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1 Introduction
These notes are a heavily precised version of [104]; we did not get figure permissions sorted out in time to sell
copies of those notes here. Most of the citations of that review are preserved.

2 Tracking: Fundamental Notions
Good summary histories include [52, 54, 159]; comprehensive reviews of technique in this context include [22,
35, 115]). Coarse scale trackers include [370, 328].

2.1 Tracking by detection
Faces are natural candidates for tracking by detection. Background subtraction is described in [363, 287, 208,
129, 60, 109, 124, 152, 153, 326, 327]. Allowing a tracker to create new tracks fairly freely, and then telling
good from bad by looking at the future in this way is a traditional, and highly useful, trick in the radar tracking
community (e.g. see the comprehensive book by Blackman and Popoli [35]).

Shadows are a perennial nuisance for background subtraction, but this can be dealt with using a stereoscopic
reconstruction, as Haritaoglu et al. show ([128]; see also [154]).

2.2 Tracking using Flow
Flow based tracking has the advantage that one doesn’t need an explicit model of the appearance of the template.
Cardboard people is due to [160]. Families of flow due to walking can be found in [34]. Yacoob and Davis build
a view independent parametric flow field models to track views of walking humans [366]. As one would expect,
this technique can be combined with others; for example, the W4S system of Haritaoglu et al. uses a “cardboard
people” model to track torso configurations within the regions described above [128].

2.3 Flow models from kinematic models
An alternative method to build such templates is to work in 3D, and exploit the chain rule, as in the work of
Bregler and Malik [49, 50].

2.4 Tracking with Probability
There is an account in [105]. Standard references are [272, 115, 35, 22].

The particle filter is a current favorite method for dealing with multi-modal densities; see [86, 150, 193, 272].
There are other methods: Benes̆ describes a class of nonlinear dynamical model for which the posterior can be
represented with a sufficient statistic of constant finite dimension [31]. Daum extends the class of models for
which this is the case ([80, 81]; see also [283] for an application and [95] for a comparison with the particle
filter).

3 Tracking: Relations between 3D and 2D
3.1 Kinematic Inference with Multiple Views
Important examples include [64, 162, 59, 252, 83, 84, 49, 50, 88, 87, 89, 289, 290, 288, 320, 131, 323, 321,
322, 367, 59, 339]. The most comprehensive and recent discussion of 3D reconstruction from multiple views
appears in two papers [65, 66]. Curiously, although Mori and Malik have shown that one can obtain landmark
positions automatically [220], there appears to be no multiple view reconstruction work that identifies landmarks
in several views and builds a geometric reconstruction this way. Reducing configuration ambiguity is one reason
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to use multiple cameras; another is to keep track of individuals who move out of view of a particular camera.
Currently, this is done at a coarse scale, where people are blobs (e.g. [55, 166, 213]).

3.2 Lifting to 3D
The way that people are imaged means that there are very few cases where a scaled orthographic camera model
is not appropriate. One such case to keep in mind is a person pointing towards the camera; if the hand is quite
close, compared with the length of the arm, one may see distinct perspective effects over the hand and arm and
in extreme cases the hand can occlude much of the body.

Regard each body segment as a cylinder, for the moment of known length. If we know the camera scale,
and can mark each end of the body segment — we might do this by hand, as Taylor [335, 336] does and Barrón
and Kakadiaris [25, 26] do, or by a strategy of matching image patches to marked up images as Mori and Malik
do [220, 221] — then we know the cosine of the angle between the image plane and the axis of the segment,
which means we have the segment in 3D up to a twofold ambiguity and translation in depth. We can reconstruct
each separate segment and obtain an ambiguity of translation in depth (which is important and often forgotten)
and a two-fold ambiguity at each segment.

For the moment, assume we know all segment lengths and the camera scale. We can now reconstruct the body
by obtaining a reconstruction for each segment, and joining them up. Each segment has a single missing degree
of freedom (depth), but the segments must join up, meaning that we have a discrete set of ambiguities. Depending
on circumstances, one might work with from nine to eleven body segments (the head is often omitted; the torso
can reasonably be modelled with several segments), yielding from 512 to 2048 possible reconstructions. These
ambiguities persist for perspective images. Mori and Malik deal with discrete ambiguities by matching [220,
221].

Sminchicescu and Telea compare silhouette to projection to produce a reconstruction from a single view
([310]; see also [305]). Randomized search is a reasonable strategy for attacking the minimization. Sminchisescu
and Triggs describe various methods to bias the likelihood function searched by a sampler so that the state will
move freely between local minima [313, 312, 316]. Sminchisescu and Triggs exploit an explicit representation
of kinematic ambiguities to help this search, by making proposals for large changes of state that have a strong
likelihood of being good [315]. Lee and Cohen use a markov chain Monte Carlo method to search the likelihood,
using both a set of image detectors and a model of kinematic ambiguities to propose moves; this gives a set of
possible reconstructions for the upper body [179] and the whole body [180].

One can lift by nearest neighbour regression. Athitsos and Sclaroff determine 20 kinematic configuration
parameters from an image of a hand by matching the image to a set of examples [17, 18]. A match from a short
2D track to a short 3D track might not be ambiguous [140, 141, 267, 266].

Rosales and Sclaroff use of a collection of local experts (“specialized mappings”) to regress hand configura-
tion against image appearance [277]. Shakhnarovich et al. use parameter sensitive hashing [291]; a version of
this approach can produce full 3D shape estimates [123]. Liu et al. demonstrate a full body reconstruction from
silhouettes in five views using a similar regression model; the reconstruction is not evaluated directly, but is used
to control motion synthesis [271].

Agarwal and Triggs observe that the pose in the previous frames, if correctly computed, should give a good
guide to the current pose — one is unlikely to jump from sheet to sheet in a single frame [1, 4].

3.3 Multiple Modes, Randomized Search and Human Tracking
The core method is the particle filter. We have refrained from an exposition, as the idea is described in detail in
several recent publications (e.g. [86, 272, 193, 150]).

Particle filters should be seen as a form of randomized search. One starts a set of points that tend to be
concentrated around large values of the posterior. These are pushed through the dynamical model, to predict
possible configurations in the data. The result is a sampled representation of the prior. The predictions are
compared to the data, and those that compare well are given higher weights, yielding a sampled representation
of the posterior. This simple view provides some insight into why particle filters in their most basic form are not
particularly well adapted to kinematic tracking.
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There is a problem with dimension. The state vector for most kinematic tracking problems must be high
dimensional. One expects to encounter at least 20 degrees of freedom (one at each knee, two at each hip, three at
each shoulder, one at each elbow and six for the root) and quite possibly many more. This means that mismatches
between the prior and the likelihood can generate serious problems. Such mismatches are likely for three reasons.

First, the body can move quickly and unexpectedly, meaning that probability must be quite widely spread in
the prior to account for large accelerations. It is hard to be clear on how much uncertainty there is in the state
of the body at some time given the past, and there are fair arguments either way. However, fast movements do
occur, and current methods are forced to have fairly diffuse dynamical models to cope with them.

Second, the likelihood has multiple peaks, which can be very narrow. Narrow peaks occur because some body
segments — forearms are a particularly nasty example — have relatively small cross-section in the image, and
so only a small range of body states will place these segments in about the right image configuration. Multiple
peaks occur because there tend to be numerous objects that look somewhat like body segments (long, narrow,
parallel sides, constant colour). We are now using the predictions of the prior to find the largest narrow peak in a
high-dimensional likelihood — for this to have any hope of success, the predictions need to be good or to occur
in very large numbers. But we know the predictions will be poor, because we know people can generate fast,
unexpected movements.

Third, detectors used to produce a likelihood model may be inaccurate. This can result in small errors in
inferred state, which in turn produce potentially large changes in state from frame to frame. As Sminchicescu
and Triggs point out ([314], p. 372), this suggests using a relatively diffuse dynamical model as an insurance
policy.

The key idea in particle filters is the randomized search. One might abandon, or at least de-emphasize,
probabilistic semantics, and focus on building an effective search of the likelihood. The key difficulties are that
the peaks in the likelihood are narrow (and so easy to miss) and that the configuration space is high-dimensional
(so that useful search probes may be difficult to find). The narrow peaks in the likelihood could be dealt with by
annealing, and good search probes may be found by considering the ambiguity of 3D reconstructions.

There are a series of approaches to deal with problems created by the dimension of the state space. First, we
could refine the search using importance sampling methods. Second, we could use sequential inference methods
to obtain more efficient samples of the prior. Third, we could build lower-dimensional dynamical models. Finally,
we could build more complex searches of the likelihood.

Isard and Blake use importance sampling to track hands and forearms [151], using a skin detector to build an
importance function. Rittscher and Blake use importance sampling methods to track contours of motions drawn
from two classes (pure jump and half star jump); the tracker maintains a representation of posterior on the motion
class, which can be used to distinguish between motion classes successfully [273]. Forsyth uses edge detector
responses as a source of proposal mechanisms to find simple boundaries [100], and Zhu et al. — who call the
approach data driven MCMC — use image observations to propose segmentations [345, 344, 378]. We are not
aware of the method being used for kinematic tracking.

Sigal et al. use loopy propagation ( [225, 356, 373]), representing messages passed between nodes using a
set of particles [299], to track a 2D template with links in both space and time.

MacCormick and Isard track hands using partitioned sampling [201]. MacCormick and Blake use this
method to track multiple objects [199, 200], where one needs a method to avoid both tracks lying on the same
object.

Sidenbladh et al. build a 3D model of a human as a kinematic chain, with state encoded as the configuration
and velocity of each element of this chain with respect to its parent, and the root with respect to the camera [298].

Choo and Fleet implement a more extensive search of the posterior using a Markov chain Monte Carlo
(MCMC) method [67].

One difficulty with a sampled model of the posterior is that we don’t know if there are larger values of the
posterior close to each sample. We could regard each sample as a plausible start point for a search of the posterior.
We are now no longer building a set of particles that explicitly represents the posterior in the sense above, but are
using multiple states to represent the prospect that the posterior is multi-modal. Each state lies on a mode in the
posterior, and we attempt to ensure that all modes have a state. The origins of this approach lie with Cham and
Rehg [62], who use it to track a 2D kinematic model of the body.
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More complex models of the posterior appear in [308, 307, 306].
Sminchisescu and Triggs elaborate this search by analysis of the Hessian of the log-posterior [311, 314].

4 Tracking: Data Association for Human Tracking
Early human trackers, which used quite straightforward matching methods, (for example, Hogg’s 1983 pa-
per [137]; Rohr’s 1994 tracker [275]) could produce kinematic tracks for people moving without sudden ac-
celerations on reasonably simple, high-contrast backgrounds if started manually. The advantages of a known,
simple background have been thoroughly explored. The more recent trackers we have described use more com-
plex inference machinery, but without any great change in competence.

Improvements in competence seem to have come with increased attention paid to tracking by detection
schemes. These are well established in, say, face tracking. For example, one can build a fairly satisfactory
face tracker by simply running a face detector on frames, and linking over time; smart linking schemes built
around affine invariant feature patches can result in very satisfactory tracks [304]. Tracking by detection is now
capable of building good human kinematic tracks, without relying on background subtraction.

4.1 Detecting Humans
Approximately half-a-million pedestrians are killed by cars each year (1997 figures, in [112]). Papageorgiou
and Poggio represent 128x64 image windows with a modified wavelet expansion, and present the expansion
to a support vector machine (SVM), which determines whether a pedestrian is present [244]. SVM’s are
classifiers, trained with positive and negative examples. For a brief informative discussion of SVM’s see [347]
or [69]. More extensive information appears in [284, 292, 346], and discussion in the context of a variety of
other classifiers is in [130]. The training data consists of windows with and without people in them; each positive
example is scaled such that the person spans approximately 80 pixels from shoulder to foot. A variety of image
representations are tested, with the modified wavelet expansion applied to colour images performing significantly
better than wavelet expansions applied to grey-level images, low resolution pixel values for grey-level images,
principal components analysis representations of grey-level images, and the like. The strength of these wavelet
features appears to be that they emphasize points that are, rather roughly, outline points. This yields a method for
exploiting the restricted range of contours without explicitly encoding contour templates. The wavelet expansion
can be reduced in dimension to obtain a faster, though somewhat less accurate, matcher. There are several
variants of this approach in the literature [233, 234, 239, 240, 241, 243].

Zhao and Thorpe use stereopsis to segment the image into blocks, then present each block to a neural net-
work [376]. Gavrila describes an approach that matches image contours against a hierarchy of contour templates
using a chamfer distance [111]. Gavrila et al. describe an improved version of this method, using stereo cues and
temporal integration [113]. Broggi et al. describe a method that uses vertical edges, the characteristic appearance
of the head and shoulders, and background subtraction to identify pedestrians [51].

Wu et al. build random field models of image windows with and without a pedestrian, and then detect
using a likelihood ratio [365]. Dalal and Triggs give a comprehensive study of features and their effects on
performance for the pedestrian detection problem [76]. The method that performs best involves a histogram of
oriented gradient responses (aHOG descriptor). The paper compares HOG descriptors with the original method
of Papageorgiou and Poggio [244]; with an extended version of the Haar wavelets of Mohan et al. [215]; with
the PCA-Sift of Ke and Sukthankar ([161]; see also [211]); and with the shape contexts of Belongie et al. [28].
There is considerable detailed information on tuning of features.

Pedestrians also tend to move in quite restricted ways— they are typically either standing or walking. Niyogi
and Adelson point out that, if one forms an XYT image — a stack of frames, registered as to camera motion,
originally due to Baker [21] — these motions produce quite distinctive structures, which can be used to identify
motions [230] or recover some gait parameters [229]. Polana and Nelson consider spatial patterns of motion
energy, which also have a characteristic structure [259]. There is a substantial literature on the characteristic
appearance of human motion fields; a good start is [45, 185, 186, 187, 253, 254, 255, 257, 258, 260]. Particular
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efforts have been directed to periodic motion; one might consult [63, 72, 73, 74, 75, 121, 122, 183, 191, 192,
285, 286, 337].

This characteristic structure can be used to detect pedestrians in a variety of ways. Papageorgiou and Poggio
compute spatial wavelet features for the frame of interest and the four previous frames, stack these into a feature
vector, and present this feature vector to an SVM, as above [242]. The result is a fairly significant improvement
in detection rate for a given false positive rate.

Viola et al. use explicit motion features — obtained by computing spatial averages of differences between
a frame and a previous frame, possibly shifted spatially — and obtain dramatic improvements in detection rates
over static features ([349, 350]; see also the explicit use of spatial features in [71, 236, 237], which prunes detect
hypotheses by looking for walking cues).

Dimitrijevic et al. build a spatio-temporal template as a list of spatial templates in time-order [85].
One might build templates with complex internal kinematics. The core idea is very old (for example, one

might consult [6, 7, 33, 132, 203, 235]) but the details are hard to get right and important novel formulations are
a regular feature of the current research literature. The advantage of these 2D kinematic templates is that they
are relatively easy to learn.

The first difficulty is that simply identifying the body parts can be hard. This is simplified if people are
not wearing clothing, because skin has a quite distinctive appearance in images. Forsyth et al. then search for
naked people by finding extended skin regions, and testing them to tell whether they are consistent with body
kinematics [102, 103]. The method is effective on their dataset (and can be extended to find horses [101]), but
is not competitive with more recent methods for finding “adult” images (which typically use whole-image fea-
tures [12, 43, 157, 371]). Ioffe and Forsyth formalize this process of testing, and apply it to relatively simple
images of clothed people [147, 149]. Their procedure builds a classifier that accepts or rejects whole assemblies
of body components; this is then projected onto factors to obtain derived classifiers that can reject partial as-
semblies that could never result in acceptable complete assemblies. Sprague and Luo use this approach to find
clothed people in more complex images, by reasoning about image segments [319].

Mohan et al. use a discriminative approach not only to identify good assemblies of parts (as above), but also
to find body parts [215].

Felzenswalb and Huttenlocher show how one may use distance transforms to speed this process up sub-
stantially [96, 97]. Kumar et al. extend this model to incorporate boundaries into the likelihood and use loopy
belief propagation to apply it to arbitrary graphs (rather than trees); the method is applied to pictures of cows and
horses [174].

Ronfard et al. use a discriminative model to identify body parts, and then a form of generative model to
construct and evaluate assemblies [276]. Mikolajczyk et al. use discriminative part detectors, applied to orien-
tation images and built using methods similar to those of Viola and Jones, to identify faces, head-and-shoulders,
and legs [212]. Micilotta et al. use discriminative methods to detect hands, face and legs; a randomized search
through assemblies is used to identify one with a high likelihood, which is tested against a threshold [210]. Sim-
ilarly, Roberts et al. use a randomized search to assemble parts; parts are scored with a generative model, which
is used to obtain a proposal distribution for joints [274].

Representing a body by segments may not, in fact, be natural; our goal is effective encoding for recognition,
rather than disarticulation. One might represent people by image patches chosen to be good at representing
people. Leibe et al. have built the best known pedestrian detection system using this approach [182].

4.2 Tracking by Matching Revisited
Most probabilistic tracking algorithms must compute the likelihood of some image patch conditioned on the
presence of a model at some point. The easy model to adopt is to produce a template for the patch from the
model parameters, subtract that template from the image, and assume that the result consists of independent
noise — that is, that the value at each pixel is independent. Whether it is wise to use this model or not depends
on how the template is produced — for example, a template that does not encode illumination effects is going
to result in a residual whose pixel values are not independent from one another (see Sullivan et al. for this
example [330]), and so the likelihood model is going to significantly misestimate the image likelihood.
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The problem occurs in a variety of forms. For example, if one represents an image patch with a series
of filter outputs (after, say, [296, 297]), each element is unlikely to be independent and errors are unlikely to
be independent. Sullivan et al. describe the problem, and demonstrate a set of actions (including building an
illumination model and estimating correlation between filter outputs) that tend to ameliorate it, in the context of
face finding [330]. Roth et al. build likelihood models for vectors of filter outputs using a Gibbs model (known
in other circles as a maximum entropy model or a conditional exponential model) [281]. Their method is
trained using an algorithm due to Liu et al. ([194]; see also [188], and one might compare variants of iterative
scaling [32, 78, 158, 249, 280]). There is some evidence that the likelihood produced using this model is more
tightly tuned to — in their example— the presence and location of a leg. The model is used by Sigal et al. [299].

While it is clear that there is an issue here, it is a bit uncertain how significant it is. I am not aware of clear
evidence that better tracking or localization results from being careful about this point, and am inclined to believe
that the rough-and-ready nature of current likelihood models is not a major problem.

Toyama and Blake encode image likelihoods using a mixture built out of templates, which they call exem-
plars [343, 342].

Spatial templates can be used to identify key points on the body. Sullivan and Carlsson encode a motion
sequence (of a tennis player) using a small set of templates, chosen to represent many frames well [331]. Loy
et al. show that such transferred keypoints can be used to produce a three dimensional reconstruction of the
configuration of the body [198].

The advantage of a tree-structured kinematic model, that one can use dynamic programming for detection,
extends to a mixture of such trees. However, adding temporal dependencies produces a structure that does not
allow for simple exact inference, because the state of a limb in frame t has two parents: the state in time t − 1,
and the state of its parent in frame t. Ioffe and Forsyth attack this problem with a form of coordinate ascent on
P (X0, . . . ,Xk|Y0, . . . ,Yk) [148].

This difficulty is quite often ignored, apparently without major consequences. Mori and Malik use no dy-
namical model, detecting joints repeatedly in each frame; the result is a fair track of a fast-moving skater [220].
Lee and Nevatia use a Markov model of configuration (but not of appearance), where each body configuration
depends only on the previous configuration [181].

Agarwal and Triggs build a set of dynamical models, each of which explains a cluster of motion data well; a
mixture of these models is then used to propose the 2D configuration in the i + 1’th frame from the state in the
i’th frame [2]. The predictions are refined by an optimization method, as in [314].

Some advantages of a tracking by detection framework and the difficulties that result from relying on a
dynamical model are: First, recovery from occlusion, people leaving frame or dropped frames is straightforward;
because we know what each individual looks like, we can detect the individual when they reappear and link the
tracks (this point is widely acknowledged; see, for example, [77, 224]). Second, track errors don’t propagate;
when a segment is misidentified in a frame, this doesn’t fatally contaminate the appearance model. Difficulties
occur if different individuals look the same (although one may be able to deal with this by instancing) or if we
fail to build a model.

Ramanan et al. demonstrate an alternative method of building a model using a detector [269].
Song et al. use a variant of tree-structured models to identify human motion. They identify local image flows

at interest points in an image, using the Lucas-Tomasi-Kanade procedure for identifying and tracking localizable
points [317, 318].

Sminchisescu et al. see tracking by matching as a discriminative problem [309].

4.3 Evaluation
There is no current consensus on how to evaluate a tracker, and numerical evaluations are relatively rare (there are
several numerical evaluations of lifting to 3D; see, for example, [1, 180, 179]). In our opinion, it is insufficient
to simply apply it to several video sequences and show some resulting frames (a practice fairly widespread until
recently). Counting the number of frames until the tracker fails is unhelpful: First, the tracker may not fail.
Second, the causes of failure are more interesting than the implicit estimate of their frequency, which may be
poor. Third, this sort of test should be conducted on a very large scale to be informative, and that is seldom
practical. Trackers are— or should be— a means to a larger end, and evaluation should most likely focus on this
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point. In this respect, trackers are probably like edge-detectors, in that detailed evaluation is both very difficult
and not wholly relevant. What matters is whether one can use the resulting representation for other purposes
without too much incovenience.

A fair proxy for this criterion is to regard the tracker as a detector, and test its accuracy at detection and
localization. In particular, if one has a pool of frames each containing a known number of instances of a person,
one can (a) compare the correct count with the tracker’s count and (b) check that the inferred figure is in the right
place. The first test can be conducted on a large scale without making unreasonable demands on human attention,
but the second test is difficult to do on a large scale. Ramanan and Forsyth use these criteria; their criterion for
whether a particular body segment is in the right place is to check the predicted segment intersects the image
segment (which is a generous test) [268, 299].

Lee and Nevatia evaluate reprojection error for the tracked person [181]. There might be some difficulty in
using this approach on a large scale. Sigal et al construct a 3D reconstruction, and so can report the distance in
millimetres between the true and expected positions (predicted from the posterior) of markers [299]. Agarwal
and Triggs give the RMS error in joint angles compared to motion capture on a 500 frame sequence [3].

There is little consensus on what RMS errors actually mean in terms of the quality of reported motion. There
is some information in [13], which evaluates compression of motion capture; this boils down to the fact that
very small RMS errors in joint position indicate that the motion is acceptable, but quite large errors are hard to
evaluate. There is no information on what errors in joint angle mean.
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5 Motion Synthesis and Animation
Variations in rendering style alter a viewer’s perception of motions [133, 134]. As the characters’ appearance
improves so too does viewer expectations concerning the characters’ motion. More realistic characters with a
more interesting range of behaviors present substantial challenges.

5.1 Motion capture
Reviews of available techniques in motion capture appear in, for example [41, 119, 197, 209, 214, 300]. Some
very fast motions can be captured only with specialized stroboscopic equipment [338].

5.2 Footskate
Kovar et al. assume that constraints that identify whether heel or toe of which foot is planted in which frame (but
not where it is planted) are available [173] and then clean up with inverse kinematics (see [117, 116, 127, 202,
19, 340, 374, 20, 295, 219, 245].

Ikemoto et al. demonstrate that one can clean up footskate introduced by editing and so on automati-
cally [143].

5.3 Resolving Kinematic Ambiguities with Examples
The danger here is that one may obtain poses that do not look human. Motion editing deals with this by being
interactive, so that an animator who doesn’t like the results can fiddle with the constraints until something better
appears (see also [248]). An alternative is to allow relatively few degrees of freedom — for example, allow the
animator to adjust only one limb at a time — or to require similarity to some reference pose [332, 368, 375].
This isn’t always practical. An alternative, as Grochow et al. demonstrate, is to build a probabilistic model of
poses and then obtain the best pose [125].

While motion editing does not offer direct insight into representing motion, the artifacts produced by this
work have been useful, and it has produced several helpful insights. The first is that it is quite dangerous to require
large changes in a motion signal; typically, the resulting motion path does not look human (e.g. [119]). The
second is that enforcing some criteria — for example, conservation of momentum and angular momentum [294];
requiring the zero-moment point lies within the support polygon [79, 169, 294] — can improve motion editing
results quite significantly. However, note that one can generate bad motions without violating any of these
constraints, because motion is the result of extremely complex considerations. The third is that requiring motion
lie close to examples can help produce quite good results.

5.4 Motion Signal Processing
A variety of signal processing operations on motion are successful, an observation originating with Bruderlin
and Williams [53]. These include temporal scaling, alignment [170], blending [170, 144, 53, 278, 358, 171, 175,
246, 247], constant offsets [145] and filtering [53]. One may blend motions with simple physical models [16]. It
remains hard to know when two motions will blend successfully.

There is considerable recent interest in finding motions that are similar to some query [171, 99, 223, 364, 57,
164, 163].

5.5 Motion Graphs
Core motion graph papers include [172, 177, 15]. Annotation based synthesis is from [14]. One can evaluate
motion graphs [270]
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5.6 Motion Primitives
There are numerous attempts to encode motion in terms of primitives [98, 278, 204, 205, 348]. Motion clusters
and segments well [23, 14]. One can apply dimension reduction techniques to produce such an encoding [156].
Chai and Hodgins demonstrate a form of video puppetry — where an animated figure is controlled by obser-
vations of an actor — using relatively few markers; this approach most likely works because motions tend to be
confined to a low dimensional subspace [61]. Safonova et al. are able to produce plausible figure animations
using optimization techniques confined to a low-dimensional space (see [282]).

Li et al. segment and model motions simultaneously using a linear dynamical system model of each separate
primitive and a Markov model to string the primitives together by specifying the likelihood of encountering a
primitive given the previous primitive [184].

5.7 Enriching a Motion Collection
Gleicher shows that one can usefully edit motions — typically, so that they meet constraints that are a small
revision of constraints met by the original motion — by adding a displacement [118]. Lee and Shin obtain a
more manageable optimization problem by representing the motion as a hierarchical B-spline [178]. Witkin and
Popović modify motions using parametric warps, so that they pass through keyframes specified by an anima-
tor [362]. Shin et al. use similar methods to touchup motion to meet physical constraints (for example, motion
not in contact is ballistic and preserves angular momentum), while sacrificing physical rigor in the formulation
for speed [294]; see also [333, 334]). Motion editing in this way is useful, and there are several other systems; a
review appears in [120].

Ikemoto and Forsyth build new motions from old by cutting arms or upper bodies off one motion and at-
taching them to another [145]. Pullen and Bregler [264] built a motion synthesis system that allows animators
to sketch part of the motion of the body, and then uses a non-parametric regression method to fill in the de-
tails. Controllers that track motion data provide a useful mechanism for smoothing recorded errors while also
adjusting for disturbances not present in the recorded motion [93, 261, 380, 381]. Other approaches make use of
hand designed or optimized controllers that operate independently from recorded motion [91, 92, 126, 136, 263].
Building controllers that generate human-like motion remains an open research problem.

5.8 Motion from Physical Considerations
Witkin and Kass introduced the use of variational methods, widely known as spacetime constraints [361].
The actual minimization process might be extremely difficult. There is some reason to believe that a coarse-to-
fine representation is useful [196]. One may simplify optimization difficulties by choosing simplified characters
(e.g. [94, 261, 263, 341]; freefall diving is a particular interest [70, 195]) or by exploiting interaction with an
animator (e.g. [68]). Ngo andMarks produce motions for quite complex characters using spacetime optimization
by building motions out of stimulus-response pairs — parametric packets of motion that are triggered by some
parametric test ([227, 228]; see also [207] for other motions built out of packets). The precise set of packets, and
the parameters of those packets, are chosen using search by a genetic algorithm (see also the work of Sims [301]).
There is no claim that these motions necessarily appear human.

Liu et al. show a method to obtain simulation parameters from examples [189]. Rose et al. generate mo-
tion transitions — short sequences of motion that join specified frames “naturally”— using an optimization
procedure that minimizes the total squared torque moving the upper body [279]. Anderson and Pandy describe
a simulation of one step of a walk for a highly detailed dynamic model that produces (using months of super-
computer time) a pattern of muscle activations that minimize an effort criterion and also look like human muscle
activation patterns ([11]; see also [238]).

5.8.1 Simplified Characters

Popović and Witkin use characters with simplified kinematics, and model muscle forces explicitly (the muscle is
modelled as a proportional-derivative controller attempting to drive a degree of freedom to a setpoint) [263].
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5.8.2 Modified Physics

Liu and Popović produce character animations from rough initial sketches using an optimization method by
breaking the motion into phases, simplifying the physical constraints, and, where necessary, exploiting the ani-
mator’s input [190].

There is a real advantage to not constraining forces and torques and not allowing them to participate in the
objective function: one does not need to compute them. This means that computing various Jacobians that arise
in the optimization procedure can be made linear (rather than quadratic) in the number of degrees of freedom, as
Fang and Pollard show [94].

5.8.3 Reduced Dimensions

Safonova et al. describe a method for synthesizing motions from variational considerations using a dimension
reduced representation of configuration [282].

5.8.4 Modifying Existing Motions

Hodgins and Pollard describe scaling rules that allow a motion that applies to one character to be transferred
to another character, using methods of dimensional analysis ([135]; for dimensional analysis, see [24]). Sulej-
manpas̆ić and Popović modify existing motions to obtain revised motions that meet animator demands using a
full dynamical model ([329]; see also [262], which describes a search method to obtain parameters of a rigid
body simulation that is similar to a sketch).
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6 Describing Activities
These are early notes for a draft chapter on activities, for a projected volume following the lines of [104]. As
a result, they tend to emphasize older material and are not really assembled according to a plan. However, the
citations are useful, which is why I circulate. I’ve added a short list of recent citations at the end. DAF

Understanding what people are doing is one of the great unsolved problems of computer vision. A fair
solution opens tremendous application possibilities, including: improved surveillance systems; a better under-
standing of what people do in public; better architectural design; and better human computer interfaces. While
there has been extensive study of this topic, it still isn’t terribly well understood. One can obtain statistics of
some behaviours from coarse scale tracks (e.g. for car parks, see [328]; for architectural domains, see [370]).
But understanding activities that depend on detailed information about the body is still hard. We contend that
the major difficulties have been (a) that good kinematic tracking is hard; (b) that models typically have too many
parameters to be learned directly from data; and (c) for much everyday behaviour, there isn’t a clear taxonomy
into which to classify observations.

There is a long tradition of research on interpreting activities in the vision community (see, for example, the
extensive survey in [142]). There are three major threads. First, one can use temporal logics to represent crucial
order relations between states that constrain activities. Second, one can use spatio-temporal templates to identify
instances of activities. Third, one can use (typically, hidden Markov) models of dynamics.

6.1 What should an Activity Representation do?
There appear to be a series of quite different cases in activity recognition. First, we distinguish between short,
medium and long timescales. Second, we distinguish between motions that can be sustained (walking, running,
waving) and motions that have a localizable character (catch, throw, punch, kick). Since we want our com-
plex, composite motions to share a vocabulary of base units, we use the kinematic configuration of the body,
limb velocities, and perhaps accelerations as distinctive features at short timescales — which might be of the
order of a small number of frames. We define acts to be frame labels that can be decided on such very short
timescale features — such labels, (for example, walk-right-leg-stance-left-leg-swing) tend not to have directly
useful semantics.

At medium timescales, we have activities — motions like walking, running, jumping, standing, waving,
whose temporal extent can be short (but may be long); such motions are typically composites of multiple acts.
Furthermore, activities can be sustained for long periods. We use the term actions for motions that have a
localizable character and require medium timescales to identify. Both actions and activities may be difficult to
identify with only a few frames but are relatively easy to identify from hundreds to thousands of frames. Both
actions and activities allow a degree of composition— for example, one could walk and scratch at the same time.

One’s interpretation of a view of moving humans is strongly affected by objects nearby. For example, a
person standing in an isolated field may be behaving strangely; the same person in the same configuration next
to a bus stop is waiting for a bus. We believe that the most natural level at which to start inserting considerations
of context into activity recognition is that of activities — where one can pool object detector responses over a
long enough sequence of frames to expect quite good behaviour— and define the next layer of the representation
to be motions in context. Context applies to both activities and actions. These occur at medium timescales,
but the nature of the motion in context is determined by both the actions in the sequence and the response of
object detectors. We use the term behaviour to cover motions at long timescales — typically, behaviours such as
fighting, exercising or visiting an ATM might be composed of a selection of different motions in context, linked
up by activities, and organized in a variety of possible ways and meeting a variety of constraints on temporal
ordering. It has been recognized for some time that there are other helpful distinctions (e.g. Bobick [37] distin-
guishes between movements, activity and actions, corresponding to longer timescales and increasing complexity
of representation; some variants are described in two useful review papers [5, 114]).
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6.1.1 Necessary Properties of an Activity Representation

The big goal is a theory and mechanism for recognizing a wide range of behaviours. There are some important
constraints on solutions to this problem. First, we expect that typical behaviours are a composite of many
activities, and this composite is not unique — the same behaviour may be represented by multiple sequences
of actions, as long as these sequences observe an internal structure. For example, one may scratch or groom
at any time while visiting an ATM, but one must type a PIN before retrieving money, and insert a card before
typing a PIN (notice that one can’t retrieve a card before inserting it, but at some machines one might retrieve
the card before typing a PIN; at others, the card is retrieved after typing the PIN and before recovering money).
Each activity may itself be one of several different composites of multiple actions, in the same way. Each action
might also have compositional properties — for example, one may walk with three-quarters of one’s body while
scratching with the fourth limb. The modelling strategy must respect both this hierarchical structure and the
compositional nature of motion.

Second, we expect that there is not labelled data for each possible case; we cannot simply learn models
without any human interaction. This applies to models of actions, activities and behaviours. This difficulty
is created by the compositional nature of human motion; the sheer richness of available motions defeats pure
data-driven strategies. An important criterion for choosing a modelling strategy is that it be easy for humans to
author and to assess rich models quickly. Such models should be amenable to parameter learning from data, but
it should not be necessary to see an example of every possible instance of a behaviour to build a model.

Third, we expect that the supervised data that is available may be marked up somewhat inaccurately. Typi-
cally, a behaviour will be marked up with activity names (an activity with actions, respectively), but the bound-
aries of the markup are unlikely to be accurate. We expect the learning algorithm to be robust to some segmen-
tation noise.

Finally, we models should have the property that basic activities with the model — model building, compo-
sition, and inference — is relatively straightforward. In this, we follow the experience of the statistical natural
language community, that trading expressiveness in models for simplicity of authoring and inference is often
advantageous.

6.1.2 What Data is Available?

An important part of design here is to keep into account what kinds of data are easy to obtain and what difficult,
so as to plan model authoring aroundwhat is practical. Experience suggests that it is possible to get fromminutes
to hours of reasonable quality motion capture data; relatively few minutes of video labelled as to actions (these
labels are very difficult to produce because they require frame accuracy); minutes to hours of video labelled in
reasonable detail with respect to activities and behaviours, accepting poor temporal resolution in the labels; and
of the order of months of public observation video. It is relatively straightforward to look at large volumes of
labelled motion capture data and correct labels, not least because one can observe many frames simultaneously
(e.g. see [14]).

One important source of difficulty is that it is hard to tell which aspects of behaviour should be modelled
accurately in order to perform useful tasks. Resolving this requires (a) study of ideas in sufficient generality that
they transfer between tasks and (b) some example tasks. But the selection of example tasks is not innocuous.
In particular, a distinctive feature of everyday activity is the number of behaviours that appear familiar, but for
which the observer may not know a word or even a compact description. In contrast, in some domains (e.g.
ballet [56]; gymnastics [90];tai chi [46, 48]; tennis [331]; walking [58]) there are quite specific vocabularies that
refer to very precisely delineated behaviours. This is an advantage for building demonstration systems, because
one can evaluate them, but may avoid the real difficulty, which is that for most activities we want to classify the
activity without knowing a precise or canonical set of classes.
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6.2 Miscellaneous Methods
6.2.1 Activity Representation Methods based around Temporal Logics

Pinhanez and Bobick [250, 251] describe a method for detecting what we have called behaviours using a rep-
resentation derived from Allen’s interval algebra [10], a method for representing temporal relations between a
set of intervals. One authors a description of the behaviour in terms of primitives, which are indivisible and
occupy temporal intervals. The description incorporates a set of legal relations between the primitive intervals; a
description is consistent if at least one set of intervals, together with an allocation of those intervals to primitives,
satisfies it. One determines whether an event is past, now or future by solving a consistent labelling problem,
allowing temporal propagation. There is no dynamical model — sets of intervals produced by processes with
quite different dynamics could be a consistent labelling; this can be an advantage at the behaviour level, but
probably is a source of difficulties at the action/activity level. These papers do not show the method applied to
noisy detectors; there are results using simulated detectors on real data.

Siskind [303, 302] describes methods to infer activities related to objects — such as throw, pick up, carry,
and so on — from an event logic formulated around a set of physical primitives —- such as translation, support
relations, contact relations, and the like — from a representation of video. A combination of spatial and temporal
criteria are required to infer both relations and events, using a form of logical inference. Themethods are focussed
on activity representation, and do not use real video data; there is no mechanism to account for missing or noisy
interpretations of video.

6.2.2 Activity Representation Methods based on Templates

The notion that a motion produces a characteristic spatio-temporal pattern dates at least to Polana and Nel-
son [253, 254, 256, 255, 260]. Spatio-temporal patterns are used to recognize actions in work by Bobick and
Davis [38] and Davis and Bobick [82]. Ben-Arie et al [30, 29] recognize actions by first finding and tracking
body parts using a form of template matcher and voting on lifted tracks; the tracks are lifted to 3D and a spatio-
temporal representation of each body segment votes separately for an action. The action with the most votes is
chosen. The method is successful, and has the advantage that it is robust to composition — if all but the left
arm is walking, the action will still be recognized. However, the vocabulary consists of eight items (jump, kneel,
pick, put, run, sit, stand, walk) and the vocabulary cannot be composed. An alternative is to match gestural
information directly, incorporating a timewarp to improve the match. Bobick and Wilson [39, 40] use a state-
based method that encodes gestures as a string of vector-quantized observation segments; this preserves order,
but drops dynamical information. The advantage is relatively fast training.

6.3 Activity Representation using Hidden Markov Models and Finite State Represen-
tations

6.4 The Speech Analogy
Hidden Markov models (HMM’s) pervade studies of motion, gesture and activity, and a complete review of their
applications here may now be impossible. HMM’s are models of sequences, and at their heart is a clock. One has
a set of hidden states; at each tick of the clock, a Markov process chooses a new state, dependent on the previous
state and nothing else; and an emission process produces an observation from the new state. There are clean
solutions for the standard problems of learning (determining an appropriate state transition model and emission
model for a given state model) and inference (determine which hidden states occurred given a set of observed
states). HMM’s have been used for understanding human behaviour but typically with quite small state models.

Very large state models are common in speech recognition, where HMM’s have been hugely influential. This
area is a useful source of inspiration by analogy. Viewed from a great height, a typical speech system has a series
of components: a language model showing how words are built up into sentences; a pronunciation dictionary,
giving sequences of context independent phones that correspond to words; a context dependencymodel, showing
how local influences produce context dependent phones (cphones hereafter) from context independent phones; an
acoustic observation model showing how acoustic observations result from context dependent phones (this is an
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extremely compact description of a highly sophisticated area; more extensive descriptions appear in [155, 265]).
The resulting object is a vast HMM — in our example, states can be thought of as being tagged with word-
cphone-phone-sample— to explain each sample.

This HMM has some important, attractive features. Learning and authoring can be broken into tractable
subproblems— the language model might be learned with one kind of dataset, the pronunciation dictionary with
another — and as a result, we obtain an HMM on a massive scale, but with little difficulty in authoring it. While
the state space is so big that dynamic programming must be sacrificed for a beam search, the state transition
model is not impossible to learn, because most state transitions don’t occur. Furthermore, the model is forced to
share parameters in important ways — a phoneme in one word has the same model as that phoneme in a different
word.

6.4.1 Finite State Transducers

Finite state models have had considerable success in the speech and language community. We introduce some
terminology here, from the reviews by Mohri and others [218, 217, 216]. A finite state automaton is a directed
graph, whose nodes are known as states. There is at least one final state and one initial state; each edge is labelled
with an element of an alphabet. The automaton accepts any string corresponding to a path from an initial state
to a final state. In a finite state transducer, transitions are labelled with both an element of an input alphabet and
an element of an output alphabet; any string accepted by the transducer results in a string of output symbols, and
so the transducer can be seen as representing a relation between families of strings. Transducers (representing
relations between strings) can be composed, and there are efficient algorithms for computing the composition of
two transducers.

In a string-to-weight transducer, the output alphabet consists of weights (typically, in a semiring or better;
non-negative reals with addition and min is common, because it corresponds to the case of Viterbi and negative
log-probabilities); there are initial and final weights. If a string-to-weight transducer accepts some string, its
output for that string is defined as the minimum sum of weights over the paths accepting the string. Particularly
attractive are subsequential string-to-weight transducers, where there is only one path accepting any given string.
Not all transducers can be transformed to this form; there are algorithms for this process, known as determiniza-
tion when it is possible. Furthermore, there are minimization algorithms, that can produce the unique (up to
automorphism) smallest transducer that implements the same set of mappings as a given transducer.

6.4.2 Why should we Care?

Each of the components of a speech architecture (language model; a pronunciation dictionary; context depen-
dency model; acoustic observation model) is a string-to-weight transducer. In principle, one could compose the
lot to produce a single, enormous string-to-weight transducer, determinize it, minimize the result, and search
that (this is equivalent to recognizing that, in the final analysis, the composition of each component produces an
HMM with an enormous state space). In practice, the object involved is far too large. Instead, one uses a beam
search to produce a reduced string-to-weight transducer (the word lattice) that contains a reduced pool of higher
probability paths. Determinizing and minimizing this transducer is practical and useful; the result is very much
faster searches.

There are two reasons that this material is of interest to us. First, the trick of reducing a speech signal to a
(determinized and minimized) word lattice produces a highly compact representation of a large number of dif-
ferent transcriptions (each corresponding to a path through the string-to-weight transducer) that is easy to search
and manage. We argue below that we can produce act, action and activity models which will allow reduction
of video to an action/activity lattice with the same attractive properties. Second, a finite state automaton (whose
states represent actions and activities) is a reasonable representation for a behaviour. If one determinizes and
minimizes this, standard algorithms allow one to identify weights associated with instances of such a transducer
in a word lattice extremely fast. This means we could be able to engage in fast searches for behaviours.

LeCun et al identify other useful building blocks associated with finite state models [176]. Their graph trans-
formers take (weighted directed) graphs as inputs and produce graphs as outputs; an example of a transformer
would be composition with a fixed transducer. Particularly useful is the idea of a Viterbi transformer, a process
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that (using our terminology) takes a string-to-weight transducer and applies a beam search to produce a reduced
string-to-weight transducer which is effectively a word lattice. They demonstrate that gradient based learning
can usefully be applied to architectures of such objects.

6.5 Activity Recognition Methods based around HMM’s
HMM’s have been very widely adopted in activity recognition, but the models used have tended to be small (for
example, one sees three and five state models in [46, 48]). Yamato et al. describe recognizing tennis strokes with
HMM’s [369]. Wilson and Bobick describe the use of HMM’s for recognizing gestures such as pushes [359].
Yang et al use HMM’s to recognize handwriting gestures [372]. Feng and Perona [98] call actions “movelets”,
and build a vocabulary by vector quantizing a representation of image shape, as a collection of rectangle, varying
over time. These codewords are then strung together by an HMM, representing activities; there is one HMM
per activity. We can then identify a new video by computing the image representation for each frame, obtaining
the movelets, and choosing the particular model that generated the keyword sequence by a form of maximum
likelihood. The method is not view invariant, depending on an image centered representation.

There has been a great deal of interest in models obtained by modifying the HMM structure. The intention is
to improve the expressive power of the model without complicating the processes of learning or inference. Brand
et al use coupled HMM’s (CHMM’s), which involve some number of simultaneous HMM’s operating to the
same clock, where the choice of a particular model’s hidden state is affected by all other model’s states [46, 48].
Such an object is clearly itself an HMM, but authors demonstrate a training method that reduces the number
of parameters to learn by coupling but with very much enlarged state space; however, instead of estimating the
parameters of that object, one projects the parameter estimates to transition parameters for each separate model.
This means that one learns parameters for each separate model that tend to couple the two models. They show
these models can distinguish between a set of T’ai Chi moves.

Oliver et al [232, 231] represent behaviours using layered hidden Markov models (LHMM’s). These models
involve a bank of HMM’s at the lowest level, each generating some portion of the observation. The observations
at higher levels are the maximum likelihood hidden state sequences for the lower levels. One then obtains for
each HMM the maximum likelihood hidden state sequence. At the next level, the observations are these states,
and this continues recursively. The resulting object is an HMM, but of complex structure; the LHMM form offers
authoring advantages. This representation outperforms a straightforward HMM in recognizing such activities as
phone conversation from both vision and acoustic data.Similarly, Mori et al build a hierarchical representation
out of HMM’s to recognize everyday gesture [222].

Wilson and Bobick [360] use a form of HMM where an unknown, global parameter applies to all emission
models (which they call a parametric hidden Markov model or PHMM) to model gestures with a parametric
form (such as might accompany “it was this big”). Data is from stereo or a Polhemus. There are recognition
results for classes of gesture such as pointing. Kettnaker and Brand [165](also, Brand and Kettnaker, [47])
fit an HMM while penalizing model entropy; this tends to reduce the number of non-zero parameters, so that
one can fit models with quite large state spaces satisfactorily (such models are sometimes known as Entropic
HMM’s or EHMM’s). Galata et al. use variable length Markov models (VLMM’s: a model that generates a
state stochastically based on a variable but bounded length history) to encode behaviour and obtain a reduction
in perplexity by doing so [107, 108].

Building variant HMM’s is a way to simplify learning the state transition process from data (if the state
space is large, the number of parameters is a problem). But there is an alternative — one could author the state
transition process in such a way that it has relatively few free parameters, despite a very large state space, and
then learn those parameters.

Finite state methods have been used directly. Hongeng et al. demonstrate recognition of multiperson activities
from video of people at coarse scales (few kinematic details are available); activities include conversing and
blocking [139]. Zhao and Nevatia use a finite-state model of walking, running and standing, built from motion
capture [377]. Hong et al. use finite state machines to model gesture [138]. We are not aware of material that
attempts to build large hierarchical finite state machines, patterned after speech recognition programs, and using
opportunistic learning, as we propose to do.
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6.6 Sign Language Recognition
The best-known system for sign matching is due to Starner and Pentland [324, 325]. Features are image moments
of the hand region; signers either wear coloured gloves, or hands are identified using a skin filter. A Hidden
Markov Model (HMM) is used to model individual signs; signs are strung together with a rigid language model
(pronoun verbnoun adjective pronoun). Authors report a recognition rate of 90% with a vocabulary
of 40 signs. Grobel and Assan recognize isolated signs under similar conditions for a 262-word vocabulary using
HMM’s [167]. This work was extended to recognize continuous German sign language with a vocabulary of
97 signs by Bauer and Hienz [27]. Vogler and Metaxas have built a system that uses estimates of arm position,
recovered either from a physical sensor mounted on the body or from a system of three cameras that measures
arm position fairly accurately [351, 352, 355]. For a vocabulary of 53 words, and an independent word language
model, they report a word recognition accuracy of the order of 90%. Amore recent system attempted to recognize
phonemeswith HMM’s; Vogler andMetaxas were able to recognize signs from a 22word vocabularywith similar
recognition rates for phoneme and word models (without handshapes in [353], with handshapes in [354]).

Kadous transduced isolated Australian sign language signs with a powerglove, reporting a recognition rate
of 80% using decision trees [226]. Matsuo et al transduced Japanese sign language with stereo cameras, using
decision tree methods to recognize a vocabulary of 38 signs [206]. Kim et al. transduce Korean sign language
using datagloves, reporting 94% accuracy in recognition for 131 Korean signs [168]. Al-Jarrah and Halawani
report high recognition accuracy for 30 Arabic manual alphabet signs recognized from monocular views of a
signer using a fuzzy inference system [9]. Gao et al. describe recognizing isolated signs drawn from a vocabulary
of 5177 using datagloves and an HMMmodel [110, 357]. Their system is not speaker-independent: they describe
relatively high accuracy for the original signer, and a significant reduction in performance for other signers.
Similarly, Zieren and Kraiss report high, but not speaker independent, accuracy for monocular recognition of
German sign language drawn from a vocabulary of 152 signs [379]. Akyol and Canzler describe an information
terminal which can recognize 16 signs with a high, user-independent, recognition rate; their system uses HMM’s
to infer signs from monocular views of users wearing coloured gloves [8]. Bowden et al. use independent
component analysis to obtain state estimates from a set of discriminative visual features; each sign is encoded as
a Markov chain, learned from a single example [44]. They report high accuracy recognition from a lexicon of 49
signs using a very small training set.

6.7 More recent material
Low resolution activity recognition appears in [90]. Motion cues for computer games are in [106]. The EyeToy is
one of computer vision’s greatest commercial successes, and much underappreciated by the vision community; I
had a long chat with its core visionary at CVPR 05. He had lots of time, because few people were talking to him,
largely because few people knew what the EyeToy was or appreciated its significance. Work on location and
activity in football appears in [146]. Correlation matching of activities is in [293]. Encoding complex actions in
space time appears in [36]. Spotting irregular actions using this form of encoding appears in [42].
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