Generating and parsing
shapes and scenes

D.A. Forsyth, UIUC

Key questions:

Shapes/scenes are (might be?) composites of primitives

Generate

® individual representations

® composite representations

Parse into

® individual representations

® composite representations

Couple parser and generator, and learn both
® ideally, without intermediate annotations

Generating point clouds

e (Can construct a feature that represents a point cloud
® above:
® ecmbed each point in some hd space,
® max pool to single feature vector
® map that

® Why not use to build autoencoder, GAN, etc?

® Works, but how to evaluate?
® Standard metrics:

e EMD

® (Chamfer distance
® (thers

Achlioptas ea 18

EMD and Chamfer distance

Metrics Two permutation-invariant metrics for compar-
ing unordered point sets have been proposed in the lit-
erature (Fan et al., 2016). On the one hand, the Earth
Mover’s distance (EMD) (Rubner et al., 2000) is the so-
lution of a transportation problem which attempts to trans-
form one set to the other. For two equally sized subsets
S; C R3Sy C R3, their EMD is defined by

demp(51,52) = g m ; |z — ¢(z)||2

where ¢ is a bijection. As a loss, EMD is differentiable al-
most everywhere. On the other hand, the Chamfer (pseudo)-
distance (CD) measures the squared distance between each
point in one set to its nearest neighbor in the other set:

Achlioptas ea 18 don(S1,S2) =) min flz—yl3+) min|lz—yl3.

TESy YES2

You can get EMD by solving a linear program, but it’s nasty: see, for example,
https://homepages.inf.ed.ac.uk/rbf/CVonline/[OCAL_COPIES/RUBNER/emd.htm

Building an AE

—

ricks:

work with a fixed number of points (2048)
encoder follows pointnet trick

then decoder is just a conv decoder to 2048x3

Main issue:
® Joss: EMD or CD?

I-GAN (AE-CD)

A g ed:0.0027

LMY emd:0.0714
e

gt

R L S

I-GAN (AE-EMD)
e cd:0.0011

}'.:{":x: emd:0.0681

¢d:0.0010
emd:0.1198

Figure 7. The CD distance is less faithful than EMD to visual
quality of synthetic results; here, it favors r-GAN results, due to
the overly high density of points in the seat part of the synthesized
point sets.

Achlioptas ea 18

AEs can complete (think denoising)

“hAhLEEmmEm - -

Figure 4. Point cloud completions of a network trained with partial and complete (input/output) point clouds and the EMD loss. Each
triplet shows the partial input from the test split (left-most), followed by the network’s output (middle) and the complete ground-truth
(right-most).

Achlioptas ea 18

Figure 13. Reconstructions of unseen shapes from the rest split
) extracted from the D-FAUST dataset of (Bogo et al., 2017) with
Achlioptas ea 18 an AE-EMD decoding point clouds with 4096 points. In each row

the poses depict a motion (left-to-right) as it progress in time.

Building a GAN

® Tricks:

® we know how to encode a point set for discriminator, so OK
® generator is easy

Figure 11. Interpolating between different point clouds (left and right-most of each row), using our latent space representation. Note the

interpolation between structurally and topologically different shapes. Note: for all our illustrations that portray point clouds we use the
Mitsuba renderer (Jakob, 2010).

Achlioptas ea 18

Notes and queries

® Fixed size point cloud 1s a mild dodge
® Jikely easily remedied

® You could apply this to other things
® think of a CvxNet repn as a point cloud
® one point per convex, in 4x(# of planes) D
® what loss would one apply to train autoencoder?
® how would GAN training work?

Generating indoor scenes

® (Goal:

® generate an overhead layout of objects for an indoor scene
® we can then place object models from some collection into this layout
® vyielding a synthetic scene

® [ssues:
® keep track of object interactions, counts, etc
® cg one bed implies likely no more than two nightstands
® cg objects may touch, but do not intersect

Ritchie et al 18

Generating indoor scenes

Bedrooms Living Rooms

Bathrooms

Figure 1. Synthetic virtual scenes generated by our method. Our model can generate a large variety of such scenes, as well as complete
partial scenes, in under two seconds per scene. This performance is enabled by a pipeline of multiple deep convolutional generative models
which analyze a top-down representation of the scene.

Ritchie et al 18

Strategy: auto-regressive model

® Construct the layout in steps

® Think of model as a string of unknown length
® x=(actl, act2, act3, ..., stop)
® where act is
® choose object category
choose location
choose orientation

choose size (and other attributes)
® insert into occupancy map
® Then p(x)=prod_i p(x_il all previous)

Autoregressive models. An autoregressive model is an iterative
generative model that consumes its own output from one iteration
as the input to its next iteration. That is, an autoregressive model
examines the output it has generated thus far in order to decide
what to generate next. For example, an autoregressive model for
generating 3D indoor scenes could synthesize one object at a time,
where the decision about what type of object to add and where to
place it are based on the partial scene that has been generated so far
(Figure 10). Formally, an autoregressive model defines a probabil-
ity distribution over vectors x as

x|
p(x) =] | P(xiINN;(x; ... x;—1)),
i=1

Ritchie et al 18

® Models of this form have several advantages

® with appropriate choice of NN, can compute likelihood of points
® normalizing flow

® Not relevant here, but...

Current scene Image representation ~ Next Category (§ 3.1) Location (§ 3.2) Orientation (§ 3.3)

Dimensions (§ 3.4) Insert Object (§ 3.5)

Category Counts

——p(1| 1[0 1] 0] 1]0] 0=

Figure 2. Overview of our automatic object-insertion pipeline. We extract a top-down-image-based representation of the scene, which i
fed to four decision modules: which category of object to add (if any), the location, orientation, and dimensions of the object.

Ritchie et al 18

® Note:

® image representation is basically just a labelled layout map
® useful - summarizes where objects are

® Notice the conditioning here:
® category, location | labelled layout
® orientation, dimensionsl category, location

® should be fairly obvious you can insert other blocks
® to predict other attributes

® there is a p(stopl input), too

I *think*

Training

® Take a set of authored scenes (SUNCG!?!)
® remove some objects, decide to insert one, train to do so
® (Q:in what order?
® support before supporting
® first tier before second tier
® bigger before smaller
® Ordering is essential for category, insignificant for attributes, etc.

Overhead summary

(this has been beauty rendered,

which is ridiculous)

Predicted Next Category Probability

0.6

0.5

0.4-

0.3

0.2

0.1-

0.0 T .
double_bed wardrobe single bed desk stand

Predicted Next Category Probability

0.251

0.201

0.151

0.101

0.051

o'oodresslng_table plant sofa_chair coffee_table floor_lamp

Predicted Next Category Probability

0.25]

0.201

0.15;

0.10;

0.05 1

0.00- <STOP> floor lamp table lamp sofa chair shelving

Figure 3. Distributions over the next category of object to add to
the scene, as predicted by our model. Empty scenes are dominated
by one or two large, frequent object types (rop), partially populated
scenes have a range of possibilities (middle), and very full scenes
are likely to stop adding objects (bottom).

Probability of category
of next object

Input Partial Scene Synthesized Completions

v i

N N N N

Figure 7. Given an input partial scene (left column), our method can generate multiple automatic completions of the scene. This requires
no modification to the method’s sampling procedure, aside from seeding it with a partial scene instead of an empty one.

Notes and queries

Autoregressive models have ups and downs
® Advantage:
® casy to author
® “make sense”
® Disadvantages:
® can get trapped (an error in early stages of generation persists)
® can be hard to learn accurately (above)

What ordering 1s appropriate?
Why 1s this not a point cloud?

® i.c. ecach object together with size, location, etc is a “point”
® and we do pointnet

Q: 1s the underlying combinatorial structure meaningful?
® or just a nuisance?

Parsing and primitives

Traditional 1dea, back to at least Binford 71
Objects are a composite of primitive shapes

Two 1ssues:

® What are the primitives?
® Given some input, parse into the set of primitives?

Traditional literature:
® (Construct a set of primitives, using
® geometric insight, guessing, etc
Now infer presence of primitive from local image properties, edges, etc.
Major problem:
® objects aren’t precisely primitives, so....
® (Could almost be made to work

Figure 2. A symmetry: the two edgels (dashed lines) are symmet-
rical about the symmetry axis (dotted). We represent symmetries by
their sections (solid line), which are line segments that connect the

midpoints of the two edgels.

lIoffe+Forsyth 01

—_
-
-
—
- —
—
-

-
* e,
.-

..,

- .
-,
L P
...
..
Y N

= | —

—
-
- -
—
—_
-~ -
.
- -

sections of
symmetries

Figure 3. The segment finder groups symmetries into segments.
The EM algorithm finds the optimal positions of the segments’ axes
and the widths, and also estimates the posterior probabilities that a
given symmetry is assigned to a particular segment or to noise.

Figure 4. An example run of the segment finder. (top) A set ¢
symmetries obtained for an image. Each symmetry is represented b
its section. We show every 4th symmetry to avoid clutter. (bottom
The EM algorithm fits a fixed number of rectangular segments to th
symmetries. These are the candidate body segments which becom
the input to our assembly-builder (grouper).

Ioffe+Forsyth 01

1 1 '_-'._l‘..o--— ____1—___=“'='|___—-__=—='—;—=-_—'-_—=’—]
e ’ - - ‘\
LR
go 8 ._'r R g]
@ VR
S 08 PR —— Nopeople| -
@ oo / - 1 person
@ A S 2 people
o 04F ; S 3 people -
/.
O 0.2t S _
0 e] 1 1 1 ! 1
60 70 80 90 100 110 120
log(c)
Ioffe+Forsyth 01
(b): Counting people
1 T = = — — — O ——————
T —_ = —‘_—:: ______
go.a— //, /-,.’ _-____:
2 r -
308l / = -
H 0.6 , s
C Vi -
o - -~
g’ 04} /J L s N
= 7
v i,
8 02 [~ 4 J o -
- '-"
/ / ’ .4
ol— - Lo Loyooonm- L 1 ! 1
60 70 80 90 100 110 120
log(c)

Figure 14. Percentage of correct decisions for Person vs No person classification (a) and Counting (b), as a function of the parameter c. Each
figure shows the percentages separately for images with 0, 1, 2, and 3 people. We believe that the decrease in the count accuracy as the number
of people goes up is due to the segment finder, which fails to extract all the relevant segments.

lIoffe+Forsyth 01

Figure 15. Examples of representative assemblies found for images
of people. Each representative assembly is the highest-likelihood
sample from a set of samples with overlapping torsos. We use repre-
sentatives to count people and argue that using representatives does
not change the count. Often (top) representatives can also be used to
infer configurations of people, although (bottom) that is not always
the case.

More modern strategies

® (et a collection of shapes that has been parsed
® |earn to predict segment labels
® straightforward supervised learning, data presents problems
® dominant process for (say) people

® But what if you don’t have parses?
® choose a set of possible primitives

® |earn to represent shapes using these We’ve already seen one of these

* Q: (CvxNet); but it doesn’t handle

® what loss? different numbers of primitives
® how to handle number of primitives?

PR
LY "

Figure 1: Examples of chair and animal shapes assembled by composing simple volumetric primitives (cuboids). The
obtained reconstructions allows an interpretable representation for each object and provides a consistent parsing across shapes
e.g. chair seats are captured by the same primitive across the category.

Tulsiani et al 17

Notice the varying number of primitives

-&@%D@iﬁ . 'Hﬂ'm

Figure 2: Overview of our approach. Given the input volume corresponding to an object O, we use a CNN to predict primitive
shape and transformation parameters {(2,,, ¢m,tm)} for each part (Section 3.1). The predicted parameters implicitly define
transformed volumetric primitives { P,,} whose composition induces an assembled shape. We train our system using a loss
function which attempts to minimize the discrepancy between the ground-truth mesh for O and the assembled shape which
is implicitly defined by the predicted parameters (Section 3.2).

Tulsiani et al 17

® Primitives are cuboids
® attached are shape and transformation parameters

® The number 1sn’t fixed
® choose M (largest number)
® give each primitive a “probability of existence”
® compute expected loss of assembly
® cxpectation over probability of existence
® at test time, threshold this probability, so get k<M primitives

Primitive Representation. As we mentioned above, the
primitive representation has an added parameter p,,, — the
probability of its existence. To incorporate this, we factor
the primitive shape z,, into two components — (22, z¢).
Here 2, represents the primitive’s dimensions (e.g. cuboid
height, width, depth) as before and z5, ~ Bern(p,,) is a
binary variable which denotes if the primitive actually ex-
ists i.e. if z¢, = 0 we pretend as if the m!" primitive does
not exist. The prediction of the CNN in this scenario is as

below.

{<zfnaCIm7tm7pm>|m = 1M} = hg(]) (8)
Vo 2o~ Bern(pm); zm = (25, 25,) (9)

m?~m

Note that the CNN predicts p,, — the parameter of the
Bernoulli distribution from which the part existence vari-
able z¢, is sampled. This representation allows the predic-
tion of a variable number of parts e.g. if a chair is best ex-
plained using k£ < M primitives, the network can predict a

Probability of existence

1.osses

® Note: primitives are convex, and constructions apply to

convex objects

Distance Field. A distance field C(- ; O) corresponding to
an object O is a function R®* — R™ that computes the dis-
tance to the closest point of the object. Note that it evaluates
to O in the object interior.

C(p; 0) =min |lp— Pl)
® For general O, this function is nasty

® there may be multiple closest points on O
® for convex O, there is only one

Tulsiani et al 17

1.osses

3.2.2 Coverage Loss: O CUP,,.

We want to penalize the CNN prediction if the target object
O is not completely covered by the predicted shape UP,),.

A sufficient condition to ensure this is that the distance field
of the assembled shape evaluates to zero for all points on
the surface of O.

Ll({(zma Gm, tm)}a 0) — 1EprvS'(O)”C(p; i;ipm)”2 (3)

Computation can be simplified due to a nice property of
distance fields. It is easy to show that the distance field of
a composed shape equals to the pointwise minimum of the
distance fields of all composing shapes:

C(p; UPn) = min C(p; Pr))

This decomposition rule boils the distance field of a
whole shape down to the distance field of a primitive. In
the following, we show how to efficiently compute C for
primitives as cuboids.

Essentially, the shape lies inside the
union of the primitives
easy test with convex primitives

Tulsiani et al 17

3.2.3 Consistency Loss : UP,, C O.
m

We want to penalize the CNN prediction if the predicted
shape UP,, is not completely inside the target object O. A

sufficient condition is to ensure this is that the distance field

of the object O shape evaluates to zero for all points on the
surface of individual primitives P,,.

Ly({(2m; gm, tm)}, 0) = ZEp~S(P e 0)*

Additionally, we observe that to sample a point p on
the surface of P,,, one can equivalently sample p’ on the
surface of the untransformed primitive P, and then rotate,
translate p’ according to (gm, 2m)-

S(Pr)=T(R®',qm)stm); P’ ~ S(Pn)

An aspect for computing gradients for the predicted param-
eters using this loss is the ability to compute derivatives for
zm given gradients for a sampled point on the canonical
untransformed primitive p’ ~ S(P,,). We do so by using
the re-parametrization trick [2 1] which decouples the pa-
rameters from the random sampling. As an example, con-
sider a point being sampled on a rectangle extending from
(—w,—h) to (w, h). Instead of sampling the x-coordinate
as x ~ [—w,w], one can use u ~ [—1,1] and 2 = ww. This
re-parametrization of sampling allows one to compute - 0:1:
We provide the details for applying the re- parametrlzatlon
trick for a cuboid primitive in the appendix.

1.osses

® cssentially, sample
primitives and check the
samples are inside O

® [ikely easier to sample O
and check outside the
primitives

Learning. Under the reformulated representation of prim-
itives, the CNN output does not induce a unique assem-
bled shape — it induces a distribution of possible shapes
where the m!" primitive stochastically exists with proba-
bility p,,,. In this scenario, we want to minimize the ex-
pected loss across the possible assemblies. The first step is
to modify the consistency and coverage losses to incorpo-
rate z,,, = (23,,25,). Towards this, we note that the un-
transformed primitive P, is either a cuboid (if 2§, = 1) or
empty (if 25, = 0). In case it is empty, we can simply skip
it the the consistency loss (Section 3.2.3) for this primitive
and can incorporate this in the coverage loss (Section 3.2.2)
by modifying Eq. 6 as follows -

00, ifz; =0

C(-:;Pn)=) 10
() {Ccub(-;zfn, ifzg, =1 (10)

We can now define the final loss L(hg(I), O) using the
concepts developed. Note that this is simply the expected
loss across possible samplings of z¢ according to p,,.

L({(zm>qm,tm)},0) = L1({(zm, gm,tm)}, O)
+ Lo({(Zms@m,tm)},0) (11)

L(he(I)a O) =]EVm zanBern(pm)L({(Zma dm, tm)}a O)

Under this loss function, the gradients for the continu-
ous variables i.e. {(23,,¢m,tmn)} can be estimated by av-
eraging their gradients across samples. However, to com-
pute gradients for the distribution parameter p,,,, we use the
REINFORCE algorithm [37] which basically gives positive
feedback if the overall error is low (reward is high) and neg-
ative feedback otherwise. To further encourage parsimony,
we include a small parsimony reward (reward for choosing

1.osses

® Manage the number of
primitives by rewarding
rep’ns in terms of few
primitives

® Cf CvxNet

Decomposition loss (auxiliary). We seek a parsimonious
decomposition of an object akin to Tulsiani et al. [65].
Hence, overlap between elements should be discouraged:

Lgecomp(w) = Exps ||I‘CIU(Sl;cm{Ck (x)} — T)||2, (4)

where we use a permissive 7 = 2, and note how the ReLU
activates the loss only when an overlap occurs.

Deng et al

i : : ~ Tulsiani et al 17
fewer primitives) when computing gradients for p,,.

®
: 4
Hfll' % N o v om w by B
e R YN v aap N ww

Figure 3: Final prediction f ur method on chai ml d eroplanes. We visualize the more commonly oc
modes on the left and pr gre lytward th rlght hw onfigura t pred td

Tulsiani et al 17

igure 6: Projection of the predicted primitives onto the original shape. We assign each point p in the original shape to the
orresponding primitive with lowest distance field C(p, P,,). We visualize the parsing by coloring each point according to
he assigned primitive. We see that similar parts e.g. aeroplane wings, chair seat, efc. are consistently colored.

® Primitives imply a segmentation of the original shape

Notes and queries

® They’re not really learning primitives
® all boxes
® But they are really learning to parse
o (:
® could/should one do this with a richer vocabulary of primitives?
® ¢g large vocab and CSG
® remove primitives if not used
® what is the value of using primitives here?
® likely the implicit learned segmentation
® could one build a shape generator by:
® cach primitive is a point
® point set generator to make these primitive repns
® something to make the residual wrt primitives

More complex primitives

® Superquadrics:

Paschalidou et al, 19

Having specified our network and the loss function, we
now provide details about the superquadric representation
and its parameterization A. Note that, in this section, we
omit the primitive index m for clarity. Superquadrics define
a family of parametric surfaces that can be fully described
by a set of 11 parameters [!]. The explicit superquadric
equation defines the surface vector r as

€1 €2
Q1 COS ncf)se w —x/2< < 7/)2
r(n,w) = | ascos nsin®? w
€1 —T S w S i
azsin™ 7

(13)
where a = [ay, ag, as] determine the size and € = [eq, €9]
determine the global shape of the superquadric, see supple-
mentary material forexamples. Following common practice
[39], we bound the values €; and ¢ to the range [0.1,1.9]
so as to prevent non-convex shapes which are less likely
to occur in practice. Eq. 13 produces a superquadric in a
canonical pose. In order to allow any position and orienta-
tion, we augment the primitive parameter A with an addi-
tional rigid body motion represented by a translation vector
t = [tg,ty,t,] and a quaternion q = [qo, g1, g2, g3] Which
determine the coordinate system transformation 7 (x) =
R(M)x + t(A) above.

PN

Figure 3: The effect of restricting the exponent parameters to 1,69 > 0.1. Top row depicts the
restricted superquadrics with €1 = .1 and respectively e9 = 0.1,0.5,1.0,1.5,2.0,2.5,3.0, whereas
the bottom row contains corresponding superquadrics with sharp edges - €1 = 0.0 and g9 =
0.0,0.5,1.0,1.5,2.0,2.5,3.0. Note that colored parts highlight the areas which are supposed to rep-
resent a single boundary curve or corner, i.e., the colors indicate the regions where the prominent
approximation errors for objects with sharp contours occur.

Vaskevicius and Birk 19

® Superquadrics come with a nasty issue
® distance, gradient become unstable with small eps
® standard fix: eps > 0.1 (adopted here)
® alternative in Vaskevicius and Birk

™
N

g & X

.
1l

)
207

I Mo 8 s
> R L
SN = - -
%’, (A 2B :/\ Y
SN bommmmmm- oo
20 N N S 0 06 4 &
N\ o
e @ 6 6.4 ¢ &
g OO0 e eé > & o
S

QO 6 6o

=

7
X0

\ ,
: ‘»“\\‘ N R \K

0.0 \ N\ \\k\\\\\\\\\\\\
0.0 Convex 2.0 Concave €1

Figure 2: Example superquadrics with respect to the shape parameters (0 < c1,69 < 3.5 with 0.5
resolution). The surfaces are colored based on RGB encoding of the surface normal vectors with red

intensity corresponding to x, green to y, and blue to 2 components. The superquadrics have a convex
shape within the region of 0 < 1,69 < 2. Vaskevicius and Birk 19

General structure

e Rather like Tulsiani et al (above), BUT

® Use chamfer distance to sampled primitives
® Do not require REINFORCE
® cven though primitives could not exist (as in Tulsiani)

in our supplementary material. Thus, we use the Chamfer
distance in our experiments

Lp(P,X)=Lp x(P,X)+Lxp(X,P) (3

where Lp_,x measures the distance from the predicted
primitives P to the point cloud X and Lx _, p measures the
distance from the point cloud X to the primitives P. We
weight the two distance measures in (3) with 1.2 and 0.8,
respectively, which empirically led to good results.

® notice a mild asymmetry, due to existence issue

Paschalidou et al, 19

Primitive to point cloud

Primitive-to-Pointcloud: We represent the target point
cloud as a set of 3D points X = {x;},. Similarly, we
approximate the continuous surface of primitive m by a set
of points Y, = {y}* }i}’zl. Details of our sampling strategy
are provided in Section 3.4. This discretization allows us to
express the distance between a superquadric and the target
point cloud in a convenient form. In particular, for each
point on the primitive y', we compute its closest point on
the target point cloud x;, and average this distance across
all points in Y, as follows:

K
px(P,X) = K Z A (4)

k=1

® Sampling primitives helps a lot
® closest point on superquadric requires root finding if convex
® nastier if not

Paschalidou et al, 19

Point cloud to primitive

This allows us to simplify Eq. 8 as follows 1 if m’th primitive exists

Lx,p(X,P)=) ZA’"% H(l—wm) (11)

x;eEX m=1

where v, is a shorthand notation whic notes the ex-

evaluations of the function A]" which is one of the main

results of this paper. For a detalled derivation of (11), we o _

refer the reader to the supplementary material. to m’th primitive, sorted in
ascending order

Minimum distance from 1’th poin

Paschalidou et al, 19

Parsimony

3.2. Parsimony Loss

Despite the bidirectional loss formulation above, our
model suffers from the trivial solution Lp(P,X) = 0
which is attained for y; = - - - = 7, = 0. Moreover, multi-
ple primitives with identical parameters yield the same loss
function as a single primitive by dispersing their existence
probability. We thus introduce a regularizer loss on the ex-
istence probabilities vy which alleviates both problems:

M M
E’y(P):ma'X (Q_QZ'YmaO)‘i‘.B Z')’m (12)

The first term of (12) makes sure that the aggregate exis-
tence probability over all primitives is at least one (i.e., we
expect at least one primitive to be present) and the second
term enforces a parsimonious scene parse by exploiting a
loss function sub-linear in) = -, which encourages spar-
sity. « and 3 are weighting factors which are set to 1.0 and
103 respectively.

Paschalidou et al, 19

It’s now straightforward...

® Encoder
® accept input shape and make code

® Decoder

® make a fixed number of primitives
® parameters, rotations, translations, existence prob
® to minimize loss
® Unsupervised
® in the sense that it doesn’t see ground truth primitives for input

Closer than cuboids

LRAARAL

1 iter 10k iter 20k iter 30k iter 40k iter 45k iter

Figure 4. Training Evolution. We visualize the qualitative
evolution of superquadrics (top) and cuboids (bottom) dur-
ing training. Superquadrics converge faster to more accu-
rate representations, whereas cuboids cannot capture details
such as the open mouth of the dog, even after convergence.

Figure 5: Qualitative Results on SURREAL. Our net-
work learns semantic mappings of body parts across differ-
ent body shapes and articulations. For instance, the network
uses the same primitive for the left forearm across instances.

Figure 6: Qualitative Results on ShapeNet. We visualize predictions for the object categories animals, aeroplane and
chairs from the ShapeNet dataset. The top row illustrates the ground-truth meshes from every object. The middle row depicts
the corresponding predictions using the cuboidal primitives estimated by [*7]. The bottom row shows the corresponding
predictions using our learned superquadric surfaces. Similarly to [17], we observe that the predicted primitive representations
are consistent across instances. For example, the primitive depicted in green describes the right wing of the aeroplane, while
for the animals class, the yellow primitive describes the front legs of the animal.

Notes and queries

Closer than boxes

® but so what?
® are we trying to encode shape as primitives? or segment? or what?

Chamfer distance seems clearly the way to go

You could do this for many kinds of surface primitive
® cg Gaussian blobs, metaballs,

Notice important advantage of CvxNet representation
® (Can’t use Farkas’ lemma easily on superquadrics
® non-convex: obvious
® convex: the set of supporting planes is infinite, so impractical
® (Q: what happens if you sample?
® A: why not just use the planes?

CSGNet - parsing into CSG

' P1 = Circlel @ »
___y P2 = Trianglel N/
‘ ’ E1 = Subtract(P1, P2) 9
P3 = Circle2 \o/ N
Input E2 = Subtract(E1, P3) V%
P4 = Triangle2 D A
w E3 = Subtract(E2, P4) \/
' €—p5 = Triangle3 -
’ Out = Subtract(E3, P5) \ X

Output Program Parse tree

P1 = Cylinderl

P2 = Cylinder2
— E1 = Intersect(P1, P2) —
P3 = Cubel

Out = Subtract(E1, P3)

Input Program Output
—» CSGNet —» CSG engine

Figure 1. Our shape parser produces a compact program that
generates an input 2D or 3D shape. On top is an input image of
2D shape, its program and the underlying parse tree where primi-
tives are combined with boolean operations. On the bottom is an
input voxelized 3D shape, the induced program, and the resulting
shape from its execution.

Transformations are absent - just cause
they make the figure too busy?

Idea:
you can learn to parse into a CSG rep
by minimizing loss of generated
parse against true volume; you may
not need any actual CSG reps

Sharma et al 18

Encoder Decoder

Predicted Program

L x A ;
[" Al N R e
(1) |
CNN — GRU Je——> P1 = circle(32,32,28) §
—>(GF:lU Je———> P2 = square(32,40,24)
——(___GRU ——> P3 = circle(48,32,12) L
——> GF:!U Je———> P4 = circle(24,32,16) >
> Gr%tu Je———> E1 = union(P3, P4)
—>{___GRU___Je——» E2 = intersect(P2, E1) 1
——> GRU Je——> Out = subtract(P1, E2) .
@ Network Prediction REW":ORCE
B intermediate Variable i
\ > REWARD |«

Rendering Process

A

P3

P4

union(P3, P4)

intersect(P2, E1)

Figure 2. Architecture of our neural shape parser (CSGNet). CSGNet consists of three parts, first an encoder takes a shape (2D or
3D) as input and outputs a feature vector through a CNN. Second, a decoder maps these features to a sequence of modeling instructions
yielding a visual program. Third, the rendering engine processes the program and outputs the final shape. The primitives annotated as
P1, P2, P3, P4 are predicted by the network, while 1, E'2 are the outputs of boolean modeling operations acting on intermediate shapes.

Sharma et al 18

The form of the parses

For example, in constructive solid geometry the instructions
consist of drawing primitives (e.g., spheres, cubes, cylin-
ders, etc.) and performing boolean operations described as
a grammar with the following production rules:

S—FE

E—-FEFET|P

T — OP1|0P2|...|0Py,

P — SHAPE;|SHAPEs|...|SHAPE,

Each rule indicates possible derivations of a non-terminal
symbol separated by the | symbol. Here S is the start sym-
bol, OP; is chosen from a set of defined modeling opera-
tions and the SHAPE; i1s a primitive chosen from a set of
basic shapes at different positions, scales, orientations, etc.
Instructions can be written in a standard post-fix notation,
e.g. SHAPESHAPE,OP1SHAPE30P2. Figure 2 also gives
an example of a program predicted by the network, that fol-
lows the grammar described above.

All CSG trees are binary (fairly usual),
but aren’t required to be unbalanced
SO

S1S2 01 S3S40203
1s OK by this grammar.

Note also:
string==tree==program

Sharma et al 18

Parsing

Parser output 1s a “categorical distribution over

instructions at each time step”
® [*think™* this means
® we model string S1 S2 O1 etc with autoregressive model
® derived from network, which gives

p(si|s1...s;_1,input)
Learning
® supervised data: (bad idea, for reasons to follow)
® e shape + program
® maximize likelihood of program
® unsupervised data:
® produce program that best encodes shape

Erp [Jo(1)] = Er~DEynr,(n)) [B] -

Encoding shape

Reward. The rewards should be primarily designed to en-
courage visual similarity of the generated program with the

® Network produces probabi]ity target. Visual similarity between two shapes is measured

distribution over proerams using the Chamfer distance (CD) between points on the
prog edges of each shape. The CD is between two point sets,

® conditioned on input shape x and y, is defined as follows:
® Reward:
1 : 1 :
® similarity between input shape and ~ Ch(x,y) = 2% Z 15161;1”:1: - Zl“z‘*m Z 2161;1“5'3 — 9yl
predicted shape TEX yEY

The points are scaled by the image diagonal, thus
» Ch(x,y) € [0,1] ¥x,y. The distance can be efficiently
77 We want a large reward, but we computed using distance transforms. In our implementa-
tion, we also set a maximum length 7" for the induced
programs to avoid having too long or redundant programs
(e.g., repeating the same modeling instructions over and
over again). We then define the reward as:

don’t want a large chamfer distance?

R f (Ch(Edge(I),Edge(Z(y)), wis valid
o y is invalid.

Sharma et al 18

Shaping function

where f 1s a shaping function and Z 1s the CSG rendering
engine. Since invalid programs get zero reward, the maxi-
mum length constraint on the programs encourages the net-
work to produce shorter programs with high rewards. We
use maximum length 7" = 13 in all of our RL experiments.
The function f shapes the CD as f(z) = (1 — z)” with an
exponent v > 0. Higher values of v encourages CD close
to zero. We found that v = 20 provides a good trade-off
between program length and visual similarity.

Sharma et al 18

Minimizing loss

Assert:

® can’t use gradient descent, because
® “output space is discrete”
® “‘execution engines are typically not differentiable”

I have trouble buying this

Consequence:
® use reinforcement learning, reward as above

Inference
® beam search (MAP program is usually intractable)

d)

A

<
04010
1

Figure 4. Comparison of performance on synthetic 2D dataset.
a) Input image, b) NN-retrieved image, ¢) top-1 prediction, and d)
best result from top-10 beam search predictions of CSGNet>harmaetal 18

Figure 6. Results for our logo dataset. a) Target logos, b) output
shapes from CSGNet and c) inferred primitives from output pro-
gram. Circle primitives are shown with red outlines, triangles with
green and squares with blue.

Sharma et al 18

e

esultof create cylinder:
subtractlon & subtractit !

add 2 spheres

add one sphere
& compute unio

‘

R ————_

............................

(a) Input voxelized shape ¢ étl:)r ?,E(ejﬁ csgdm;;'r]ggam (c) Output CSG shape
Figure 7. Qualitative performance of 3D-CSGNet. a) Input vox-
elized shape, b) Summarization of the steps of the program in-
duced by CSGNet in the form of intermediate shapes, c) Final out-

put created by executing induced program. Sharma et al 18

Notes and queries

Supervised learning 1s dangerous

® same shape can have two parse trees implies
® same input to network must have high probability at two distinct outputs
® asking for trouble

A CSG parse more important than the right CSG parse
What is this for?

® very useful for reverse engineering (perhaps)
® do we need the combinatorial structure for (say) shape matching?
® (CF Sharma et al with Paschalidou et al; Tulsiani et al

Could one do shape completion like this?

What about a pure shape generator?
® je build an unconditional model using conditional examples

One form of shape generator

® (Generating indoor scenes (as above, Ritchie et al)
e BUT

® parse examples to make codes
® build generator to produce new codes
® decode these into parse trees

® then indoor scenes

~eaf node
Node Classifier
)
= =

Supp Encoder © o 4 Supp Decoder 5
=il] = 32 | |8 8|5 5| (O
kh) Q o Q '9 O — o © ©
s | O Co-oc Encoder o| |° = QIflo| |o Co-oc Decoder ol |5
5*813 +g->8 = — O {0?45 8":T_:
T[S wi[” 2 2 Ple sl - M=
2| s Surr Encoder =| (8 g |18 |2 |5 Surr Decoder - H
8. o O| (6= n = Ql |o CIOJ +
= |58 o 5o S | IR [E] |= 3

- Wall Encoder - 5 & J K Wall Decoder

Encoder Module Sampler Decoder Module

Fig. 2. Architecture of our RYNN-VAE, which is trained to learn a generative
model of indoor scene structures. Input to the network is a scene hierar-
chy composed of labeled OBBs enclosing 3D scene objects. The boxes are
recursively grouped and codified by a set of encoders, resulting in a root
code. The root code is approximated by a Gaussian distribution, from which
a random vector is drawn and fed to the decoder. The recursive decoder

produces an output hierarchy to minimize a reconstruction+VAE loss.
Lietal 19

Gaussian
Distribution

Module

| level4
U U ! level5 | Generated
Sampled ' | Scene
|

Root Code level2 Ievel3

Decoded hierarchy | Reconstruct 3D scenes from the hierarchy
Sampled |
Vector | levell leveld level5
o | levell |
l level2 —
f
od4,| , Decoder | | level3 —
|

Fig. 3. Overall pipeline of our scene generation. The decoder of our trained RvNN-VAE turns a randomly sampled code from the learned distribution into a
plausible indoor scene hierarchy composed of OBBs with semantic labels. The labeled OBBs are used to retrieve 3D objects to form the final 3D scene.

Lietal 19

Random samples from Closest scene from Clasest scene from our Random samples from Closest scene from Oasest scene from our
our generated scenes the training set 1K generated scenes our generated scenes the training set 1K generated scenes

*?y

{a) (13} (<) (a) bl d]

Fig. 11. Bedrooms generated by our method (a), in comparison to (b) closest scene from the training set, to show novelty, and to (c) closest scene from among
1,000 generated results, to show diversity. Different rows show generated scenes at varying complexity, ie., object counts. Li et al 1 9

End to end shape programs

® I[dea:
® build an “execution engine” that is differentiable
® train together with parser
® Parser:
o [.STMs
® block LSTM to identify blocks of program
® step LSTM - contents of blocks
® Execution engine
o LSTM+CNN

Tian et al 19

Program — Statement; Program

Statement — Draw(Semantics, Shape, Position_Params, Geometry_Params)

Statement — For(For_Params); Program; EndFor

Semantics — semantics | | semantics 2 | semantics 3 | ...

Shape — Cuboid | Cylinder | Rectangle | Circle | Line | ...
Position_Params — (z,y, 2)
Geometry_Params — (g1, g2, g3, 94. ...)
For_Params — Translation_Params | Rotation_Params
Translation_Params — (times 2, orientation u)

Rotation_Params — (times z, angle 6, axis a)

Table 1: The domain specific language (DSL) for 3D shapes. Semantics depends on the types of
objects that are modeled, i.e., semantics for vehicle and furniture should be different. For details of
DSL in our experimental setting, please refer to supplementary.

Tian et al 19

ﬂ-P-r;g-xam Params -Program Params Step LSTM =

Empty

Canvas draw('Top'.Rect’....)]

g

G T ——————— . -

Block 3 Step LSTM gg draw(Layer'Rect’....) +— o000

t
Block features Program ID 2

N

Block 4 op Vacant Token

A2 00

——————

A
1
1
1

o000
Block LSTM

Figure 2: The core of our 3D shape program generator are two LSTMs. The Block LSTM emits
features for each program block. The Step LSTM takes these features as input and outputs programs
inside each block, which includes either a single drawing statement or compound statements.

Tian et al 19

4.2 NEURAL PROGRAM EXECUTOR

We propose to learn a neural program executor, an approximate but differentiable graphics engine,
which generates a shape from a program. The program executor can then be used for training the
program generator by back-propagating gradients. An alternative is to design a graphics engine that
explicitly executes a symbolic program to produce a voxelized 3D shape. Certain high-level program
commands, such as For statements, will make the executor non-differentiable. Our use of a neural,
differentiable executor enables gradient-based fine-tuning of the program synthesizer on unannotated
shapes, which allows the model to generalize effectively to novel shapes outside training categories.

Learning to execute a long sequence of programs is difficult, since an executor has to learn to interpret
not only single statements but also complex combinations of multiple statements. We decompose
the problem by learning an executor that executes programs at the block level, e.g., either a single
drawing statement or a compound statements. Afterwards, we integrate these block-level shapes by
max-pooling to form the shape corresponding to a long sequence of programs. Our neural program
executor includes an LSTM followed by a deconv CNN, as shown in Figure 3. The LSTM aggregates
the block-level program into a fixed-length representation. The following deconv CNN takes this
representation and generates the desired shape.

To train the program executor, we synthesize large amounts of block-level programs and their
corresponding shapes. During training, we minimize the sum of the weighted binary cross-entropy
losses over all voxels via

L= Z —U Yy logg‘v - wO(l - yv) log(l - gv)v (1)
veV

where v is a single voxel of the whole voxel space V', y,, and ¢, are the ground truth and prediction,
respectively, while wop and w; balance the losses between vacant and occupied voxels. This training
leverages only synthetic data, not annotated shape and program pairs, which is a blessing of our
disentangled representation.

Tian et al 19

r

IProgram Executor | Program Executor
i
i
i

for (_..):

draw('Top',Rect’,...) for (__.):

|
i draw('Leg''Cub',...) | \ l
L—---—---—---—J g" — L--------—----Jl

(a) execute a single drawing statement (b) execute a compound statement

Figure 3: The learned program executor consits of an LSTM, which encodes multiple steps of
programs, and a subsequent 3D DeconvNet which decodes the features to a 3D shape.

This 1s what the blocks are about? \ Tian et al 19

Program
Program Block 1 |—> = e
> Executor

Program Block 2 |—>

Generator

Program Block 4 |—»

Figure 4: Given an input 3D shape, the neural program executor executes the generated programs.
Errors between the rendered shape and the raw input are back-propagated.

Learn executor, freeze, learn parser

4.3 GUIDED ADAPTATION

A program generator trained only on a synthetic dataset does not generalize well to real-world datasets.
With the learned differentiable neural program executor, we can adapt our model to other datasets such
as ShapeNet, where program-level supervision is not available. We execute the predicted program
by the learned neural program executor and compute the reconstruction loss between the generated
shape and the input. Afterwards, the program generator is updated by the gradient back-propagated

from the learned program executor, whose weights are frozen.
Tian et al 19

Ground truth w/o GA w/ GA

Ground truth w/o GA w/ GA

&ﬂvﬁé
KX]

Figure 6: ShapeNet objects from unseen categories reconstructed with shape programs before and
after guided adaptation. Shape Programs can learn to adapt and explain objects from novel classes.

Bench

Sofa

Primitives yield powerful smoothers

Input Image MarrNet Shape Programs (Ours) Ground Truth

g‘ v
LR

Figure 7: 3D reconstruction results on Pix3D dataset. MarrNet generates fragmentary shapes and our
model further smooths and completes such shapes.

Tian et al 19

Notes and queries

® Power of primitives:
® smoothing
® compact representation

® (Combinatorial structures are different but comparable
® Tian vs Sharma vs Li
® All use recurrent models (in different ways)

® What is the combinatorial structure for?
® does it simplify representation of distributions?
® why not regard as pointnet?

