al. use a discriminative model to identify body parts, and
then a form of generative model to construct and evaluate assem-
blies [324]. Their approach searches for parts that are on a finer scale
than those of Mohan et al. (upper arms vs. arms), and these can’t
be found by looking for boxes of a fixed size, orientation and aspect
ratio. This makes it a good idea to search for body parts over scales
and orientations – in effect, a search in a part-centered coordinate sys-
tem. They compare an a support vector machine part detector and a



150 Tracking: Data Association for Human Tracking

relevance vector machine part detector (for SVMs, see [367]; for RVMs,
see [107, 391, 392], both applied to features that consist of filtered image
grey levels within the window; authors suggest that more sophisticated
features, for example those of Dalal and Triggs (Section 3.1.1), might
give improvements. Each of the detectors produces a detection score.
People are modelled as a 2D kinematic chain of parts, with link scores
depending on a weighted sum of position, angle and detector scores. The
chain is detected with dynamic programming, but the savings obtained
by Felzenswalb and Huttenlocher (Section 3.1.3.2) do not appear to be
available. The weights used in the sum are obtained by a novel appli-
cation of SVM’s. The authors collect a large number of positive and
negative examples of links, use a linear SVM with link terms as fea-
tures to classify them, then use the weights produced by that linear
SVM as weights in the link cost. Detection performance is strong; how-
ever, there are no standard datasets for evaluating detection of people
in arbitrary configurations so comparisons are difficult.

Mikolajczyk et al. use discriminative part detectors, applied to ori-
entation images and built using methods similar to those of Viola and
Jones (see Section 3.1.2), to identify faces, head-and-shoulders, and
legs [254]. Non-maximum suppression isolates detected parts. Once a
part is found, it predicts possible locations for other parts, which are
used to drive a search. Finally, the assemblies that are found are pre-
sented to a likelihood ratio classifier. Micilotta et al. use discriminative
methods to detect hands, face and legs; a randomized search through
assemblies is used to identify one with a high likelihood, which is tested
against a threshold [252]. Similarly, Roberts et al. use a randomized
search to assemble parts; parts are scored with a generative model,
which is used to obtain a proposal distribution for joints [321].

3.1.4 Parts as codebooks

Representing a body by segments may not, in fact, be natural; our
goal is effective encoding for recognition, rather than disarticulation.
One might represent people by image patches chosen to be good at
representing people. Leibe et al. have built the best known pedestrian
detection system using this approach [220]. They first obtain multiple
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frames of pedestrians, segmented from the background using a form of
background subtraction (Section 1.2.1), to serve as training data. They
build similarity covariant neighbourhoods at interest points (using the
methods of [238]), and rectify windows to a fixed scale. These rectified
windows are clustered, the cluster centers yielding a codebook. They
now build a representation of the probability of encountering a code-
book entry at a particular location in the object frame by counting
matches to codebook entries for each example.

Write λ for position and scale of the object, on for the class of object
(we may be interested in detecting pedestrians and dogs, for example;
the background is one such class), ci for the i’th codebook entry and l
for the location and scale of the codebook entry. We can build a model
of P (on,λ|ci, l) – the probability that an object of class on occurs at
location and scale λ conditioned on a codebook entry of type i observed
at l – by counting. Write e for an image patch.

We obtain a model of P (on,λ|ei, l) because we know P (e|ci) and
can marginalize. Local maxima of this model may be instances of the
object; they are obtained with the mean-shift algorithm [69].

Given an hypothesis, we can now determine a probability map giv-
ing whether each pixel lies on that hypothesized object or not. Write
p for the location of a pixel. For P (p = figure|on,λ), we obtain∑

(e,l)�p

∑
i

P (p = figure|on,λ,ci, l)
p(on,λ|ci, l)p(ci|e)p(e, l)

p(on,λ)

where the � sign refers to windows and locations that cover the
pixel. The relevant densities can be obtained by counting. All this
means that, associated with each plausible detect, we have a map of
pixels that might lie on a pedestrian. In turn, we can search for col-
lections of pedestrian hypotheses that explain these pixel maps best
by evaluating the description length. The search works by evaluating
the change in description length obtained by changing hypotheses (the
particular greedy search used is a variant of that in [219, 221]). The
hypotheses are refined with a form of chamfer matching applied within
the area segmented as belonging to a pedestrian, and a further descrip-
tion length search applied only to silhouettes yields a final count of
pedestrians.
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Fig. 3.4 The detection and verification process of Leibe and Scheile [220] begins by using
image patches to obtain a posterior on pedestrian position and scale. In turn, this leads
to a putative segmentation (see a, which shows the support map for an image from this
stage, with hypotheses leading to the support map shown as green boxes superimposed on the
image). However, because the consistency model is local, these putative segmentations could,
for example, have extra limbs (see the extra legs in b). Obtaining an accurate count and
segmentation requires the use of global data, supplied by contours and chamfer matching.
However, as we see in c, some false positives lie on top of regions with multiple edges, which
could defeat contour matching; if one matches only to the pixels covered by the support map
(d and e), this effect is less pronounced, and only the correct hypotheses are confirmed (f).
The bottom row shows a series of results. The red box in the center right image is
a true false positive; in the right, the red box is a detect of a pedestrian who does not
appear in the annotation of the image (because marking up example images accurately is
very difficult). Figure from “Pedestrian Detection in Crowded Scenes”, Leibe et al., Proc.
Computer Vision and Pattern Recognition, 2005, c© 2005 IEEE.

3.2 Tracking by matching revisited

Methods for tracking humans by detection follow, in rough outline,
methods for detecting humans. One may use either whole person tem-
plates, or collections of parts, which might be traditional or form a
codebook. However, there are some important variations in the ques-
tion of what appearance model (generative vs. discriminative; inferred
or provided) one uses and how one scores the comparison of the model
with the image.
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3.2.1 Likelihood

Most probabilistic tracking algorithms must compute the likelihood of
some image patch conditioned on the presence of a model at some
point. The easy model to adopt is to produce a template for the patch
from the model parameters, subtract that template from the image,
and assume that the result consists of independent noise – that is,
that the value at each pixel is independent. Whether it is wise to
use this model or not depends on how the template is produced –
for example, a template that does not encode illumination effects is
going to result in a residual whose pixel values are not independent
from one another (see Sullivan et al. for this example [380]), and so
the likelihood model is going to significantly misestimate the image
likelihood.

The problem occurs in a variety of forms. For example, if one
represents an image patch with a series of filter outputs (after, say,
[352, 353]), each element is unlikely to be independent and errors are
unlikely to be independent. Sullivan et al. describe the problem, and
demonstrate a set of actions (including building an illumination model
and estimating correlation between filter outputs) that tend to amelio-
rate it, in the context of face finding [380]. Roth et al. build likelihood
models for vectors of filter outputs using a Gibbs model (known in
other circles as a maximum entropy model or a conditional expo-
nential model; see Section 2.3.1.1) [329]. Their method is trained
using an algorithm due to Liu et al. ([234]; see also [228], and one might
compare variants of iterative scaling [36, 81, 183, 297, 326]). There is
some evidence that the likelihood produced using this model is more
tightly tuned to – in their example – the presence and location of a
leg. The model is used by Sigal et al. ([354]; Section 2.3.1.1) to obtain
tracks of people in 3D from three views.

While it is clear that there is an issue here, it is a bit uncertain how
significant it is. I am not aware of clear evidence that better tracking or
localization results from being careful about this point, and am inclined
to believe that the rough-and-ready nature of current likelihood models
is not a major problem.
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3.2.2 Whole object templates

Toyama and Blake encode image likelihoods using a mixture built out
of templates, which they call exemplars [396, 397]. Assume we have a
single template – which could be a curve, or an edge map, or some such.
These templates may be subject to the action of some (perhaps local)
group, for example translations, rotations, scale or deformations. We
model the likelihood of an image patch given a template and its defor-
mation with an exponential distribution on distance between the image
patch and the deformed template (one could regard this as a simplified
maximum entropy model; we are not aware of successful attempts to
add complexity at this point). The normalizing constant is estimated
with Laplace’s method. Multiple templates can be used to encode the
important possible appearances of the foreground object. State is now
(a) the template and (b) the deformation parameters, and the likeli-
hood can be evaluated conditioned on state as above.

We can think of this method as a collection of template match-
ers linked over time with a dynamical model. The templates, and the
dynamical model, are learned from training sequences. Because we are
modelling the foreground, the training sequences can be chosen so that
their background is simple, so that responses from (say) edge, curve,
and the like detectors all originate on the moving person. Choosing tem-
plates now becomes a matter of clustering. Once templates have been
chosen, a dynamical model is estimated by counting; authors do not dis-
cuss this point, but it seems likely that some form of smoothing would
be useful, because if one has many templates and relatively short train-
ing sequences, observing that one template never follows another does
not establish the probability of the event is zero. Smoothing techniques
for problems of this form are a popular tool in the statistical natu-
ral language community, and several appear in Manning and Schutze’s
book [245].

What makes the resulting method attractive is that it relies on fore-
ground enhancement – the template groups together image components
that, taken together, imply a person is present. The main difficulty with
the method is that many templates may be needed to cover all views
of a moving person. Furthermore, inferring state may be quite difficult.
Authors use a particle filter; but if one views a particle filter as a type
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Fig. 3.5 Toyama and Blake [397, 396] track a 2D model of a person by learning a set
of templates – which they call exemplars – from other sequences of moving people. The
image consists of a deformed template and noise, and state is given by which template is
rendered, and the deformation through which the template is rendered. The likelihood is
obtained from a comparison between the template and the image. Tracking uses a particle
filter. On the top, a typical set of templates, consisting of edge points (one may also use
curves, region textures, and so on). On the lower left, a track displayed by rendering
the template deformation pair with the largest posterior. On the lower right, a track of
the same sequence obtained with some frames blank; notice that the dynamical model fills
in reasonable templates, suggesting that such a tracker could be robust to brief occlusions.
Figures 3, 6 and 7 from: K. Toyama and A. Blake, “Probabilistic Tracking with Exemplars
in a Metric Space”, International Journal of Computer Vision, 48, 1, 9-19, 2002 c© 2002
Springer. Reprinted by kind permission of Springer Science and Business Media.

of randomized search started using dynamics, as above, then it is clear
that this search will be more difficult as the movement is less predictable
and as the number of templates increases. Part of the difficulty is that
the likelihood may change quite sharply with relatively small changes
in transformation parameters.

Spatial templates can be used to identify key points on the body.
Sullivan and Carlsson encode a motion sequence (of a tennis player)
using a small set of templates, chosen to represent many frames
well [381]. These templates are then marked up with key points on the
body, and matched to frames using a score of edge distance that yields
pointwise correspondence; they show that a rough face and torso track,
obtained using a particle filter, improves the correspondence. The key
points are transferred to the markup, and the correspondence between
edge points is used to deform the matched template to line up with
the image; this deformation carries the keypoints along. Finally, the
configuration of the keypoints is significantly improved using a particle

daf
New Stamp

daf
New Stamp



156 Tracking: Data Association for Human Tracking

filter for backward smoothing. Loy et al. show that such transferred
keypoints can be used to produce a three dimensional reconstruction
of the configuration of the body [239].

3.2.3 Traditional parts

We have already discussed tree-structured models of the body
(Section 3.1.3). There are two areas in which tracking humans by detec-
tion varies from human finding. The first is in how one models temporal
and spatial relations, which can easily lead to intractable models. The
second is in whether the appearance model is supplied or inferred.

3.2.3.1 Complex spatio-temporal relations

The advantage of a tree-structured kinematic model, that one can use
dynamic programming for detection, extends to a mixture of such trees.
However, adding temporal dependencies produces a structure that does
not allow for simple exact inference, because the state of a limb in frame
t has two parents: the state in time t − 1, and the state of its parent in
frame t (recall Figure 2.8). Ioffe and Forsyth attack this problem with
a form of coordinate ascent on P (X0, . . . ,Xk|Y0, . . . ,Yk) [171]. They
use a mixture of trees as a template. Spatial links are learned from
static images and temporal links simply apply a velocity bound. The
posterior is maximised by an iterative procedure, which interleaves two
steps maximising over space in a particular frame while fixing all others,
and maximising over time for a particular limb segment, while fixing
all other segments. Each step uses dynamic programming. Segments
are assumed to be white, or close; the model doesn’t encode the head
position, which occasionally leads to arms and legs getting confused. As
Figure 3.6 indicates, fair tracks are possible without a dynamical model.
One should see the work of Sigal et al. (Section 2.3.1.1; Figure 2.9) as
involving a similar, but more sophisticated, inference procedure.

3.2.3.2 Known appearance models

This difficulty is quite often ignored, apparently without major con-
sequences. Mori and Malik use no dynamical model, detecting joints
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Fig. 3.6 Ioffe and Forsyth build a 2D model of a person as a set of segments, modelled
using a mixture of trees to capture aspect phenomena [171]. In an image sequence, each
segment except the root has two parents – the corresponding segment in the previous frame,
and that segment’s parent in the model. The appearance model of each individual segment
is crude – segments are light bars of fixed scale. Authors find the best sequence of models
by interleaving optimization over time with optimization over space; the result is a fair
track, despite significant changes in aspect. Figure from “Human Tracking with Mixtures
of Trees”, Ioffe and Forsyth, Proc. Int. Conf. Computer Vision 2001, c© 2001 IEEE.

repeatedly in each frame using the method described in Section 2.2.1;
the result is a fair track of a fast-moving skater [263]. Lee and Neva-
tia use a Markov model of configuration (but not of appearance),
where each body configuration depends only on the previous config-
uration [218]. The model uses the known appearance of skin to identify
faces and hands, and contrast with the background to identify major
limbs and torso. Markov chain Monte Carlo is used to give a random-
ized search for good matches between configuration and image, with
proposals using both forward and backward dynamics.

Agarwal and Triggs build a set of dynamical models, each of which
explains a cluster of motion data well; a mixture of these models is then
used to propose the 2D configuration in the i + 1’th frame from the
state in the i’th frame [4]. The models are fit to a reduced dimensional
representation. The question of how one knows which model to use
is dealt with by mixing the models, mixture weights being set by the
current frame. The entropy of these weights tends to be low, as many
2D configurations can arise from only one of their motions. The result
is a model that can make quite accurate dynamical predictions for
their example sequences. The predictions are refined by an optimization
method, as in [362]. The model is a 2D kinematic tree, and likelihood
is evaluated by warping the image backwards, using the current state
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estimate, and comparing that warped image to body part reference
templates that are part of the initialization ([4], p. 61). There is no
information about what appearance model the templates encode; one
could see this method as an extension of the people-finding approach of
Felzenswalb and Huttenlocher [109] that finds local minima suggested
by the dynamical model.

3.2.3.3 Inferred generative appearance models

This leaves us with building a model of appearance. We must choose an
encoding of appearance, and determine what appearance each segment
has. The trackers we have described up to this point train models of
appearance using one or another form of training data; but one could
try to build these models on the sequence being tracked. The advan-
tage of doing so is that these appearance models can be specialized to
the individual being tracked – rather than attempt to encode human
appearance generally, which appears to be difficult. This is the only
place where, for example, we can clearly tell what color clothing is
being worn by the subject.

Ramanan and Forsyth encode appearance using color – the texture
changes produced by shading on folds in clothing make texture descrip-
tors unhelpful – and determine appearance for each segment by cluster-
ing [314]. Their algorithm assumes known scale and known link prob-
abilities. Since individuals don’t change clothing in track sequences,
one can expect that body segments look the same over the sequence,
and so there should be many instances of the true segments in a long
sequence. Furthermore, the correct segments lie in distinctive config-
urations with respect to one another in each frame, if detected. This
constraint is more easily exploited by looking for torso segments first,
because they’re larger and tend to move more slowly. Ramanan and
Forsyth use a filter tuned to parallel edges separated by a particular
image distance to identify candidate torso segments; they then cluster
these and prune clusters that are stationary. They look for arm and
leg segments near each instance of a candidate torso segment, and if
enough are found, declare that the candidate represents a true torso in
appearance. Now the appearance of each arm and leg segment can be
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Fig. 3.7 Ramanan and Forsyth build an appearance model for segments in a 2D model of
a person automatically, using methods described in the text. They then track by detecting
instances of this appearance model in frames and linking instances across time. The advan-
tages of this tracking by detection strategy are that one can identify particular individuals,
recover from occlusions, from errors in the track and from individuals leaving the frame.
The top shows frames from a tracked sequence; on the bottom, appearance models for
each of the three individuals identified by their appearance modelling strategy. Figure from
“Finding and tracking people from the bottom up”, Ramanan and Forsyth Proc. Computer
Vision and Pattern Recognition, 2003, c© 2003 IEEE.

determined by finding segments near the torso that lie in the correct
configuration and have coherent appearance (this is simplified by the
useful observation that left and right arms and left and right legs typ-
ically look the same). Tracking now becomes a straightforward matter
of detecting instances of each model in each frame, and linking those
that meet a velocity constraint.

This displays some advantages of a tracking by detection framework,
and the difficulties that result from relying on a dynamical model.
First, recovery from occlusion, people leaving frame or dropped frames
is straightforward; because we know what each individual looks like, we
can detect the individual when they reappear and link the tracks (this
point is widely acknowledged; see, for example, [80, 267]). Second, track
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errors don’t propagate; when a segment is misidentified in a frame, this
doesn’t fatally contaminate the appearance model. Difficulties occur if
different individuals look the same (although one may be able to deal
with this by instancing) or if we fail to build a model.

3.2.3.4 Inferred discriminative appearance models

Ramanan et al. demonstrate an alternative method of building a model.
Assume that people occasionally adopt a pose that is (a) highly stylized
(and therefore easy to detect) and (b) displays arms and legs clearly (so
that appearance is easy to read off) [312]. Then, if we reliably detect at
least one instance of this pose without false positives, we can read off
an appearance model from the detection. Furthermore, we can make
this appearance model discriminative, because we have a set of pixels
that clearly do lie on the segments, and others that clearly do not. It
is an empirical property that people do seem to adopt such poses, even
in sequences of quite complex motions. They are relatively straightfor-
ward to detect by matching an edge template using a pictorial structure
model. Notice that we are helped by the detection regime here – we
don’t need to detect every instance, just enough to build an appearance
model, but we don’t want false positives. Ramanan et al. use logistic
regression to build discriminative models for each limb segment, then
a pictorial structure model to detect. Again, tracking is a simple mat-
ter of detecting instances of the model and linking those that meet
a velocity constraint. These discriminative models significantly reduce
the difficulty of searching for an instance of a person, because much
of the image is discarded by the models. In particular, the models can
emphasize aspects of appearance that distinguish a particular individ-
ual from that individual’s background. In his thesis, Ramanan shows
that a discriminative model of appearance results in significantly better
tracking behaviour (Figure 3.10).

3.2.4 Parts as codebooks

Song et al. use a variant of tree-structured models to identify human
motion. They identify local image flows at interest points in an image,
using the Lucas-Tomasi-Kanade procedure for identifying and tracking
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Fig. 3.8 Ramanan et al. demonstrate that one can build appearance models by looking for
human configurations that show all limbs and are easily detected [312]. It turns out that,
even in quite short sequences of people engaging in quite extreme behaviour, one can find
lateral walking views. Top: These views can be detected by using a pictorial structure model
on an edge-based representation, using quite low entropy links to impose the requirement
that one has a lateral view of walking. This detector is tuned to produce no false positives –
false negatives are quite acceptable, as long as one instance is found. Bottom: Once an
instance has been found, we have the basis of a discriminative appearance model, because
we know what each limb segment looks like and we have a lot of pixels that do not lie
on a limb segment. Ramanan et al. build a discriminative appearance model for each body
segment using logistic regression, then apply a pictorial structure model to the output of this
process – so that a good segment match contains many pixels where P (segment|pixel values)
are high. The resulting tracker is illustrated in Figure 3.9. Figure from “Strike a Pose:
Tracking People by Finding Stylized Poses”, Ramanan et al. Proc. Computer Vision and
Pattern Recognition, 2005, c© 2005 IEEE.

localizable points [368, 369]. For a fixed view of a fixed activity,
flows at various interest points on the body are strongly related, and
discriminative. They build a triangulated graph, whose nodes repre-
sent the state of each interest point on the body and whose edges repre-
sent the existence of a probabilistic relation between the nodes. Because
this graph is triangulated, the junction tree is straightforward to find
and inference is relatively simple (see, for example, [181]). They then
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Fig. 3.9 Frames from sequences tracked with the methods of Ramanan et al., where a
discriminative appearance model is built using a specialized detector (Figure 3.8), and then
detected in each frame using a pictorial structures model. The figure shows commercial
sports footage with fast and extreme motions. On the top, results from a 300 frame sequence
of a baseball pitch from the 2002 World Series. On the bottom, results from the complete
medal-winning performance of Michelle Kwan from the 1998 Winter Olympics. We label
frame numbers from the 7600-frame sequence. For each sequence, the system first runs a
walking pose finder on each frame, and uses the single frame with the best score (shown
in the left insets) to train the discriminative appearance models. In the baseball sequence,
the system is able to track through frames with excessive motion blur and interlacing effects
(the center inset). In the skating sequqnce, the system is able to track through extreme
poses for thousands of frames. The process is fully automatic. Figure from Ramanan’s UC
Berkeley PhD thesis, “Tracking People and Recognizing their Activities”, 2005, c© 2005 D.
Ramanan

detect human motion by identifying the best correspondence between
image flow features and graph nodes and testing against a threshold.
One requires multiple models for multiple activities, though how many
models might be needed to cover a wide range of activities and aspects
is a difficult question. The method is effective at identifying human
motion; note that frames are explicitly not linked over time, something
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Fig. 3.10 Ramanan shows that tracking people is easier with an instance-specific model as
opposed to a generic model [315]. The top two rows show detections of a pictorial struc-
ture where parts are modeled with edge templates. The figure shows both the MAP pose –
as boxes – and a visualization of the entire posterior obtained by overlaying translucent,
lightly colored samples (so major peaks in the posterior give strong coloring). Note that the
generic edge model is confused by the texture in the background, as evident by the bumpy
posterior map. The bottom two rows show results using a model specialized to the sub-
ject of the sequence, using methods described above (part appearances are learned from a
stylized detection). This model does a much better job of data association; it eliminates
most of the background pixels. The table quantifies this phenomenon by recording the per-
centage of frames where limbs are accurately localized – clearly the specialized model does
a much better job. Figure from Ramanan’s UC Berkeley PhD thesis, “Tracking People and
Recognizing their Activities”, 2005, c© 2005 D. Ramanan

that doesn’t seem to cause any real difficulties for the method, which
should be seen as an early track-by-detection method.

3.3 Evaluation

There is no current consensus on how to evaluate a tracker, and numer-
ical evaluations are relatively rare; Figure 3.12 shows results from all
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Fig. 3.11 On the left, two triangulated graph models of the human figure. Each node repre-
sents the state of some interest point on the body; because the graph has a triangulated form
and simple cliques, the junction tree is easy to obtain and inference is relatively straight-
forward (one could use dynamic programming on the junction tree). Song et al. use this
representation to detect people engaged in known activities, using learned models to infer
the form of the distributions represented by the edges of the graph [368, 369]. They detect
flow at interest points in the image, then use these models to identify the maximum like-
lihood labelling of the image interest points in terms of the body interest points; detection
is by threshold on the likelihood. On the right, some detection examples. Note the method
is generally successful. Figure from “Unsupervised learning of human motion”, Song et al.
IEEE T-PAMI, 2003, c© 2003 IEEE.

evaluations of which I am aware. There are several numerical evalua-
tions of lifting to 3D; see, for example, [3, 216, 217]. In our opinion, it is
insufficient to simply apply it to several video sequences and show some
resulting frames (a practice fairly widespread until recently). Counting
the number of frames until the tracker fails is unhelpful: First, the
tracker may not fail. Second, the causes of failure are more interest-
ing than the implicit estimate of their frequency, which may be poor.
Third, this sort of test should be conducted on a very large scale to be
informative, and that is seldom practical. Trackers are – or should be –
a means to a larger end, and evaluation should most likely focus on
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Fig. 3.12 On the top left, reports of the percentage of limb segments in the track that
overlay the actual limb segments (D) and that are false alarms (FA) for a series of tracks
using the methods of Ramanan and Forsyth, reported in [314]. On the bottom left, reports
of RMS error of backprojected pose in pixels from the work of Lee and Nevatia [218]. On the
top right, RMS error in joint angle for 500 tracked frames from Agarwal and Triggs; the
zero error indicates a person was not present [5]. On the bottom right, distance between
points on reconstructed 3D models obtained using the methods of Sigal et al. [354] and
tracked motion capture markers supplying ground truth; there are two baselines, the method
of Deutscher et al. [88], which fairly quickly loses track, and belief propagation without part
detectors, which is surprisingly good. Figure from “Tracking loose-limbed people”, Sigal et
al., Proc. Computer Vision and Pattern Recognition, 2004, c© 2004 IEEE. Figure from
“Finding and tracking people from the bottom up”, Ramanan and Forsyth Proc. Computer
Vision and Pattern Recognition, 2003, c© 2003 IEEE. Figure from “Monocular Human
Motion Capture with a Mixture of Regressors”, Agarwal and Triggs, Proc. IEEE Workshop
on Vision for Human Computer Interaction at CVPR’05, 2005, c© 2005 IEEE. Figure from
“Dynamic Human Pose Estimation using Markov Chain Monte Carlo Approach”, Lee and
Nevatia Proc. IEEE Workshop on on Motion and Video Computing, 2005, c© 2005 IEEE.

this point. In this respect, trackers are probably like edge-detectors, in
that detailed evaluation is both very difficult and not wholly relevant.
What matters is whether one can use the resulting representation for
other purposes without too much incovenience.

A fair proxy for this criterion is to regard the tracker as a detector,
and test its accuracy at detection and localization. In particular, if one
has a pool of frames each containing a known number of instances of a
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person, one can (a) compare the correct count with the tracker’s count
and (b) check that the inferred figure is in the right place. The first
test can be conducted on a large scale without making unreasonable
demands on human attention, but the second test is difficult to do on a
large scale. Ramanan and Forsyth use these criteria; their criterion for
whether a particular body segment is in the right place is to check the
predicted segment intersects the image segment (which is a generous
test) [314, 354].

Lee and Nevatia evaluate reprojection error for the tracked per-
son [218]. There might be some difficulty in using this approach on a
large scale. Sigal et al construct a 3D reconstruction, and so can report
the distance in millimetres between the true and expected positions
(predicted from the posterior) of markers [354]. Agarwal and Triggs
give the RMS error in joint angles compared to motion capture on a
500 frame sequence [5].

There is little consensus on what RMS errors actually mean in terms
of the quality of reported motion. There is some information in [17],
which evaluates compression of motion capture; this boils down to the
fact that very small RMS errors in joint position indicate that the
motion is acceptable, but quite large errors are hard to evaluate. There
is no information on what errors in joint angle mean.



4
Motion Synthesis

There are a variety of reasons to synthesize convincing looking human
motion. Game platforms are now very powerful and players demand
games with very rich, complex environments, which might include large
numbers of non-player characters (NPC’s – which are controlled by
the game engine) engaged in a variety of activities. These figures need
to move purposefully, react convincingly to impacts, and be able to
change their activities on demand. Ideally, the motions are clean and
look human; players can control characters smoothly; and there are no
jumps or jerks resulting from sudden, unanticipated demands – which
might originate either with a player or with game AI. Typically, this
industry is willing to sacrifice a degree of quality if it can produce a
very large volume of motions, and do so quickly. The film industry has
traditionally been less interested in computational motion synthesis,
largely because human animators – or, for that matter, actors – are
still the best way to get high quality motion. This trend appears to be
changing.

Another, perhaps less frivolous in purpose, is the simulation indus-
try. Commodity graphics hardware has advanced to the point where
many of the “immersive virtual reality” simulation and training
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applications which were proposed during the 1990’s are now actually
becoming quite practical. Many of these applications require environ-
ments that must be populated with humans. Currently, most such
applications make do with minimally realistic human figures, but as
recent computer games have demonstrated it is now possible to render
humans with very realistic static appearance. Variations in rendering
style alter a viewer’s perception of motions [154, 155]. As the charac-
ters’ appearance improves so too does viewer expectations concerning
the characters’ motion. More realistic characters with a more interest-
ing range of behaviors present substantial challenges.

Situation simulations used for training milliary, rescue, and other
hazardous-duty personnel are currently predominantly populated by
unrealistic human characters. While these characters suffice for some
aspects of training, they still place strong limitations of the simulation’s
potential effectiveness: a fire-rescue worker’s response to a mannequin
with the word “victim” is fundamentally different to the response that
would be elicited by a character that looks and behaves like a fright-
ened 10 year old child. Similar, but more gruesome, arguments can be
advanced concerning the need for realistic humans in combat simula-
tions [432, 433]. In either case, the desired goal is that the user become
immersed in the simulation to the point where they behave as if the
situation were real, and we believe that realistic simulated humans are
required for this to happen.

Finally, an understanding of synthesizing accurate looking human
motions may yield insight into the structure of motions. Possible ben-
efits for the computer vision community include dynamical models for
tracking humans, methods for determining whether a motion is human
or not, and insights into action representation.

4.1 Fundamental notions

4.1.1 The motion capture process

Motion capture refers to special arrangements made to measure the
configuration of a human body with (relatively) non-invasive processes.
Early systems involved instrumented exoskeletons (the method is now
usually seen as too invasive to be useful except in special cases) or
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magnetic transducers in a calibrated magnetic field (the method is now
usually seen as unreliable in large spaces). More recent systems involve
optical markers. One can use either passive markers (for example,
make people wear tight-fitting black clothing with small white spots
on them) or active markers (for example, flashing infrared lights
attached to the body). A collection of cameras views some open space
within which people wearing markers move around. The 3D configu-
ration of the markers is reconstructed for each individual; this is then
cleaned up (to remove bad matches, etc.; see below) and mapped to an
appropriate skeleton.

4.1.1.1 Engineering issues

Motion capture is a complex and sophisticated technology; typical mod-
ern motion capture setups require a substantial quantity of skilled input
to produce data, and there have been many unsuccessful attempts to
build systems (or even to use commercial systems) within the academic
community.

There are three main sources of difficulty. First, one requires high
resolution, both in time and in space. High temporal resolution is
required to localize in time the sharp accelerations caused both by con-
tacts and by some kinds of motion – hitting, jumping, etc. Insufficient
temporal resolution results in “squashy” motions, and 120Hz cameras
are now common. There are attendant difficulties of getting pixels out
of the camera fast enough. It is now typical to use cameras that produce
only reports of marker position, rather than full frames of video. High
spatial resolution is required to avoid “pops” – a fast snapping move-
ment from one frame to the next that can be the result of spatial noise –
and jittery looking movement. The result is significant demands on the
camera system, because it is desirable that each marker is seen by at
least two cameras. This is difficult to achieve when there are many peo-
ple because the body parts occlude one another. Furthermore, actors
must move in a relatively large space, particularly if one wants to cap-
ture fast movements like running. The result of all this is that there
must be many cameras, all kept very well calibrated; and because they
are far from the markers, the cameras must have high resolution.
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The second difficulty is data association. One must determine
which reported marker position in which frame corresponds to a par-
ticular marker location on the body. Helpful cues include: camera cali-
bration (which gives epipolar constraints); the relatively fast frame rate
(meaning that nearest neighbours often propagates marker identities
well); and the fact that some aspects of the geometry of the figure to be
reconstructed are known. Difficulties include: the sheer volume of mea-
surements (meaning that there is a good chance that there are many
views in which epipolar constraints are not as helpful as one would
want); the possibility that some markers are seen in only some views
(meaning one cannot afford to simply throw away reports); the fact
that some movements are fast (meaning that nearest neighbours can
be misleading). There is a tendency, in our opinion premature, to feel
this problem is solved (but see, for example, [200]).

The third difficulty is missing markers. To be reconstructed, a
marker needs to be visible to at least two cameras with sufficient base-
line, and the correspondence needs to be unambiguous. Occasionally,
this isn’t the case, usually as a result of occlusion by other bodies or
body parts.

4.1.1.2 Cleanup and skeletonization

Typical workflow involves capturing 3D point positions for markers,
discounting or possibly correcting any errors in correspondence by
hand, then using software to link markers across time. There are usu-
ally errors, which are again discounted or corrected by hand. Motions
are almost always captured to animate particular, known models. This
means that one must map the representation of motion from the 3D
position of markers to the configuration space of the model, which
is typicaly abstracted as a skeleton – a kinematic tree of joints of
known properties and modelled as points separated by segments of
fixed, known lengths, that approximates the kinematics of the human
body. The anatomy of the major joints of the body is extremely com-
plex, and accurate physical modelling of a body joint may require
many revolute and prismatic joints with many small segments link-
ing them (the shoulder is a particularly nasty example [101, 398], but,
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for example, the drawings in [56] emphasize the complex kinematics of
human joints). This complexity is unmanageable for most purposes,
and so one must choose a much lower dimensional approximation.
Different approximations have different properties – the details are a
matter of folklore – and one chooses based on the needs of the appli-
cation and the number of degrees of freedom of the skeleton. Skele-
tonization is not innocent, and it is usual to use artists to clean up
skeletonized data, essentially by adjusting it until it looks good. The
pernicious practice of discarding point data once it has been skele-
tonized is widespread, and it remains the case that data represented
using one skeleton cannot necessarily be transferred to a different skele-
ton reliably. Reviews of available techniques in motion capture appear
in, for example [42, 135, 235, 251, 258, 355].

4.1.1.3 Configuration representations

For the moment, fix a skeleton. While this isn’t usually an exact rep-
resentation of the body’s kinematics, we will assume that giving the
configuration of this skeleton gives the configuration of the body. The
configuration of the skeleton can be specified either in terms of its
joint angles, or in terms of the position in 3D of the segment end-
points (joint positions). Not every set of points in 3D is a legal set of
segment endpoints (the segments are of fixed lengths), so sets of points
that are a legal set of segment endpoints must meet some skeletal
constraints. The set of all legal configurations of the body is termed
the configuration space; the joint angles are an explicit parametriza-
tion of this space, and sets of points in 3D taken with constraints can
be seen as an implicit representation.

4.1.1.4 Skinning

In animation applications, one wants the motion capture data to drive
some rendered figure – when the actor moves an arm, the virtual char-
acter should do the same. The virtual character is represented as a
pool of textured polygons, and one must determine how the vertices of
these polygons change when the arm is lifted. The process of building
a mapping from configuration – always represented as joint angles for
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this purpose – to polygon vertices is referred to as skinning. Skinning
methods typically determine an appropriate configuration for the skin
for each of a set of example poses, then interpolate [261]. One repre-
sents configuration as joint angles for skinning purposes because using
joint positions is unwieldy (one would have to manage the constraints;
we are not aware of any advantage to be obtained by doing so).

4.1.2 Footskate

An important practical problem is footskate, where the feet of a ren-
dered motion appear to slide on the ground plane. In the vast majority
of actual motions, the feet of the actor stay fixed when they are in
contact with the floor (there are exceptions – skating, various sliding
movements). This property is quite sensitive to measurement problems,
which tend to result in reconstructions where some point quite close
to, but not on, the bottom of the foot is stationary with respect to
the ground. The result is that the reconstructed foot appears to slide
on the ground (and sometimes penetrates it). The effect can be both
noticeable and offensive visually. Footskate can be the result of: poorly
placed markers; markers slipping; errors in correspondence across space
or time; reconstruction errors; or attempts to edit, clean up or modify
the motion. Part of the difficulty is that the requirement that the base
of the foot lie on the ground results in complex and delicate constraints
on the structure of the motion signal at many joints. These constraints
appear to have the property that quite small, quite local changes in the
signal violate them. It is likely that this property is shared by other
kinds of contact constraint (for example, moving with a hand on the
wall), but the issue has not arisen that much in practice to date.

There are methods for cleaning up footskate. Kovar et al. assume
that constraints that identify whether heel or toe of which foot is
planted in which frame (but not where it is planted) are available [208].
Kovar et al. then: choose positions for each planted point, determine
ankle poses to meet these constraints; adjust the root position and
orientation so that the legs can meet the resulting ankles; compute
legs that join the root and the ankle mainly by adjusting angles,
but occasionally by adjusting leg lengths slightly; and then smooth
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the adjustment over multiple frames. The method is effective and
successful.

Ikemoto et al. demonstrate that one can clean up footskate intro-
duced by editing and so on automatically [169]. They build a classifier
that can annotate frames in a collection with toe and heel plant annota-
tions. These annotations are preserved through editing, blending, etc.
When a motion has been assembled from edited frames, the annota-
tions are smoothed over time, and the method then identifies possible
footplant positions automatically by looking at the foot position over
the time period of the footplant. Finally, inverse kinematic methods
(Section 4.1.3) are used to clean up the frames.

4.1.3 Inverse kinematics

Footskate cleanup is an example of a more general problem – adjust
the joint angles of a motion so that it meets some constraints on joint
positions. Assume we have a fixed skeleton; we now wish to clean up
a motion referred to this skeleton, perhaps moving a foot position or
ensuring that a contact occurs between a hand and a doorhandle. This
creates a difficulty for either representation of configuration: if we work
with joint angles, we must obtain joint angles such that the constraint
is met; if we work with joint positions, we must obtain a set of joint
positions that meet both this constraint and the skeletal constraints.
We will confine our discussion to the case of joint positions, which is
more important in practice.

For the moment, let us consider only a single frame of motion. Write
the vector of joint angles as θ, and the joint positions as a function of
joint angles as x(θ). Assume that we would like to meet a set of con-
straints on joint positions g(x) = 0. The problem of inverse kinemat-
ics is to obtain a θ such that g(x(θ)) = 0. The constraint is important
in the formulation, because we hardly ever wish to specify a change in
every joint position. For example, assume we wish to move the elbow
of a figure so it rests on a windowsill – we would like to adjust the kine-
matic configuration so that the elbow lies at a point, but we don’t wish
to specify every joint position to achieve this. Notice there is room
for some confusion here. In the robotics and theoretical kinematics
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literature, the problem is almost always discussed in terms of choosing
joint angles to constrain the endpoint configuration of a manipula-
tor. In graphics applications, the term refers to meeting any kinematic
constraint.

Under some conditions, closed form solutions are available for at
least some parameters (e.g. see [202, 204, 393, 394]). Alternatively, a
solution can be interpolated: D’Souza et al. learn inverse kinematics for
a humanoid robot with locally weighted regression [98], and Schaal et al.
describe learning methods for a variety of robot problems, including
inverse dynamics [337].

More usually, one must see this as a numerical root finding prob-
lem. The update for Newton-Raphson method involves finding a small
change in configuration δθ such that g(x(θ0 + δθ)) = 0. We may be
able to obtain δθ from

0 = g(x(θ0 + δθ))

≈ g(x0 + Jx,θδθ)

≈ g(x0) + Jg,xJx,θδθ

where Jx,θ is the jacobian of x with respect to θ, etc. In the ideal case,
the product of jacobians is square and of full rank, but this seldom
happens. For almost every point in the configuration space, the rank of
the jacobian Jx,θ should be the dimension of the configuration space (if
this isn’t the case, then we have a redundant angle in our parametriza-
tion; we assume that this does not happen). At some points, the rank
of this jacobian will go down – these are the kinematic singularities of
Section 1.4.1. The practical consequence of this is that some position
updates may not be attainable (for example, consider the straightened
elbow of Section 1.4.1; the only instantaneous hand velocity attain-
able is perpendicular to the forearm). The rank of Jg,x may be small.
For example, if our constraint requires that a point be in a particular
place, the rank will be three. This is a manifestation of kinematic
redundancy, which is a major nuisance. A natural strategy to deal
with constraint ambiguity is to obtain a least squares solution for δθ –
but the resulting pose may not be natural (one can use other norms,
see [87]). A second source of difficulties in the optimization problem
are joint limits, which mean that our optimization problem is subject
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to some inequality constraints on the θ. The feasible set of solutions
that meet this constraints is not necessarily convex, which can mean
the general optimization problem is hard.

Kinematic redundancy is a global rather than local matter. There
may be more than one θ such that g(x(θ)) = 0. For example, assume
that we wish to constrain a figure to stand with its feet on the floor
in given spots, and a hand on a given spot on a wall. Typically, there
is either no solution to these constraints – the wall is too far away –
or many. The collection of solutions is rather rich (stand next to a
wall with your hand on the wall; you can move in all sorts of ways
without having your feet move or your hand leave the wall), and could
be continuous or discrete.

All this creates a nasty problem. Applying inverse kinematics on
a frame-by-frame basis may produce solutions at each frame that are
inconsistent (as a result of kinematic redundancy). This is complicated
by the presence of multiple solutions, and the vagaries of root finding.
For example, assume we want a solution where the hand is against the
wall, as above. In frame n, the root finder converges to a solution where
the elbow is below the shoulder; but the start point for frame n + 1 is
slightly different from that for frame n, and the root finder could find a
solution where the elbow is above the shoulder. This sort of behaviour
results in noticeable and annoying “pops” in the motion. The effect can
be countered by adjusting multiple frames simultaneously, but this is
expensive computationally; much of the recent literature is a search for
efficient approximation methods.

The use of inverse kinematics in animation dates to at least the
work of Girard and Maciejewski [130]; see also [131] and [145]. Meth-
ods for handling singularities are discussed in [243]. A good summary
of early work in animation is [23]. Tolani et al. contains a considerable
body of helpful background and review material [393]. Zhao and Badler
approach inverse kinematics as a nonlinear programming problem –
using our notation, find arg min |g(x(θ)) | subject to joint constraints,
etc. – and use a variant of a standard optimization method; it is not
possible to guarantee a global minimum (neither the objective function
nor the constraints are convex) [426]. Incompatible constraints can be
handled by a scheme allocating different priorities to constraints [24].
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Shin et al. obtain a real-time solver for a puppetry application by link-
ing a fast frame-by-frame solver using a mixed analytical-numerical
strategy with a Kalman filter smoother [350]. Joints other than the
shoulder have been studied in some detail [262, 293].

4.1.4 Resolving kinematic ambiguities with examples

The danger here is that one may obtain poses that do not look human.
Motion editing deals with this by being interactive, so that an anima-
tor who doesn’t like the results can fiddle with the constraints until
something better appears (see also [296]). An alternative is to allow
relatively few degrees of freedom – for example, allow the animator to
adjust only one limb at a time – or to require similarity to some refer-
ence pose [384, 422, 427]. This isn’t always practical. An alternative, as
Grochow et al. demonstrate, is to build a probabilistic model of poses
and then obtain the best pose [143].

One can do this as follows (for consistency within this review, our
notation differs from that of Grochow et al.). Write y for a feature
vector describing a pose x (the feature vector could contain such infor-
mation as joint positions, velocities, accelerations, etc.). Write u for the
(unknown) values of a low dimensional parametrization of the space of
poses. Use the subscript i to identify values associated with the i’th
example. Now assume we have a regression model P (y|u,θ) for θ some
parameters (which in this case choose a model and weight components
with respect to one another). We could obtain an inverse kinematic
solution by maximizing

P (y(x),u|θ)

with respect to x and u, subject to some kinematic constraints g(x) = 0.
Notice we need x (the configuration of the body), y (the feature vec-
tor) and u (the low dimensional representation) here. This is because
u does not predict a unique y – we may need to choose a body con-
figuration that is close to, but not on, the low dimensional structure
predicted by the model – and because many poses might have the same
feature representation. The regression model is built using N exam-
ples yi (note we do not know ui for these examples). We assume the



4.1. Fundamental notions 177

examples are independent and identically distributed (note the inde-
pendence assumption needs care with motion data; frames may be cor-
related over quite long timescales), and obtain ui, θ to maximise

P (ui,θ|yi)

Grochow et al. use a scaled gaussian process latent variable model as
a regression model, and note that some simpler models tend to overfit
dramatically. The method produces very good results; authors note
that a form of rough-and-ready smoothing (obtained by interpolating
between parameters obtained with clean training data and training
data with added noise) seems to produce useful models that allow a
greater range of legal poses.

While motion editing does not offer direct insight into represent-
ing motion, the artifacts produced by this work have been useful, and
it has produced several helpful insights. The first is that it is quite
dangerous to require large changes in a motion signal; typically, the
resulting motion path does not look human (e.g. [135]). The second
is that enforcing some criteria – for example, conservation of momen-
tum and angular momentum [349]; requiring the zero-moment point
lies within the support polygon [82, 211, 349] – can improve motion
editing results quite significantly. However, note that one can gener-
ate bad motions without violating any of these constraints, because
motion is the result of extremely complex considerations. The third is
that requiring motion lie close to examples can help produce quite good
results.

4.1.5 Specifying a motion demand

One must specify what is desired to a motion synthesis algorithm. While
synthesis algorithms tend to vary quite widely, there are not many
options for constraints. Geometric constraints may constrain: the
position or position and orientation of the root; the position or position
and orientation of one or more body segments; or, in extreme cases, the
exact configuration of the body (in which case the frame constraint
can be thought of as a keyframe). Geometric constraints may take
various forms involving either equalities or inequalities. For example,
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one may constrain a point to lie on a plane, a line, or a point (which
are all equality constraints), or to lie within a region (an inequality
constraint).

Depending on algorithmic details, constraints may be either exact or
represented as a penalty function. Constraints may be either summary
constraints, applying to the position and orientation of a summary
of configuration such as the overall center of gravity or the root, or
detailed constraints, applying to individual body segments or par-
ticular points on the body. One can apply either instantaneous con-
straints, which constrain at a particular time, or path constraints,
which constrain to a path over a period of time. It is common, but not
universal, to assume that a path constraint comes with timing informa-
tion. It is usual to assume that impossible constraints are not supplied.

Such constraints can be used to sketch out the structure of a motion
in greater or lesser detail, depending on what an algorithm requires. In
most cases, however, they don’t determine the motion. For example, in
some cases quite a precise temporal parametrization of a path may not
determine whether a figure must run or walk. Usually, one would like to
supply relatively few constraints (authoring constraints is a nuisance),
meaning that the resulting motion is usually dramatically ambiguous.
There are almost always very many ways to meet instantaneous sum-
mary constraints for the start and the end of a motion (i.e. start here
at this time, end there at that time). One might dawdle at the start,
then sprint; walk very slowly; run, walk, then run, then dawdle, and
so on.

Annotation constraints are intended to reduce this ambiguity.
These constraints are demands that a motion be of a particular type,
that are painted on the timeline. The interesting issue is how one
encodes the type of a motion. Arikan et al. choose a set of 13 terms
(“run”, “walk”, “jump”, “wave”, “pick up”, “crouch”, “stand”, “turn
left”, “turn right”, “backwards” “reach”, “catch”, “carry”) that appear
to be useful for their dataset [18]. It is desirable to respect the fact
that motions can compose – for example, one can run while carrying –
and they do so by allowing any combination of these terms to be an
annotation. One can visualize one of their annotations as a bit vector,
with 13 entries, one per term. This model ignores the fact that most
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combinations of annotations – e.g. “stand” and “run” – are meaning-
less; this is deliberate, because there isn’t a principled way to build
a space of legal annotations and dependencies between annotations
may result in nasty inference problems. Arikan et al. then mark up a
collection of motion capture data using classifiers. The features are a
representation of a pool of motion frames spanning the frame to be
classified. The classifiers are trained independently, one per term, by
marking up some frames, fitting a classifier, and then repeatedly clas-
sifying all frames, viewing and correcting a sample of labelled motions,
and fitting a new classifier. This process converges quickly, allowing
a large pool of motion to be marked up relatively quickly, probably
because it is easy to view a large pool of animations and correctly
identify mislabelled motions. The result is a pool of frames of motion
capture data, each carrying a vector of 13 bits, each of which is deter-
mined independent of the others. Interestingly, Arikan et al. point out
that, although their model does not exclude inconsistent annotations,
relatively few of the 213 available annotations are actually applied, and
they observe no inconsistent annotations.

4.2 Motion signal processing

Think of a motion as a time-parametrized path on some space describ-
ing kinematic configuration. Now assume we have two such paths that
are “close”. Assume we have a good correspondence between the paths.
We expect that a convex combination of corresponding frames may
result in a good motion, and that this may still be true if the weights
are time-varying. It turns out that these expectations are largely met.
In fact, a variety of such operations on motion are successful, an obser-
vation originating with Bruderlin and Williams [52].

4.2.1 Temporal scaling and alignment

As Bruderlin and Williams point out, if one runs a motion slightly faster
or slightly slower, the result is still usually an acceptable motions [52].
The advantage of this observation is that we can time align motions.
Assume we have two motions which are sampled at the same rate. An
alignment between the motions is a pair of functions, c1(i) and c2(i),
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which identifies which frame from the first (resp. second) motion to use
at the i’th time-step. Generally, we want to align motions so that, for
some norm, ∥∥∥X(1)

c1(i) − X(2)
c2(i)

∥∥∥
is small. As Kovar and Gleicher show, such an alignment can be com-
puted with dynamic programming [206]. For most reasonable applica-
tions, the norm should be invariant to the root coordinate system of the
frames, and this can be achieved most easily by representing the frames
with joint positions, and computing the minimum sum-of-squared dis-
tances between corresponding points over all Euclidean transformations
using the method of Horn [161, 162]. In practice this alignment should
be thought of as inserting (resp. deleting) frames from each motion so
that the sequences align best. Typically, we are interested in i running
from 1 to k; if we reindex each motion so that the first frames of each
correspond, we typically want constraints on the magnitude of c1(i) − i

and c2(i) − i. Furthermore, we want each correspondence to advance
time, so that for each, c(i) − c(i − 1) ≥ 0. We are not aware of any
alignment methods that interpolate and resample motions to obtain
corresponding frames, but this is a natural extension of the general
blending framework.

4.2.2 Blending, transitions and filtering

Now assume we have two motions with a time alignment. At each
timestep ti, we have a pair of frames that could (we believe) be blended.
To produce a blend effectively, we must determine (a) the root coordi-
nate system of the blended frame and (b) where the two source frames
should lie in that root coordinate system. Assume, for the moment, that
these problems have been solved. Producing a blend is then straight-
forward – we form X(1)

c1(i)φ(ti) + (1 − φ(ti))X
(2)
c2(i) in the appropriate

coordinate system.
Doing all this requires careful handling of the root. If our repre-

sentation contains the root, then we will be able to blend very few
motions because even motions that are similar may occur in different
places, which is clearly a waste of data. However, we cannot simply
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strip every frame of root information, because the root path is often
quite strongly correlated with the body pose. For example, people use
different gaits for fast and slow translational movements. As another
example, an actor trying to move quickly along a root path with a
sharp kink in it typically makes a form of braking and pivoting step.

The solution seems to be to (a) ignore root information for the whole
sequence (rather than per frame; as a result, we preserve velocity and
angular velocity information) and (b) allow small deformations of the
root paths so they line up with one another. It is difficult to be precise
about what “small” means here, though a moderate degree of warping
in both time and space still results in a good motion [206].

The root coordinate system of the blended motion is typically
obtained from the motion demand. One may simply rotate and trans-
late the frames into this coordinate system (as [167] do), or one may
interpolate and smooth the transformations that do so (as [206] do).
Furthermore, as Safonova and Hodgins show, linear blends can produce
motions that are physically inoffensive [336].

4.2.2.1 Multi-way blends

Bruderlin and Williams envisage blending more than two sequences;
doing so leads to better motions [52] (see also [327, 414]). Kovar and
Gleicher give methods to find motions that are similar, and so can
be blended, and to create parametrized blend spaces involving these
examples [207]. Locomotion is a particularly important and common
form of motion. There are several methods to create parameterized
blend spaces for each of walking, running, and standing [213, 294, 295].
These methods can generate realistic transitions between these three
types of motion.

4.2.2.2 Transitions

A particularly important application of blending is to produce tran-
sitions – motions that “link” activities, for example, the slowing pace
one takes when moving from a run to a walk. Lee et al. blend to pro-
duce links in a motion graph (Section 4.3) [215]. Their method assumes
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one has two frames known to be similar, and blends a window in the
future of one frame with a window in the future of the other.

4.2.2.3 Filtering

As Bruderlin and Williams establish, one may apply a filter to joint
angle or joint position signals and obtain a good motion by doing so [52].
Ikemoto and Forsyth show that constant offsets to joint angles some-
times result in good motions as well [168]. As far as we know, there are
no guidelines about what is likely to be successful here.

4.2.2.4 Physical blends

Arikan et al. need to produce transitions between distinct motion
sequences on-line to meet realtime demands [15]. At the point of tran-
sition, there is a discontinuity as the motion jumps from the last frame
of the working sequence to the first frame of the next sequence. Arikan
et al. produce a final frame by adding an offset vector to the measured
frames. This offset vector decays with time as a second order linear
system; the discontinuity is avoided by subtracting from the offset at
the transition point, so that the sum of frames and offset has no dis-
continuity.

4.2.2.5 What to blend

It is important to know when two sequences can be blended success-
fully. Lee et al. choose to blend when the distance between a pair of
frames, evaluated as a weighted sum of differences in joint angles, is
small [215]. Wang and Bodenheimer demonstrate that the choice of
weights this algorithm for identifying similar frames is important, and
show that better weights than those used in the original paper can
be learned from data [410]. One could reasonably hope for a more
extensive criterion than just requiring some frames to be close and
this seems like a productive area of study. Wang and Bodenheimer
show that the size of the difference between frames gives some cue
to the length of an appropriate transition, as does the velocity [411].
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Arikan et al. wish to produce motions that look like responses to pushes
or shoves [15]. To do so, they produce many possible transitions to
many distinct sequences, each with a physical deformation, then use a
regression method to determine which best serves the motion demand
encoded by the push. This strategy of searching multiple cases for a
good motion is extended to blends by Ikemoto et al., who produce a
very large range of blends, then test the resulting blended motions to
see which is good [167]. Doing so successfully requires a good method
to evaluate motions, a difficult problem we discuss in Section 5.2.1.

4.2.2.6 Finding similar motions

Current blending methods blend motions that are “close”; this means
we need methods to find such motions. Kovar and Gleicher describe
a method to build fast searches of a motion collection for matching
motions, where a match is defined by time-aligning a pair of motion
sequences and then scoring frame-frame differences in a root-invariant
manner [207]. They use a combinatorial structure (a “match web”) to
encode possible search results, so that search is fast. Time-alignment
and scoring may not reveal good matches – for example, two walks
that are out of phase might look very different, but be good matches –
and Kovar and Gleicher deal with this by repeated matching to match
results.

Forbes and Fiume represent frames of motion on a basis obtained
with weighted PCA (the weights are necessary because small changes
in hip angle can generate large variance in toe position, which gives
PCA basis that behaves badly), and match by first searching for dis-
criminative seed points, then time-aligning the query signal with the
motion dataset [113].

These methods work well at matching motions to motion queries,
but the need for a query motion can become burdensome, for example,
if an animator is searching for a motion in a collection. Müller et al.
encode motion frames with binary predicates – for example, is a foot
ahead of, or behind, the plane of the body – and then search for either
precise or soft matches to a predicate [265]. These predicates can be
surprisingly expressive; for example, an appropriate combination can
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recover frames at any phase of a walk (left foot forward and right foot
back, or right foot forward and left foot back; and so on).

Wu et al. cluster frames, then match a sequence of cluster centers
under dynamic time warping [418]. Keogh et al. point out that general
time warping can lead to serious alignment problems, and argue that a
uniform time scale is a generally better model ([196]; see also [57, 195]
and see [194] for an exact indexing method under dynamic time warp-
ing). They demonstrate an extremely fast method for finding sequences
within a uniform time scale of a given sequence, using a combination
of bounds and R-trees.

4.2.2.7 Difficulties with blending

Assume we have two motions both captured at the same frequency.
Both contain temporally localized large accelerations (for example, they
might be grabbing or hitting motions). The temporal parametrization
of the motions is slightly different, meaning that the samples are aligned
slightly differently in time with respect to the motions. Even at the best
possible time alignment, if we blend these motions we expect to lose
some of the structure at high temporal frequencies – which would be
the large accelerations. The result is a motion that can be “squashy” in
appearance and can lose its temporal crispness. This problem doesn’t
always occur, and might be manageable if one is careful (for example,
it might be worth reconstructing motions using some form of interpo-
lation, resampling at very high frequencies, then aligning the resam-
pled motions). This problem plagues attempts to synthesize motions
with dimension reduction methods, too, again because the synthesized
motions are averages of several examples.

4.3 Motion graphs

Motion capture data is used in very large quantities by, for example, the
movie and computer game industries. For each title that will contain
human motion, an appropriate script of motions is produced; typically,
this involves a relatively small set of “complete” motions that can be
joined up in a variety of different ways. This script is captured, and then
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motions are generated within the game by attaching an appropriate set
of these motion building blocks together. Motions captured for a par-
ticular title are then usually discarded as re-use presents both economic
and legal difficulties.

This suggests a form of directed graph structure encoding legal tran-
sitions between motions. The attraction is that if we have such a graph,
then any path is a legal motion; thus, with some luck, much of the work
of motion synthesis could be done in advance. Furthermore, it may be
possible to issue quality guarantees for any synthesized motion if we can
do so locally within the graph. This hope has not yet materialized, but
remains an attraction of the representation. Another attraction of this
approach is that it can be used to synthesize more than just motions;
for example, Stone et al. show that one can use a similar approach to
synthesize both motion and synchronized audio for utterances from a
synthetic character [378].

There are several ways to implement this graph structure, but the
important matter here is a representation of legal motion transitions.
The simplest, which we favour as a conceptual (but not necessarily
computational) device is to regard every frame of motion as a node
and insert a directed edge from a frame to any frame that could suc-
ceed it. We will call this object a motion graph, and always have this
representation in mind when we use the term. An alternative repre-
sentation is to build a set of unique clips (runs of frames where there
is no choice of successor – one could build these by clumping together
nodes in the previous representation that have only one successor), use
the unique clips as edges and make choice points into nodes. In this
representation, one thinks of running one clip which ends in a node
where we can choose which clip to run next. Finally, we could make
each clip be a node, and then insert edges between nodes that allow a
cut. Here we must be careful with the semantics, because there could
be more than one edge from node to node – it may be possible to cut
from clip A to clip B in different ways – and our edges need to carry
information about where they leave the source clip and where they
arrive at in the target clip. There is no difference of substance between
the representations; we favour the first, as we find it easier to think
about.
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4.3.1 Building a motion graph

A set of observed motion sequences is a motion graph (there is a pool of
frames, and a set of observed edges). This graph can be made signifi-
cantly more useful by adding directed edges – which we call computed
edges – from each frame to any frame that could succeed it in some
sequence. Typically, we do so by identifying places where we can build
a transition – a sequence of frames that starts at one frame in the
graph (say, frame Ai in sequence A), ends at another (Bj in sequence
B), and joins the frames preceding the start to those succeeding finish
in a natural motion – and blending as in Section 4.2.2 to build these
transitions. This involves adding frames of interpolated motion.

4.3.1.1 Links by transitions

Kovar et al. build links by testing pairs of frames Ai and Bj to tell
whether a transition of fixed length is possible between them, then
building that transition [205]. They compare a window of fixed length
into the future of frame A with a window of the same length into
the past of frame B. Each window is represented as a set of points in
3D, and there are implicit correspondences. The distance is then the
minimum sum of weighted squared distances between corresponding
points available by choice of rigid-body transformation applied to one
sequence. The weights are necessary because errors in some joint posi-
tions appear to be more noticeable than errors in other positions. This
distance is computed for every pair of frames for which it exists (the
future or the past might be too short). They build transitions between
pairs of frames where the distance is a local minimum (the topology
being supplied by the order of frames in the original sequences) and
is lower than a threshold. The transition is built by aligning the win-
dows with a rigid body transformation, then blending them. Footskate
is avoided by identifying frames with footplant constraints, and blend-
ing in such a way as to preserve these constraints. There is no time or
space deformation. If the motion graph is to be used in game appli-
cations, there is real value in allowing a designer to interact with this
process, as Gleicher et al. show [133]. In this work, the designer can
choose among possible “to” frames for a given “from” frame, and can
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disallow (resp. allow) transitions suggested (resp. discouraged) by the
criterion above.

Links by similarity: Lee et al. test for a possible link from Ai to Bj

by testing a distance between Ai and Bj−1, the logic being that if these
two are sufficiently similar, then their futures could be interchanged
([215]; see also Section 4.2.2). Notice that this suggests that if Ai can
be linked with Bj , then we should be able to link from Bj to Ai+1. The
distance is obtained as a weighted sum of differences in joint angles,
summed with differences in velocities at various points across the body
(the choice of weights is important; see below). Two frames can then
be linked if the distance is sufficiently small, the velocity term ensuring
that the temporal ordering of motion is respected. Links between frames
with dissimilar contact states, or that are not local maxima (again, the
topology is given by the order of frames in the original sequences), are
pruned.

Arikan and Forsyth represent frames as a sets of points in 3D in a
coordinate frame centered on the torso, and obtain a distance by sum-
ming squared differences in positions and velocities in that frame taken
together with the differences in velocity and acceleration of the torso
frame itself [16]. Any edge where that distance lies below a thresh-
old is inserted as a computed edge, with the direction being obtained
from considerations of smoothness as below. They do not require any
particular combinatorial structure in their graph, and so do not post
process.

There are some tricks to building motion graphs that are not men-
tioned in the literature. It is important to keep carefully in mind that
edges are directed. One should not confuse directedness of edges with
symmetry in distances. If Ai and Bj are similar, that means that four
motion sequences are acceptable: . . .Ai−1AiAi+1 . . ., . . .Ai−1AiAi+1 . . .,
. . .Ai−1AiBj+1 . . ., and . . .Bj−1BjAi+1 . . . (we do not count motions
where Ai and Bj are substituted for one another).

Cleanup: Some applications require a fast decision at each choice
point, meaning it may be hard to look far ahead in the graph when
making that decision. In these cases, it is helpful to remove nodes that
lack outgoing edges and graph components that cannot be escaped (see
Figure 4.1). This is best achieved by computing the strongly connected
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Fig. 4.1 Examples of bad motion graphs. On the left, a motion graph where it is possible to
get stuck in one component. This problem can be avoided by computing strongly connected
components and taking the largest, at the possible cost of excluding some frames. The
graph on the right has the difficulty that it is possible to get caught in a motion where
no alternatives are available for many frames. This presents a difficulty if one wishes
the motion to be responsive. Typically, there is a tension between obtaining high quality
motions – which tend to require relatively few edges in the graph – and responsive motions –
which tend to need as many edges leaving nodes. One would like a graph where the shortest
path between two nodes is guaranteed to be (a) short and (b) good. No current method can
guarantee to produce such a graph.

components of the graph (components such that, for any pair of nodes
in the component, there is a directed path between them) and keeping
the largest [205, 215].

Open issues: The methods we have described have generally been
successful at producing usable motion graphs. There remain a number
of open issues in building a motion graph. Identifying pairs of frames
that allow one to build a transition is probably the right approach,
but one could quibble with current implementations. It remains dif-
ficult to know whether one can or can’t build transitions between a
pair of frames (see Section 4.2.2 above). One has no control over the
diameter – the average length of the shortest path connecting two
points in the graph – of the resulting graph. The diameter is impor-
tant, because it affects the responsiveness of the motion – a synthesis
program could reasonably demand a fast transition from one frame to
another. Because current methods evaluate the goodness of an edge
locally (but not the effect on the graph of incorporating it), they tend
not to produce graphs with good combinatorial properties. Ikemoto et
al. investigated a graph built competently with recent methods, and
show that, for a reasonable choice of threshold, one has both that the
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shortest path between some quite similar frames can be very long, and
that some pairs of frames are connected with very bad short paths [167].
It would be most attractive to have automatic methods that produce
graphs of low diameter with quality guarantees.

4.3.2 Searching a motion graph

We assume that our method of constructing edges is satisfactory, which
means that any path in the motion graph is a motion. We can construct
paths in the motion graph using local or global properties. A local
search involves looking ahead some fixed number of frames. This
means that the motion can respond to inputs, but may mean that
some constraints can’t be met. A global search involves looking at
entire paths. The resulting motion is less responsive, but more easily
constrained.

Local search methods: Kovar et al concentrate on choosing the
next frame of motion, or, equivalently, choosing one of the outgoing
edges at a choice node in the motion graph [205]. Nodes without out-
going edges are a problem; they can be removed with a simple graph
algorithm. The choice of edge can be made in a variety of ways: one
could look at a game controller, look at the local tangent direction of
the desired root path, look at an annotation constraint (Figure 4.2),

Fig. 4.2 These figures show motions synthesized using the motion graph method of Kovar
et al. to meet path constraints and annotation constraints. The demand path is the coloured
path on the ground plane; this is yellow for “walking”, green for “sneaking” and blue for
“martial arts move”. The black path shows the projected root path, and the figures are
frames sampled at even intervals to give a sense of the motion. Figure 8 from: Lucas Kovar
and Michael Gleicher and Frédéric Pighin, “Motion graphs,” SIGGRAPH 02: Proceedings
of the 29th annual conference on Computer graphics and interactive techniques, 2002, 473–
482. c© 2004 ACM, Inc IEEE. Reprinted by permission.
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or use a random variable. This latter approach can generate very good
background motion when used with care. The trick is not to cut between
motion sequences too often (because all methods of constructing motion
graphs have flaws, and a path that contains mainly computed edges in
the motion graph will tend to explore those flaws, and look bad). This
can be achieved, for example, by choosing observed edges with rather
higher probability than computed edges.

Local searches can run into problems. The motion graph might con-
tain some frames that can be reached only by making the right choice
at a choice point many frames away. In this case, choosing based only
on a local criterion could make it impossible to meet some constraints,
or at least meet them in a timely fashion. This is the horizon prob-
lem – a choice now might lead to trouble that is invisible, because
it is on the other side of the horizon separating the future cases we
consider from those we don’t. If the graph were guaranteed by the
method of construction to have a short diameter, this problem would
be much easier to handle. Other methods of coping with the horizon
problem include: using a representation of available futures when mak-
ing a choice; choosing paths using some form of global search; and
enriching the motion graph (the reasoning is that, with enough frames
of motion in the graph, the diameter will be short without any explicit
construction).

Taking the future into account: The body is capable of very fast
accelerations. This suggests that, in a motion graph built with enough
data, there is a fairly short path from any one frame to any other. In
turn, this suggests that the horizon problem wouldn’t be a problem
if the horizon looked forward sufficiently far in time. However, in this
case the range of futures available from a particular frame must be very
large. Lee et al. encode the future in terms of clusters of frames [215].
These clusters form a graph, where each cluster is a node and there is
an edge from one node to another if there is an edge from a frame in
the cluster represented by the “from” node to a frame in the cluster
represented by the “to” node. A given frame in the motion graph is
associated with some node in this cluster graph. For any node in the
cluster graph, we can construct a cluster tree – a tree, rooted at the
node under consideration, that gives the nodes in the cluster graph
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accessible with a fixed number of hops. We now represent the available
futures at a given frame by the cluster tree associated with that frame
(there is a cluster path from the root to each leaf). Motions are
controlled using either a choice based interface (where the animator
chooses at each choice point), a sketch interface – where the sketch
provides a demand signal – or a vision interface – where background
subtracted frames from multiple viewpoints provide a demand signal.
In both the sketch and the vision interface, frames are chosen by scoring
the available cluster paths against the demand signal.

For this method, the choice of clustering criterion depends on the
application. The alternatives are to represent the body relative to the
root of the body, relative to the root of the body in the frame at the root
of the cluster path, or in absolute coordinates. The first case is appropri-
ate in uncluttered environments, where one can reasonably expect that
any frame can occur at any location and in any orientation. The second
can be appropriate when one needs anticipation – for example, synthe-
sizing the run-up to a jump which must leave the ground at a point
chosen during the synthesis procedure; this is a need one associates with
animations in computer games that emphasize complex movements like
jumps. The third case is appropriate to a cluttered environment, where
a frame may be usable in only one spot in the motion domain.

Motion ambiguity: The family of acceptable paths through a
motion graph that meet a given set of motion constraints is usually
very large, a phenomenon we refer to as motion ambiguity. Local
motion ambiguity arises because most motion data collections con-
tain multiple copies of some motions – typically, walking and running –
and that there is a rich collection of links between frames in these
motions. As a result, there is a spectacular number of walking motion
paths available. One could deal with this issue by clustering, but it
isn’t the major source of difficulty. The real problem is an important
general peculiarity, which we call global motion ambiguity, which
occurs because it is very seldom possible to author constraints on a
motion animation that are unambiguous – the number of constraints
required would be unnaturally large. This seems to be a result of the
ways in which people find it natural to think about human motion
(this issue will re-surface in our discussion of activity representations).
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For example, if I am instructed to go from point A to point B in some
period of time, I can do so in a very large number of ways unless the
constraints imply maximum velocity at all times. Some property of my
motor control system is able to “fill in” sensible choices, so that the
ambiguity is not apparent. One consequence of all this is that the hori-
zon problem should not be a problem in practice because there are lots
of paths that meet a set of constraints. Another is that searches for a
global motion path can be complicated, because of the number of paths
available.

Global search methods: Arikan and Forsyth search for com-
plete motion paths that meet given constraints [16]. Such searches are
intrinsically off-line so one must sacrifice the goal of interaction, but
if the search is fast enough it can be used for authoring animations.
Motion ambiguity means that simply applying Dijkstra’s algorithm
doesn’t work, because the algorithm must manage too many intermedi-
ate paths. Arikan and Forsyth use a variant of the motion graph where
each clip of observed motion is a node, and edges represent acceptable
cuts. This means that edges need to be tagged with “from” and “to”
frames within the node, and that there are typically multiple self-edges
and multiple edges between any pair of nodes. They produce a sequence
of compressed version of this graph by clustering edges, so that a pool of
edges with similar “from” and “to” frames can be replaced by a single
edge with approximating “from” and “to” frames in the more heavily
clustered version. They then use a randomized search to find a pool
of paths in the most heavily compressed version of the graph; these
paths are either refined locally to produce paths in less heavily com-
pressed graphs, or modified. The best resulting path is then reported.
They report a trick that can be used to make synthesized motion paths
look as though actors are interacting. One obtains measurements of an
interaction, then uses frame constraints to construct paths into and out
of the interaction.

Low entropy: Human motion appears to be quite predictable in
the sense that one can predict the frame that will occur a short while
in the future rather well using the current frame – we use the term low
temporal entropy to refer to this property. This is in tension with
what we have seen already (that motion constraints are ambiguous,
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and that it is generally fairly easy to move between any two frames in
the motion graph quite quickly). We discuss this point in much greater
detail in Section 5.1.4. This entropy property allows useful approxima-
tions for search algorithms.

Annotation based synthesis: One method to control motion
ambiguity is to require the synthesis process to produce motions that
meet annotation constraints (described in Section 4.1.5). Arikan et al.
use demands that either require the annotation to be present, to be
absent, or are “don’t care” [18]. The annotations are painted on the
timeline. Frames in the motion graph carry annotations, and we must
produce a path that meets position and frame constraints, and carries
the required annotation at the required time. For the moment, assume
that the only geometric constraint is on the start point. Then building
a path that meets annotation constraints is a matter of dynamic pro-
gramming (there are local costs for failing to meet annotation demands,
and frame-frame costs for continuity). The dynamic programming prob-
lem is too hard to solve in that form, because there are too many
frames of motion. Instead, Arikan et al. coarsely quantize the graph
into blocks of frames that form sequences and then use dynamic pro-
gramming on a random subset of these blocks. There are then two
search activities: refining blocks, and changing the (randomly cho-
sen) working set of blocks. This works well, because ambiguity means
that one doesn’t miss much structure by random sampling and low
entropy means that a quantized path represents the actual solution
quite well.

4.3.3 How good is a motion graph?

Methods of producing motion graphs are hard to assess, because it is
quite difficult to tell whether a motion graph is good or bad. Reasonable
criteria include: that there be “few” bad paths (which may not be the
same as having “few” bad links); that most paths are acceptable; that
the diameter of the graph is small; that almost any spatial path can be
synthesized; that there are only short sequences joined at few, well con-
nected choice points (an extremely useful property; see [133]). There
is little detailed work on this topic – among other things, the criteria
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above are mutually contradictory and it isn’t clear how to build algo-
rithms to that do well on some of them.

Reitsma and Pollard have shown how to determine how well a
motion graph makes goals in an environment reachable [316]. They
discretize the state space (environment and rotation of the figure on
the plane), then build a graph on the nodes by recording which node
is reached by leaving each node in the discretized state space using
each clip in the motion graph. Links that pass through obstacles can
be pruned. By building a strongly connected component of this graph,
one can count how many states in the environment are reachable with
the current motion graph. Specific problems can then be identified: for
example, a shortage of stopping and turning motions in Reitsma and
Pollard’s motion graph made it difficult to get their character into tight
spaces.

4.4 Motion primitives

Our very rough model of the space of motions above doesn’t really take
the long time scale structure of motions into account. Such structure is
evident in how people move on a daily basis. One can walk backward
for long distances, but one doesn’t; one can intersperse; for that matter,
some can walk on their hands, but few do for long periods. This sort of
structure needs to be thought of in terms that are probabilistic, rather
than deterministic (because the semantics are that one could but one
tends not to).

A natural method for building models of motion on these time
scales is to identify clusters of motion of the same type and then
consider the statistics of how these motion primitives are strung
together. There are pragmatic advantages to this approach: we can
avoid blending between motions that are obviously different; we can
model and account for long term temporal structure in motion; and
we may be able to compress our representation of motion with the
right choice of primitive model. Finally, a primitive based representa-
tion has some advantages for recognition, and Feng and Perona describe
a method that first matches motor primitives at short timescales, then
identifies the activity by temporal relations between primitives [110].
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In animation, the idea dates at least to the work of Rose et al., who
describe motion verbs – our primitives – and adverbs – parameters
that can be supplied to choose a particular instance from a scattered
data interpolate [327]. The verbs appear to be chosen by hand; within
a particular primitive, motions are aligned (c.f. Section 4.2.2) and then
a scattered data interpolate produces an instance. There is a verb
graph which gives the combinatorial structure of how verbs can be
joined up.

4.4.1 Primitives by segmenting and clustering

Primitives are sometimes called movemes. Matarić et al. represent
motor primitives with force fields used to drive controllers for joint
torque on a rigid-body model of the upper body [247, 248]. These force
fields have a stationary point at a desired hand configuration; differ-
ent force fields can be superposed to obtain different endpoints. The
primitives appear to be chosen by hand. The motions are 3D motion
captured arm movement; segment boundaries are obtained by looking
for points where the sum of squares of velocity at all joints is small.
Del Vecchio et al. define primitives by considering all possible motions
generated by a parametric family of linear time-invariant systems; if
a split of the parameter space results in two sets of motions that are
always distinct, that split can be used to derive primitives [403]. The
definition of the primitives results in a segmentation algorithm, and
authors show that reaching and drawing motions can be distinguished
in this framework.

There is quite a lot of evidence that motions segment and cluster
well – meaning that one can use various segmentation and clustering
processes as intermediate steps in motion synthesis, without serious
difficulties resulting. This is not something one would expect, given
the dimension of most motion representations. Barbic̆ et al. compare
three motion segmenters, each using a purely kinematic representation
of motion [26]. Their method moves along a sequence of frames adding
frames to the pool, computing a representation of the pool using the
first k principal components, and looking for sharp increases in the
residual error of this representation. Their Gaussian mixture model
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segmenter regards frames as IID samples from a Gaussian mixture
model, then computes the mixture component from which a frame
arises. Their probabilistic PCA segmenter works like the PCA seg-
menter, but obtains a normal probability density from the principal
component analysis and then compute the Mahalanobis of new frames
from the mean of this model; this segmenter appears to be the best of
the three. While there is no agreed way to evaluate a motion segmen-
tation, Barbic̆ et al. report segmentations that look good. For our pur-
poses, the most significant point here is that distinct movements tend
to be dramatically distinct – one doesn’t need to look at fine details of
dynamics to segment such motions as “walk”, “stand”, “sit down”
and “run”.

Dimension reduction: It is natural to expect that any primitive
structure in motions could be exposed by reducing the dimension of the
data. Furthermore, dimension reduction methods could yield a conve-
niently compressed encoding of a motion primitive. Fod et al. construct
primitives by segmenting motions at points of low total velocity, then
subjecting the segments to principal component analysis and cluster-
ing [112]. Jenkins and Mataric segment motions using kinematic consid-
erations, then use a variant of Isomap (detailed in [180]) that incorpo-
rates temporal information by reducing distances between frames that
have similar temporal neighbours to obtain an embedding for kine-
matic variables [179]. They cluster in the resulting space to obtain
motion primitives over short temporal scales, then apply isomap again
to obtain primitives on longer temporal scales; they report plausible
motions.

There is other evidence that relatively few measurements can yield
the kinematic configuration of the body – that is, that a low dimensional
representation of configuration applies. Chai and Hodgins demonstrate
a form of video puppetry – where an animated figure is controlled by
observations of an actor – using relatively few markers; this approach
most likely works because motions tend to be confined to a low dimen-
sional subspace [60]. Safonova et al. are able to produce plausible figure
animations using optimization techniques confined to a low-dimensional
space (see [335], Figure 4.3 and Section 4.5.2.3).
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Fig. 4.3 Safonova et al. synthesize motions in low-dimensional spaces, constructed by taking
a fixed number of principal components of static frames [335]. Their work contains extensive
evidence that low-dimensional representations of motion are useful, and appear to fit data
well. On the left, a graph comparing the error (RMS in angles) between the original motion
data and a projection onto this low-dimensional space, for different numbers of principal
components, and averaged over between ten and twenty motions. The curves are coded
with red (for a reconstruction that is not acceptable visually), blue (for a reconstruction
that has minor visual artifacts) and green (for a good reconstruction). Motions are of
several types, including: running, walking, jumping, climbing, stretching, boxing, drinking,
playing football, lifting objects, sitting down and getting up. Each type of motion is encoded
with a different set of principal components. The method appears to display quite good
generalization, as the graph on the right suggests. This shows RMS error in joint angle
for reconstructions with different numbers of principal components for a jumping motion,
with the basis estimated on: (a) the frames being reconstructed (which, not unnaturally,
gives the best result); (b) a set of three similar jumping motions; (c) a set of 20 jumping
motions; (d) a single jumping motion; (e) a mix of behaviours and (f) 20 running motions.
The color coding is the same as for the graph on the left. Notice that, while the basis chosen
clearly should depend on the behaviour (because (f) yields a poor basis), once one has that
accounted for, a basis chosen on a different instance still gives quite a good reconstruction
with a relatively low dimension – the generalization is quite good. Figures 2 and 3 from: Alla
Safonova and Jessica K. Hodgins and Nancy S. Pollard, “Synthesizing physically realistic
human motion in low-dimensional, behavior-specific spaces,” ACM Trans. Graph. Vol 23,
number 3, 2004, 514–521, c© 2004 ACM, Inc IEEE. Reprinted by permission.

4.4.1.1 Difficulties with dimension reduction

Dimension reduction methods can be subject to the same problems that
occur with blending methods. It is hard to ensure that all sequences
used in building a model are time aligned sufficiently precisely that
the high-frequency structure associated with fast, definite movements
doesn’t average out. Squashy-looking motions can result, as can foot-
skate. It is most likely that one should separate out these components
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and then synthesize them independently once the overall structure of
the motion has been established.

4.4.2 Linking segmentation to the primitive model

Segmentation and encoding should interact – we can reasonably expect
a good segmentation results in good primitives, but the other way
works, too; if one has a good representation of each particular prim-
itive, that could drive segmentation. This is now a commonplace in
the machine learning community. Li et al. segment and model motions
simultaneously using a linear dynamical system model of each sepa-
rate primitive and a Markov model to string the primitives together by
specifying the likelihood of encountering a primitive given the previous
primitive [237]. For the moment, assume the segmentation is known
and we wish to identify a primitive from some set of observations that
have been determined to come from that primitive. We assume that
each primitive consists of a sequence of observations Yt, each gener-
ated by a hidden state xt. We would like the system to have second
order dynamics so that the model takes accelerations into account; this
is equivalent to assuming that xt is a linear function of xt−1 and xt−2.
We can obtain a Markovian model by stacking two state vectors to
obtain Xt = [xt,xt−1]

T . The model of each primitive now takes the form

Xt = AtXt−1 + Vt

Yt = BtXt + Wt

where Vt and Wt are normal random variables with known mean and
variance. Notice that At will have the form(

Ut Ut−1

I 0

)

(so that one has the right behaviour from the stacked components of
the state vector). You should compare this model to the HMM’s used
for tracking; we have the same model, but now we wish to obtain the
values of A and B from observations of Yt, rather than estimate the
states. The difficulty here is that the model is not uniquely specified
in this form. For example, assume that Ct is a sequence of matrices
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of full rank, then the state sequence X̂t = CtXt taken with matrices
AtC−1

t and BtC−1
t , has the same likelihood. Li et al deal with this by

insisting that the states be the projection of the observations on to a
subset of the principal components of the observations, and can then
estimate At and Bt with maximum likelihood.

Of course, the segmentation is not known. We will estimate the
segmentation and primitives together with an iterative procedure: fix
the primitives, estimate the best segmentation; now re-estimate the
primitives with that segmentation; etc. This mirrors EM, but one is
now using the maximum likelihood segmentation conditioned on the
primitive parameters as an estimate of the expected segmentation con-
ditioned on the parameters. The segmentation can be obtained with
dynamic programming (Li et al. assume that each primitive emits
at least 60 frames, which complicates the representation only very
slightly). To see that the best segmentation of some sequence of length
N into M primitives of length no shorter than L is available using
dynamic programming, we build a graph whose nodes consist of state-
ments that frames i to i + k of the sequence were produced by prim-
itive j; there can be no more than N2M such nodes. Each node is
labelled with the negative log-likelihood of the relevant sequence under
the relevant dynamical model. There is a directed edge from each node
to any node that can succeed it, labelled with the negative log-likelihood
that the one primitive follows the other under the Markov model. We
now obtain the minimum value path through this (acyclic, directed)
graph using dynamic programming.

The resulting model can be used generatively to produce new
motions. Li et al. obtain their best results by specifying the body
configuration at each change of primitive – so that the model inter-
polates between these frames. This avoids phenomena like drift (which
must occur because of the random noise component) causing minor but
annoying effects like the feet floating above or below the ground.

4.5 Enriching a motion collection

All the methods we have discussed involve “small” changes to existing
motions to obtain new motions that are basically similar. The ideal is
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to have methods that can produce completely new, and good, motions
from constraints and, perhaps, data. Approaches to this area involve
reasoning about the fundamental considerations that produce motion
(as opposed to processes for synthesizing motion to meet immediate
needs). There are two types of method: methods that attempt to obtain
new motions by “large” operations on existing examples, and methods
that use physical and variational criteria to produce novel motions.

4.5.1 Rearranging existing motions

Human motions quite clearly have some properties allowing composi-
tion over the body and over time. These properties are a formidable
source of complexity of a kind that will defeat naive data-driven meth-
ods – for example, to synthesize an actor walking while scratching with
the left hand, do we really need to see this particular action? does
this mean we need to see walking while scratching with the right hand
to synthesize that, too? must we observe scratching different locations
with each hand, too?

4.5.1.1 Motion editing

Gleicher shows that one can usefully edit motions – typically, so that
they meet constraints that are a small revision of constraints met by the
original motion – by adding a displacement [134]. Gleicher minimizes a
measure of the size of the displacement subject to the new constraints.
There is no guarantee that the resulting motion will necessarily look
human, but for small displacements it tends to; this means that the
motion author can manage constraints and update process so that the
resulting motion looks human. The optimization problem is nasty. Lee
and Shin obtain a more manageable optimization problem by represent-
ing the motion as a hierarchical B-spline [214]. The displacement is also
a hierarchical B-spline, and they engage in a coarse-to-fine search across
the hierarchy. The IK solver at the k’th frame at the n’th level now
has the k − 1’th frame at that level and all frames at the n − 1’th level
available to generate a start point and to constrain the solution. Witkin
and Popović modify motions using parametric warps, so that they pass
through keyframes specified by an animator [416]. Shin et al. use similar
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methods to touchup motion to meet physical constraints (for example,
motion not in contact is ballistic and preserves angular momentum),
while sacrificing physical rigor in the formulation for speed [349]; see
also [385, 386]). Motion editing in this way is useful, and there are
several other systems; a review appears in [136].

4.5.1.2 New motions by cut and paste

Simple methods can produce good results for some composition across
the body, but not for all cases. Ikemoto and Forsyth build new motions
from old by cutting arms or upper bodies off one motion and attaching
them to another [168]. Pairs of motions are selected by several different
randomized proposal mechanisms, components transplanted between
them, and the two results then presented to a classifier which attempts
to tag sequences that do not look human. The classifier is quite reliable
when presented with motions that are reasonably similar to examples,
but tends to be less reliable when presented with dramatically different
motions; this is a difficulty, because the whole point of understand-
ing composition is to synthesize good motions that are dramatically
different from examples.

What is important here is that the classifier is necessary; many such
transplants are successful, but some apparently innocuous transplants
generate motions that are extremely bad. It is difficult to be precise
about the source of difficulty, but at least one kind of problem appears
to result from passive reactions. For example, assume the actor punches
his left arm in the air very hard; then there is typically a small transient
wiggle in the right arm. If one transplants the right arm to another
sequence where there is no such punch, the resulting sequence often
looks very bad, with the right arm apparently the culprit. One might
speculate that humans can identify movements that both don’t look like
as though they have been commanded by the central nervous system
and can’t be explained as a passive phenomenon.

4.5.1.3 Motion fill-in by nonparametric regression

The idea that motion of one part of the body leaves a signature in
the motion of other parts of the body is confirmed by work of Pullen
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and Bregler [310], who built a motion synthesis system that allows
animators to sketch part of the motion of the body, and then uses
a non-parametric regression method to fill in the details. Joint angle
signals are segmented at local extrema. The segments are represented at
multiple temporal scales. Animators can then sketch part of a motion –
for example, hip and knee angles at a coarse temporal scale – and the
system then obtains fragments of joint angle for the other joints and
other scales. These are found by matching the fragments of sketched
motion to a motion capture dataset (allowing a degree of scaling in both
time and angle in the matching process). Typically, there are multiple
matches for each fragment. The set of resulting fragments is searched to
produce signals that tend to have as many consecutive fragments –
fragments that succeed one another in the observed data – as possible.
These signals may not be continuous (and usually are not, unless the
fragments are consecutive), so discontinuous joins are smoothed using
a blending technique. Multiple motions can result from this process,
and it is up to the animator to choose the best.

The method produces rather good motions, using examples and
motion demands from the same “type” of activity. Conditioning on
the kind of motion appears to be important – one couldn’t reasonably
expect that it would be possible to synthesize good football motions
from observations of dance – but it is difficult to be precise about what
one is actually conditioning on. The fact the method works can be
used as evidence in support of the idea that motions have some form of
structure that takes in the whole of the body. It is probably unwise to
use this view to argue against a compositional representation of motion,
because the experiments in the paper don’t establish that there is only
one possible path for, say, the upper body given a particular set of
lower body motions.

4.5.1.4 Motion interpolation

In motion interpolation, one attempts to produce motions that inter-
polate between, or extrapolate from, existing motion-capture measure-
ments. A natural procedure is to produce a controller that can track the
measurements and then, when measurements are no longer available,
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produce motions by controlling some body parameters. A variety of
approaches that make use of physical simulation have been developed
along these lines. Controllers that track motion data provide a useful
mechanism for smoothing recorded errors while also adjusting for dis-
turbances not present in the recorded motion [105, 307, 430, 431]. Other
approaches make use of hand designed or optimized controllers that
operate independently from recorded motion [102, 103, 144, 157, 309].
Building controllers that generate human-like motion remains an open
research problem.

4.5.2 Motion from physical considerations

The motion editing methods we have seen do not require that deformed
motions be physical. In fact, these methods are simplifications that
originate in a body of research to generate human motion from consid-
erations of physical constraint and energy. This work originates with
Witkin and Kass, who introduced the use of variational methods,
widely known as spacetime constraints [415].

We have a jointed figure, whose configuration can be represented by
some set of parameters q. These coordinates can be reduced coordi-
nates, where any set of values represents a legal configuration of the
figure – these could be, for example, root coordinates and joint angles.
An alternative is to use generalized coordinates, where not every
choice of values represents a legal configuration of the figure – these
could be, for example, the pose of each separate limb segment; in this
case we need constraints to ensure that the limbs don’t fly apart. The
configuration of this figure is subject to some constraints. For example,
a figure that is sliding on the floor will be constrained to have each foot
on the floor. This figure is subjected to a set of forces and torques f .
Assume the figure is moving for the time interval I. From mechanics,
the motion of this figure achieves an extremal value of the time inte-
gral of the Lagrangian (see, for example [2, 19, 139]). We write the
Lagrangian as L(f(t),q(t),λ, t), where λ are the Lagrange multipli-
ers (which can be interpreted as the coefficients of generalized workless
constraint forces that ensure the motion meets the constraints). Some
constraints are dynamical constraints (which refer to forces, torques,
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momenta and the like); we shall write this set as De(f ,q,λ, t) = 0 and
Di(f ,q,λ, t) ≤ 0. Others are kinematic constraints (which constrain
configuration); we shall write this set of constraints as Ke(q, t) = 0 and
Ki(q, t) ≤ 0.

Let us confine our attention to an interval where we know which
kinematic constraints are active (i.e. which components of Ki are equal
to 0), and write the set of active kinematic constraints including all the
equality constraints as P(q, t) = 0. Write the remaining set of kinematic
inequality constraints as Pi(q, t) < 0. Any physical motion extrem-
izes the Lagrangian subject to these constraints, and, from variational
calculus, we obtain the Euler-Lagrange equations, which are dif-
ferential equations satisfied by any motion that does extremize the
Lagrangian. We adopt the notation where differentiating by a vector
results in a vector of derivatives with respect to each component. Write
the Euler-Lagrange equations as

E(f ,q,λ, t) = 0 =


 d

(
∂L
∂q̇

)

dt − ∂L
∂q − λT ∂P

∂q − f
P(q, t)


.

Notice that we now have algebraic equations that constrain deriva-
tives. Equations of this form are known as differential-algebraic
equations; they have a (well-deserved) reputation for creating nasty
numerical problems (a fair place to start is [150, 151]).

Now we wish to choose a motion that meets the dynamical con-
straints, and where some other criterion – which might measure, for
example, work – is extremised. Write this criterion as∫

G(q, f ,λ, t)dt.

The problem becomes

Maximize
∫

G(q, f ,λ, t)dt

Subject to:

E(f ,q,λ, t) = 0

De(f ,q,λ, t) = 0

Di(f ,q,λ, t) ≤ 0

Pi(q, t) < 0.
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Witkin and Kass did not use the idea to generate human motions,
but demonstrated very attractive animations of a bouncing lamp pro-
duced using this method. There are very serious practical difficulties
in producing animations of human motion like this. The actual min-
imization process might be extremely difficult. In fact, there is no
prospect of getting a useful result by simply dropping this problem
into a commercial optimization package. The state space has complex
geometry caused by the internal degrees of freedom, joint limits and
the like. Contact and frame constraints can produce unpleasant fea-
sible sets, and one should expect the problem not to be convex. One
must encode the function x(t) with some finite dimensional parameter
space, and the choice of encoding may create difficulties; for exam-
ple, contact constraints tend to produce quite high frequency terms
in the motion signal (or, equivalently but rather easier to observe,
smoothing the motion signal tends to lead to footskate). There is some
reason to believe that a coarse-to-fine representation is useful [233].
One may simplify optimization difficulties by choosing simplified char-
acters (e.g. [104, 307, 309, 395]; freefall diving is a particular inter-
est [71, 232]) or by exploiting interaction with an animator (e.g. [68]).
Ngo and Marks produce motions for quite complex characters using
spacetime optimization by building motions out of stimulus-response
pairs – parametric packets of motion that are triggered by some para-
metric test ([275, 276]; see also [249] for other motions built out of
packets). The precise set of packets, and the parameters of those pack-
ets, are chosen using search by a genetic algorithm (see also the work
of Sims [356]). There is no claim that these motions necessarily appear
human.

The choice of objective function can affect the resulting motion
and is by no manner of means obvious. It is occasionally asserted that
human motion should minimize some choice of mechanical energy. One
should place little weight on this idea for most motions because there
are too many other important considerations that shape how we move.
For example, Wu and Popović need a specially crafted objective func-
tion that allows for the enormous energy expenditure required at takeoff
to obtain convincing bird flights [66]. As another example, the energy
saved by using a slow reaching motion might be far outweighed by that
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lost by getting to the target fruit too late. For that matter, even more
energy could be saved by not moving at all; but at some cost. Liu et al.
show a method to obtain simulation parameters from examples [226].

For these reasons, spacetime optimization has not to our knowl-
edge been used to generate complete human motions over long peri-
ods. Rose et al. generate motion transitions – short sequences of
motion that join specified frames “naturally”– using an optimization
procedure that minimizes the total squared torque moving the upper
body [328]. The legs are controlled kinematically, using either man-
ual or automatically supplied constraints for footplants. Anderson and
Pandy describe a simulation of one step of a walk for a highly detailed
dynamic model that produces (using months of supercomputer time) a
pattern of muscle activations that minimize an effort criterion and also
look like human muscle activation patterns ([12]; see also [285]). Space-
time optimization has, however, been of tremendous value in deforming
existing motions.

4.5.2.1 Simplified characters

Popović and Witkin use characters with simplified kinematics,
and model muscle forces explicitly (the muscle is modelled as a
proportional-derivative controller attempting to drive a degree of
freedom to a setpoint) [309]. Their method produces physically plausi-
ble motions that meet constraints and are close to observations. They
represent major features of motion using handles – vector functions of
configuration, typically a map onto some lower dimensional space, the
details of which vary between applications. For example, if one wished
to ensure a motion preserved contact, appropriate handles might be the
position of points on the figure. A spacetime optimization is used to
fit the simplified model to observed motion data, resulting in handles
hs(qs); a second spacetime optimization produces a simplified model
that meets the constraints with handles ht(qt); and the handles for
the observed data are ho(qo). They now seek to produce a final motion
qf with handles hf (qf ) = ho(qo) + (ht(qt) − hs(qs)) (that is, displace
the handles of the original motion with a displacement computed from
the simplified figure).
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They do this by optimizing an objective function that penalizes
mass displacement, which is computed as a sum of squared magni-
tudes of differences in positions between corresponding sample points
on the final motion and the observed motion, weighted by the mass at
that sample point. As a result, degrees of freedom in the final animation
that are not constrained by the handles are derived from the original
motion. The optimization is constrained by the requirement on the han-
dles (above) and physical constraints on the motion. The parameters
are configuration and muscle demands. The spacetime method appears
to benefit considerably from the relatively few degrees of freedom in the
simplified character and the presence of an initial point (the observed
motion).

4.5.2.2 Modified physics

Liu and Popović produce character animations from rough initial
sketches using an optimization method by breaking the motion into
phases, simplifying the physical constraints, and, where necessary,
exploiting the animator’s input [227]. They then identify transitions –
where the figure moves from one set of constraints applying to another –
and require the animator to provide frames for these transitions, which
tend to be a particular source of difficulty for optimization methods.
They must now produce a series of motion clips to fill in between these
transitions. There are two important cases: ballistic motion, where
there is no contact – the body is in flight, as in jumping, diving, etc. –
and constrained motion, where there is some contact. In ballistic
motion, if we use reduced coordinates, then all external forces are due
to gravity (so the acceleration of the center of mass is g) and angular
momentum is conserved. Constrained motions are required to have a
momentum curve of a particular form (Figure 4.4), which is consistent
with biomechanical observations.

The objective function is a sum of three terms: a measure of mass
displacement; a measure of coordinate velocity, which penalizes large
changes in the degrees of freedom to enforce frame-frame coherence; and
a measure of static balance, which penalizes large distances between
the center of mass and the location of point constraints. The objective
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Fig. 4.4 The angular momentum curve for a whole motion for the method of Liu and
Popović [227], showing total angular momentum as a function of time. The motion before
p1 and after p4 is ballistic, so the total angular momentum is a constant. The form
of the momentum curve is taken from biomechanical models [286, 199]. The form is
imposed by smoothly interpolating p1, p2, p3 and p4, requiring that p2 < p1, d2 < d1 and
(p2 − p4)(p3 − p4) < 0. Figure 4.5 shows a motion obtained using this method. Figure 6
from: C. Karen Liu and Zoran Popovic, “Synthesis of complex dynamic character motion
from simple animations,” SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, 2002, c© 2002 ACM, Inc IEEE. Reprinted
by permission.

function and the constraints are functions of q(t) (and its derivatives)
and the control points for the momentum curve. The method does
not constrain forces or torques at joint, and they do not participate
in the objective function, which means that they can be ignored (this
doesn’t mean the motion isn’t physical; it means that we assume that
the body will supply whatever internal forces or torques are required
to follow the motion path). Abe et al. drop the mass displacement
and coordinate velocity terms in favour of a similarity term, and use
a variety of different momentum profiles to produce further variations
on motion capture data [1].
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Fig. 4.5 Top: a motion demand supplied by an animator and bottom a motion synthe-
sized using the procedure of Liu and Popović [227]. The motion is obtained by (a) inferring
constraints from the demand; (b) extracting transitions from an animator; and then (c)
computing a set of clips that meet these transitions and the inferred constraints, have
angular momentum curves of the form of Figure 4.4 and extremize an objective function
that penalizes mass-displacement, coordinate velocities, and out-of-balance configurations.
Figure 7 from: C. Karen Liu and Zoran Popovic, “Synthesis of complex dynamic character
motion from simple animations,” SIGGRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, 2002, c© 2002 ACM, Inc IEEE.
Reprinted by permission.

There is a real advantage to not constraining forces and torques
and not allowing them to participate in the objective function: one
does not need to compute them. This means that computing various
Jacobians that arise in the optimization procedure can be made linear
(rather than quadratic) in the number of degrees of freedom, as Fang
and Pollard show [104].

4.5.2.3 Reduced dimensions

Safonova et al. describe a method for synthesizing motions from vari-
ational considerations using a dimension reduced representation of
configuration [335]. For each “type” of motion (for example, run-
ning, walking, jumping, climbing, stretching, boxing, drinking, play-
ing football, lifting objects, sitting down and getting up), Safonova
et al. construct a basis of principal components for the frames from
that sequence. New motions are now represented using coefficients
on this basis. Motions are obtained by optimizing a sum of three
terms: the first, the integral of summed squared torques, penalizes
effort; the second penalizes, the integral of summed squared velocities
and accelerations, penalizes high-frequency wobbles; and the third, the
summed Mahalanobis distance of coefficients from the mean, penalizes
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frames that are strongly unlike examples. This optimization problem
is considerably simplified, because effort is focused on a small set of
dimensions that are clearly significant and independent. Motions are
specified with initial, final and key frame constraints; time, contact and
pose constraints are also possible. The method imposes torque limits.
The method produces good motions from relatively limited constraints.
To obtain a motion, the “type” of the motion required must be known,
and sufficient constraints must be provided, so the method is most use-
ful in a situation where an animator can interact with the synthesis
procedure.

4.5.2.4 Modifying existing motions

Hodgins and Pollard describe scaling rules that allow a motion that
applies to one character to be transferred to another character,
using methods of dimensional analysis ([156]; for dimensional analysis,
see [28]). Sulejmanpas̆ić and Popović modify existing motions to obtain
revised motions that meet animator demands using a full dynamical
model ([379]; see also [308], which describes a search method to obtain
parameters of a rigid body simulation that is similar to a sketch). The
method produces physical motions; each step of the iteration computes
an update direction for positions, torques, reaction forces, etc. that is
the smallest update to meet a linearized version of the demand. There
is then a line search along the chosen direction to obtain an update that
gives the smallest constraint error. Authors demonstrate that a poor
choice of scaling for the variables significantly complicates obtaining a
solution, and describe an experimental procedure for choosing a scal-
ing. The method produces good motions efficiently, if the demand is
not too far from the original motion.



5
Discussion

5.1 Representations

The question of how one represents the configuration of the body
appears to be important. In tracking applications, the important choice
seems to be whether one tracks 3D or 2D representations, and we dis-
cuss this in some detail below. In many applications one predicts the
configuration of the body from some evidence. Examples include a gen-
erative model of motion for animation; a dynamical model for tracking;
a regression model for lifting from 2D to 3D. There is some reason to
believe that the choice of the coordinates one predicts is important, and
we discuss this point below. Finally, the reader will have noticed alarm-
ingly contradictory evidence on the usefulness of dynamical models in
understanding human motion; we try to resolve this contradiction.

5.1.1 Is 3D configuration ambiguous?

The work of both Taylor and of Barrón and Kakadiaris suggests that
there are discrete ambiguities in 3D body configuration inferred from a
single 2D view (in [29, 30]; see Section 2.2.1). Depending on the view,
how many body segments one accepts, and so on, this ambiguity might
be from 16-fold to 1024-fold. Some ambiguous reconstructions might be
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ruled out by kinematic constraints, but one expects these ambiguities
to manifest themselves in any attempt to recover the body in 3D.

We have seen a variety of strategies to disambiguate reconstruc-
tions. One might have more than one camera (Section 2.1). One might
observe local features that distinguish between a limb pointed towards
and away from the camera (Section 2.2.1; I have in mind the work
of Mori and Malik [263, 264]). One might maintain a potentially mul-
timodal representation of the posterior (Section 2.3). One might use
reconstructions in previous frames (Section 2.2.3.4).

The problem with all this is that there is a body of work that does
not explicitly respect these ambiguities and that does not suffer as a
result. Under just what circumstances is 3D configuration ambiguous?
I believe the picture is complex, and we need to break out cases.

5.1.1.1 Single frames

First, it is clear that the ambiguities exist in a single frame view of
the whole body. One must censor ambiguities using known kinematic
limits, and this means that the extent of the ambiguity is, to an impor-
tant degree, dependent on both the body configuration and the view
direction. The situation is generally worse than one might expect from
our account of geometric methods, because it is usually not possible to
tell the difference between the left and right arms (resp. legs). These
ambiguities are important in practice.

However, in a single frame frontal view of the upper body, there may
be no ambiguity. Left and right arms are easily distinguished. There
are several cases for the arms. First, if the hands are visible and occlude
the torso then the shoulder is not significantly ambiguous – either the
elbow is approximately on the plane of the torso (the one that passes
through shoulders and navel), or it is in front; there is no need to attend
to small angles here. It is possible to get into a configuration where the
elbow is well behind the torso and the hands do not occlude the torso,
but it is neither easy nor natural – one may be able to simply rule
this out as possible but unlikely. Because the forearm is about as long
as the upper arm, either the forearm is approximately parallel to the
plane of the torso, or it is extended toward the camera. Often, this is
required because otherwise the hands would be embedded in the torso;
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when it is not a kinematic necessity, it is uncomfortable. All this – loose
but plausible – argument suggests that 3D reconstruction ambiguities
cannot contribute substantial errors to 3D reconstructions of frontal
views of the upper body, and so explains why Shakhnarovich et al.
[347] don’t need to deal with ambiguities.

5.1.1.2 Short timescales

The tracking literature generally sees the posterior on 3D position given
past 2D measurements (i.e. P (Xi|Y0, . . . ,Yi)) as multimodal, imply-
ing the presence of ambiguities. Managing these modes is the main
thrust of that literature. However, there is some evidence that knowl-
edge of future frames causes these ambiguities to disappear. In Howe’s
work [164], posessing the whole 2D track leads to an unambiguous
3D reconstruction (via dynamic programming, Section 2.2.3.1). Howe
et al. reconstruct 3D by matching to snippets of motion capture, as do
Ramanan and Forsyth [313] (Section 2.2.3.2).

One possible resolution is as follows. 3D configuration (Xi) is a mul-
tiple valued function of 2D configuration (Yi) (which is best thought
of by considering the graph of the function, Figure 5.1). A snippet –
a short run – of frames corresponds to several possible paths on this
graph. However, the process of censoring kinematically unacceptable
reconstructions leads to a complicated structure, where parts of the
graph are excluded. In turn, for most motions, very short runs of frames
are ambiguous, but longer runs are not, because the incorrect paths
wander into parts of the graph that are not available. This point is
remarked on by Sminchisescu and Triggs ([362], p. 372, “In practice,
choosing the wrong minimum rapidly leads to mistracking . . .”), and
may explain the “glitches” of [6] (p. 49).

This model explains why reconstruction on very short timescales
may be ambiguous, while reconstruction on short timescales is not.
The effect depends on the dynamic model, which must make narrow
enough predictions (see Figure 5.1). In turn this may explain why the
3D tracking literature (which uses either no dynamic model or a rather
high entropy dynamic model) finds 3D reconstructions ambiguous.

We must recognize the limits of the available evidence here. All
motion capture collections are small (and, for the foreseeable future,
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Fig. 5.1 Some understanding of the behaviour of ambiguities in reconstructing the 3D con-
figuration of the body (X) from 2D image configuration (Y) can be obtained by thinking
about the graph of the multivalued function X(Y). The shape of this graph depends on the
viewing direction, but it must have singularities and we expect that the process of censoring
kinematically unacceptable reconstructions carves out holes in some of the sheets. While
any single reconstruction may be ambiguous, as in the case shown here, sequences may
not be, assuming that the dynamical model prohibits skips between sheets, etc. This model
suggests several points. First, notice that reconstructing (X1, . . . ,X7) given (Y1, . . . ,Y7) is
not ambiguous. Neither is reconstructing (X4,X5) from (Y4,Y5), for that matter. How-
ever, (X1, . . . ,X4) from (Y1, . . . ,Y4) is ambiguous. Second, the model does not suggest any
difference between reconstructions that use only the past and those that use both the past
and the future. Third, reconstructing X2 conditioned on Y2 and X1 – the procedure of
Agarwal and Triggs [3, 6] – is still ambiguous. This method may encounter serious prob-
lems if it makes the wrong choice at this time, because it will then not be able to explain
the measurement Y5, (which may explain the “glitches” of [6], p. 49). Again, all these
observations require a dynamical model that is relatively tight, something that matching to
snippets – which implements a non-parametric dynamical model – supplies.

all possible motion capture collections will be small compared with the
range of available motions). Furthermore, ambiguities are view depen-
dent in important ways. It is entirely conceivable that research that
finds 3D reconstructions by matching to motion capture simply hasn’t
used enough motion capture data to observe ambiguities, or hasn’t used
the right views of the body. I don’t believe this to be the case, but the
matter needs clearer resolution.
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5.1.1.3 Long timescales

Some ambiguities persist over long timescales, and should be resolved
by better image measurement. The best example is the left-leg/right-leg
ambiguity in lateral views of actions like walking. In principle, there is
an ambiguity at each frame of such a sequence, but dynamic constraints
and camera motion constraints mean that this ambiguity is of the order
of one bit per sequence. Other cases are left-arm/right-arm ambiguity
in lateral views and front/back ambiguity in some frontal views. I do
not know of a complete list of such cases, though it appears that such
a list would be short and valuable.

5.1.1.4 Summary

There is a body of evidence, strongly suggestive though not absolutely
conclusive, that 3D reconstruction from 2D frames has few ambiguities
that persist over any but the shortest timescales. Those that do, can
persist over quite long timescales, and have to do with left/right labels
rather than the configuration. This property depends on the dynamic
model adopted, and requires that one use a snippet of frames.

If I have interpreted this evidence correctly, it suggests that the
proper approach to tracking in 3D is to track in 2D, and then report
an estimate of 3D by matching the 2D track to 3D body configura-
tion snippets. This is because one does not then need to deal explic-
itly with multiple modes in the posterior. There are two cases: one
could reconstruct Xi from (Yi−k, . . . ,Yi+k), or from (Yi−2k, . . . ,Yi).
I do not see strong evidence to distinguish between these cases, but if
one believes that motion is ambiguous at short timescales and unam-
biguous at longer timescales, then there is some advantage to the first
case.

5.1.2 Is human tracking multimodal?

Time, space, and available energy have limited the number of cita-
tions to the vast literature on human tracking. Much of this literature
is about a single point: how to manage inference in the presence of
multimodal posteriors, possibly in a high-dimensional space. The main
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methods are variants of the particle filter, Section 2.3.1. However, other
methods are possible. For example, in a multiple hypothesis tracker,
one Kalman filter keeps track of each of a fixed number mode, and we
must determine methods to prune the number of modes. This method
was used by Cham and Rehg [61], to track a 2D kinematic model of
the body – note that this was adopted explicitly to cope with data
association difficulties, and they make no argument that posteriors for
2D human tracking are intrinsically multimodal. One might maintain
a mixture of gaussians, a mixture of other densities, or some form of
kernel representation; all the options have been thoroughly explored.

A core thesis of this work is that all this effort is unnecessary. We
do not need to deal with multiple modes resulting from data associa-
tion problems, if we deal with data association directly. There are now
excellent tools for doing so, as Section 3 has demonstrated. These tools
support only 2D tracking, however, and we might reasonably wish to
report the configuration of the body in 3D. To do so, we may have
to deal with ambiguities in the likelihood, which will result in multi-
ple modes. As we have argued above (Section 5.1.1), there are several
ways to avoid ambiguity. First, better image measurement may reduce
ambiguity (after Mori and Malik [263, 264]). Second, it is very likely
that 2D tracks allow unambiguous lifts to 3D for “snippets.” Third, for
some situations the ambiguity may not, in fact, appear.

The point is a general one: good features combined with simple
inference (resp. classification) methods seem to be better than bad
features combined with sophisticated methods. Given finite resources,
we should pay more attention to visual features and phenomena than
to the alluring world of statistical algorithms.

5.1.3 What representation of 3D configuration should
be adopted?

There are two major options for representing the configuration of
the body in 3D. One might use joint angles, or one might use joint
positions. But which is better? Apart from the mild complications
in passing from joint positions to joint angles (an entire subject,
Section 4.1.3), the question is basically an empirical one. It is an
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important empirical question that hasn’t received enough attention.
This is because, if one wishes to regress the 3D configuration against
some variable (Section 2.2.3), one needs information about covariance
in the 3D coordinate system.

This need appears in a number of ways, some less obvious than
others. If one is building a straightforward regression, then for some-
thing as high-dimensional as body configuration one is forced to assume
a reduced form (diagonal; a constant scaling of the identity; or some
such) for the error covariance, which is too big to estimate accurately.
If one is building a nearest neighbour method, it is a good idea to
work in coordinates that are largely independent (or, which is the same
thing, to weight distances with an inverse covariance matrix). There is
some evidence that quite low-dimensional representations of motion
are tolerable for some synthesis applications (for example, Safonova
et al. synthesize motion in low-dimensional spaces without major costs
in quality [335]; and see Section 4.4.1). One might think that joint
angles are a better coordinate system, because joint positions are clearly
correlated (some points are a fixed distance apart). There isn’t much
evidence on this point, and all we have favours joint positions as a
representation.

Arikan describes a method to compress motion signals by fitting a
parametric curve to joint position information, clustering the results,
representing each cluster with principal components, and then using a
discrete cosine transform to represent fast phenomena that occur as a
result of contacts [17]. This method is much more effective than com-
pressing any joint angle representation, so much so that the overhead
of inverse kinematics in decompression (which is simplified by attach-
ing an extra vertex to each segment and compressing the overcomplete
representation) presents no problem. The process of clustering motions,
then applying PCA within a cluster, produces a form of decorrelated
representation.

We expect that correlation structure within a motion varies between
types of motion. It isn’t currently possible to be precise about what the
term “type” means here, but a stroll and a walk might be the same
type of motion, whereas a walk and a throw are not. In walking, there
is a characteristic oscillatory motion of both upper and lower body,
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180◦ out of phase with one another. A good parametric representation
of a particular walk might require very few parameters – frequency
and phase might do it. If the intention is to perform kinematic recon-
structions for configurations whose frequencies are well represented by
typical motion capture or video data (in outdoor data, lots of walking,
some running, and other activities very infrequent), then the correla-
tions between joint angles typical of walking are very important.

The correlations observed in walking are very different from those
observed in, say, throwing or striking motions. In walking, the arm
moves, rather roughly, like a pendulum. In some throwing or striking
motions, there is a clear proximal-distal sequence by which the joints
are activated, leading to a whip-like motion (for some cases, see [11,
22, 311]; the effect does not occur in all sports [120]; it can be used in
animation [37]). This means that, for example, a near-straight elbow
implies a particular shoulder position quite accurately, which is quite
unlike walking (where the elbow is always close to straight, whatever
the shoulder position).

There are two issues here. First, talking about correlation requires
some sensible theory about frequencies of events within motions, which
appears to be hard to obtain. We discuss this point below. Second,
assuming that we have some such theory, we should respect it in choice
of regression coordinate system. In particular, we expect that regres-
sion predictions of 3D configuration from 2D will perform better or
worse with different choices of coordinates. This point doesn’t appear
to have been much discussed in the literature, though it may help moti-
vate Shakhnarovich et al.’s work on making locality sensitive hashing
sensitive to sharp changes in predicted parameters [347].

The frequency with which different motions occur is not much dis-
cussed in the literature, but it’s a difficult point with some nasty conse-
quences. For example, one could produce an (apparently) very effective
outdoor surveillance system by simply labelling every activity observed
as walking. This system would be wrong an infinitesimal percentage of
the time, because most of the time people are walking; but its output
would be unhelpful. Recovering accurate labellings of relatively uncom-
mon events is what is required, and this means collecting data is tricky
and model-building is important. For example, in years of informal
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observation of people outside I have never seen a flasher, and can so
presume that the phenomenon is relatively uncommon, but we know
that it represents a significant nuisance that engages authority. Should
we represent what a flasher does with models built from data? if so,
where is the data to come from? if not, how?

The likely differences in covariance structure of different types of
motion suggests that we should impose some sort of hierarchical struc-
ture on motion data. We know this can be done for at least some kinds
of structure and some collections of data, because motion capture data
appears to cluster very well; in many systems, clustering the motion
capture data is a first step, and no bad consequences appear to result.
But there hasn’t been much investigation of what sort of structures are
good. A good structure might make 3D from 2D easier, by using gross
motion phenomena to predict the type of motion and then operating
in an advantageous 3D representation. A good structure might lead to
better dynamical models (Section 5.1.4). And a good structure might
make at least some aspects of a vocabulary for actions or activities
apparent.

5.1.4 What is the status of dynamical models?

The literature contains a series of positions on dynamical models of
motion. The idea that dynamical models are not helpful, or are even
harmful, in tracking is suggested by, among others, the work of Smin-
chisescu and Triggs [362], of Mori and Malik [263, 264], and of Ramanan
et al. [314, 312] (Sections 2.3.2, 2.2.1 and 3.2). This work simply dis-
penses with dynamical models as an unreliable guide to the future
configuration of a person. In fact, Sminchisescu and Triggs suggest
that such dynamical models as have been adopted in the particle filter
tracking literature, have been built more to compensate for weaknesses
in the search process than as predictive models ([362], p. 373). Fur-
thermore, it has been remarkably difficult to build methods that can
reliably tell whether a given motion is a good human motion or not (a
point we discuss in Section 5.2.1).

Dynamical models of human motion have tended to lead to ani-
mations of relatively poor quality (it is unfair to name names).
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One difficulty seems to be that, when one fits a parametric model to
motion capture data, the inevitable slight errors in temporal align-
ment smooth out some high frequency structure, so that motions that
should have fast definition (hitting, jumping, etc.) become “squashy”
in appearance. Sometimes important physical properties of motions are
preserved [336] and sometimes they are not. Often, the motion that
results is ugly.

However, we have quite strong evidence that the dynamics of
motion is constrained. There are several points. First, Sidenbladh et
al. (in [351]) obtain very good tracks from low-dimensional parametric
models fitted to motion capture data; of course, one must be sure that
the person being tracked engages in the activity to which the model
was fit, but this difficulty doesn’t erase the usefulness of the dynamical
model. Second, the fact that both Howe et al. [163] and Ramanan and
Forsyth [313] can lift to 3D by matching multiple frames of motion
capture to multiple frames of image data suggests that some form of
dynamical constraint is present. If there wasn’t much constraint at
the relevant time scales (approx 1/6 second), then some of the video
snippets would not find a good match and the lift would be grossly
inaccurate. This suggests (but does not establish) that motion at short
time scales has a fairly rigid structure. The difficulty regarding this
point as comprehensive is that, in both cases, the collections of video
and of motion capture are quite small – perhaps both sets of authors
were lucky. Third, motion capture data appears to cluster rather well,
as we have said. And fourth, Arikan can compress motion successfully,
by clustering and then compressing snippets of motion about a second
long [17].

There is something here that isn’t as well understood as it needs
to be. I believe the resolution is as follows: at very short time scales
(say, 1/60 s), the number of kinematic configurations that will ever fol-
low a given configuration under any circumstances is probably small.
There is some difficulty being formal, because we don’t really know
what a fair sample of motion is, so it is difficult to talk about the
frequency of events. This difficulty isn’t so significant at very short
timescales; I claim that, whatever one’s model of the frequency of activ-
ities, at very short timescales the conditional entropy of the next frame
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of motion given the past frames is very small. At longer timescales –
say, a second – this language is more difficult to use because one prob-
ably can get from any one body configuration to any other in a second
(if one ignores the root), and one has to deal with the question of how
often particular transitions arise. In current motion capture collections,
given that we think of ourselves as quite mobile, opportunistic movers,
the notable feature is how seldom most transitions occur. In fact, they
occur with frequency zero, which suggests some interesting questions
about smoothing here, quite like those that arise in natural language
problems where most pairs of words do not occur (see [189, 245]).

This view of motion as highly constrained at short timescales is
consistent with the evidence that motion is constrained. But I believe
it is also consistent with the evidence that dynamical models, as cur-
rently practiced, aren’t particularly helpful. If motion behaves as I have
described it, most current dynamical models put almost all of their
probability in the wrong place, which would be the problem. This prob-
lem may be quite difficult to fix. Body configuration appears to occupy
a fairly high-dimensional space, though it is probably confined to a low-
dimensional subset of that space. It is technically quite difficult to build
models that make predictions that are confined to a “small” subset of a
low-dimensional subset of a high-dimensional space, particularly when
one doesn’t know what the low-dimensional subset is. Nonetheless, the
effort may be worthwhile, because good dynamical models of motion
would be valuable in animation. The situation in tracking is less clear –
one might get a better result from efforts to improve appearance mod-
els than from efforts to incorporate improved dynamical models. The
increased understanding of motion that would result from an attempt
to build improved dynamical models is certainly worthwhile.

5.1.5 The space of human motions

As we have seen (Section 4.1.4), one can obtain good kinematic
reconstructions in the presence of ambiguous constraints by requiring
that the reconstruction be close to a space learned from data. This sug-
gests that relatively few available body positions are actually occupied.
This, the fact that motion clusters well (Section 4.3.2; Section 4.4.1),
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and the fact that motion can be compressed effectively [17], suggest
it may be helpful to think about the space of human motions as a
geometrical object.

For the moment, let us adopt some encoding of the state of the body
(the details don’t matter for this discussion, but we’d expect to see the
configuration of the root, the configuration of the body relative to the
root, velocities and most likely accelerations in this encoding). Because
segment lengths don’t vary, because velocities are limited and because
there are torque limits, not every point in this state space represents
a legal motion. It is useful to think of the legal motions as forming
a “sheet” in this space. We make no claim on the topology of this
object, not even that it is a manifold. We can think of motions as func-
tions from time to this space. These functions must meet some obvious
constraints – for example, velocities computed as time derivatives of
kinematic configuration need to be the same as corresponding veloci-
ties recorded in the state vector. We expect other local constraints, too,
resulting from torque limits and the like. We can represent the space
of human motions by all acceptable functions from time to our space.
There should be some form of structure at long time scales – we know,
for example, that it is possible to walk backwards for long distances,
but that it is very seldom done – but shorter time scales are easier to
handle at present.

This object is intimately related to blending. Assume we have two
legal states x1 and x2 that are close. For many such pairs, we can expect
that states that lie on the line segment joining them are also legal.
Another way to put this point is that, if the two states are sufficiently
close, then the vector x2 − x1 should lie on the tangent space at x1.
Now assume we have two observed motions f1(t) and f2(t), which run
for similar time periods and are sufficiently similar to one another (I do
not know how to be precise what this means). We expect – and can
observe in data – that repeated versions of the same movement have
slightly different temporal parametrizations. For example, each step
of a walk can take a slightly different span of time. This means that
we will need to massage the temporal parametrization, which is what
time alignment does. Assume we can place states in correspondence by
a small – again, it isn’t currently possible to be precise – change in
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temporal parametrization τ(t), so that f1(t) is close to f2(τ(t)). Under
these circumstances, we can expect that f1(t) − f2(τ(t)) lies close to
the tangent space to the space of human motions.

We know that good blends can be obtained from nearby motions,
and that viable deformations include filtering angles, adding constant
offsets, deforming the root path, applying a global rigid-body transfor-
mation and applying small time deformations. Can we infer others from
seeing blends as tangents to the space of motions? There is some rea-
son to hope that we can, because all the deformations I have described
form actions of a local group, and this implies a structure to the tangent
space.

5.2 Generalization

Many of the methods we have described can loosely be described as
a statistical view of motion – in essence, we are expecting, usually
implicitly, that a model that is good at representing the motions that
one has seen will be good at representing the motions that one will see.
This property of a model and a dataset is known as generalization
in the machine learning community, where quite strong guarantees are
available if one has an appropriately representative data set and if the
model adopted meets certain criteria (e.g. see [401, 402]). There is no
reason to believe that these guarantees are available in the case of
human motion; it appears likely that they never will be.

This is a problem that has to do with both data and models. There is
an important issue of datasets here that clouds the picture somewhat.
In our opinion, it probably is the case that many significant motion
distinctions are “large” – in the sense that they involve huge changes
in kinematic configuration – and so quite simple clustering and dimen-
sion reduction methods can expose much structure in motion. What
remains uncertain is the extent to which the vocabulary of motions
that are well-behaved in this way can be used to encode what one does
every day – current experimental work covers relatively small ranges
of motion, because motion data is difficult to collect in large volumes.
Furthermore, it isn’t currently possible to collect data without being
intrusive – there are no collections of motion data that can be said
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to represent “what people do”. Finally, there is a significant difficulty
with rare motions. In some applications, not encoding a motion that
people do relatively seldom is entirely appropriate (for most animation
applications, for example, relatively small amounts of sensibly collected
motion data is quite sufficient). In other applications, one should be
able to encode even very rare behaviours (think contortionist), so that
they can be reported.

This difficulty manifests itself in two important, and related tech-
nical problems that are largely unsolved. First, all automatic methods
for scoring motions generalize poorly. Second, data-driven methods for
generating motion cannot produce satisfactory motions that are sig-
nificantly different from the input data (or, equivalently, generalize
poorly). Motions appear to have structural properties – like compo-
sition across the body – that produce a very large range of motions,
too large to sample and observe with current methods. The problem
seems to be that good generalization will require good models for these
properties, and we don’t have them.

5.2.1 Which motions are human?

People are often extremely sensitive to the detailed structure of a
motion. Several researchers have used light-dot displays, also referred
to as biological motion stimuli, to study perception of human move-
ments [121]. The light-dot displays show only dots or patches of light
that move with the main joints of walking figures, but even these mini-
mal cues have been shown to be sufficient for viewers to make detailed
assessments of the nature of both the motion and the underlying
figure [184]. Work by Cutting and Kozlowski showed that viewers easily
recognized friends by their walking gaits on light-dot displays [77]. They
also reported that the gender of unfamiliar walkers was readily iden-
tifiable, even after the number of lights had been reduced to just two
located on the ankles [209]. In a published note, they later explained
that the two light-dot decisions were probably attributable to stride
length [210]. Continuing this work, Barclay, Cutting, and Kozlowski
showed that gender recognition based on walking gait required between
1.6 and 2.7 seconds of display, or about two step cycles [27, 78].
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Not much is known about what inclines people toward or away from
the judgement that a motion is “good” or “natural”. It is known that
the choice of rendering has an effect, with more naturalistic renderings
making people more inclined to reject motions [154, 155].

A device that could tell good, human-like motions from bad
ones would be very useful. One could animate new motions using
hypothesize-and-test using such a device. Ideally, the device might pro-
duce some information about what looks good or bad about the anima-
tion. One could use it to test tracks of activities that had never before
been seen to tell whether the track represented a human motion or a
tracker failure. Ideally, the device might produce some probability that
the observation had come from a person.

Building one is difficult. There have been several attempts. Gen-
eralization – giving an accurate score to motions very different from
the training motions – is a notoriously difficult problem. Ikemoto and
Forsyth use a classifier to evaluate motions produced by a cut-and-
paste method, and find the classifier significantly less accurate on novel
motions [168]. The classifier is trained using both positive and negative
examples. There is some advantage to not using negative examples,
which can be both difficult to obtain and inaccurate. Ren et al. fit an
ensemble of generative models to positive examples; motion is scored
by taking the lowest likelihood over all models to obtain a conserva-
tive score [317]. While the combined model gives the best behaviour in
practice, their ensemble of hidden Markov models (HMM) is almost as
accurate as the combined model. There is no information on general-
ization behaviour.

Arikan et al. use a regression method (built using scattered data
interpolation) to predict the goodness of applying a particular defor-
mation to a particular motion to represent a push or a shove [15].
Their oracle agrees roughly with the behaviour of human observers in
a two-alternative forced-choice test. In particular, the probability that
a human will say a motion is good when the oracle says it is bad, is low.
The probability that a human will say a motion is good when the oracle
says it is good is around 50% (the exact value depends on the study
group). This needs to be compared with the probability that a human
will say that pure motion capture is good, which is approximately the



226 Discussion

same. The logic of their application means that the oracle is never pre-
sented with examples that are strongly different from the training set.

However, if negative examples are available, we expect that mod-
els trained discriminatively are likely to perform better, because they
possess more information about the location of the boundary between
good and bad motion. Ikemoto et al. train several scoring functions
on 400 short motion transitions, annotated as good or bad motions by
hand [167]. Methods include: likelihood under an HMM fitted to pos-
itive motion examples represented by an acceleration feature vector;
logistic regression applied to an acceleration feature vector; the mini-
mum score of this logistic regression and another applied to a feature
that encodes footskate; and a score of footskate. The scoring methods
that encode footskate outperform the others, and the pure footskate
score is the best. There is no information on generalization.

There are several reasons it is difficult to build this device. There is
a painful shortage of useful data. While there is a lot of motion capture
data available, no collection of practical size can explore all that a body
can do. At least in part, the relative poverty of collected motion data
is because one can compose motions across time and across the body –
it is possible to walk while scratching with either hand. The structural
models necessary to encode this property do not yet exist. Some data
may not be as useful as it looks. Arikan et al.’s subjects were inclined
to regard rendered motion capture data as unnatural about half the
time in two-alternative (good/bad) forced choice tests [15]. This may
have to do with the motion capture pipeline. It is hard to get good
marker placements and good measurements, and quite often motion is
cleaned up.

Furthermore, data is encoded in a high-dimensional space, with all
the attendant difficulties, and while we know there are correlations
between dimensions (above), we don’t know much about what they
are, even at the level of practical scientific folklore. To make things
worse, it isn’t clear what features expose the phenomena that make a
motion look good or bad. For example, intuition might suggest that
whether a motion was “physical” is an important criterion, but there
is little evidence in support of this view. Similarly, footskate doesn’t
appear to be much more than a detail, but the presence of footskate
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seems to be quite a good test for whether a motion is good or not.
Finally, the relatively constrained structure of motion (if one accepts
the argument above), means that building a good classifier or scoring
function might be quite difficult, because it must cut out a very small
and complicated portion of a spatio-temporal encoding of motion.

5.3 Resources

Getting good motion capture data requires considerable effort, skill and
expense. Relatively few groups have found it useful to have their own
motion capture studio. For those who wish to, major manufacturers
of motion capture equipment include Vicon (http://www.vicon.com)
and Motion Analysis (http://www.motionanalysis.com). Hodgins’
group at CMU has done a great service to the research community
by collecting and publishing some 1700 motion sequences, available at
http://mocap.cs.cmu.edu/.

There are several other reviews of aspects of human motion. In
animation, Hodgins et al. give a general review of computer anima-
tion [158]; Multon et al. survey computer animation of human walk-
ing [266]; and Gleicher gives a brief survey of animation from examples,
motion capture and motion editing [135].

There are more reviews of tracking methods, none particularly
recent. There is a special issue of Computer Vision and Image Under-
standing dedicated to vision based understanding of shape, appear-
ance and movement (volume 81, 2001). Moeslund and Granum give an
extensive survey of computer vision based methods for human motion
capture [258]. Gleicher and Ferrier give a critical review of meth-
ods to recover 3D configuration from video, concentrating on single
views [132]. Aggarwal et al. review articulated motion understand-
ing [7]; Aggarwal and Cai review human motion analysis [8]. Gavrila
surveys visual analysis of human movement [124]. Hu et al. survey
visual surveillance of object motion and behaviour [166]. Wang and
Singh survey video analysis of human dynamics [409].
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