
Generating and parsing
shapes and scenes

D.A. Forsyth, UIUC

Key questions:

• Shapes/scenes are (might be?) composites of primitives
• Generate

• individual representations
• composite representations

• Parse into
• individual representations
• composite representations

• Couple parser and generator, and learn both
• ideally, without intermediate annotations

Generating point clouds

• Can construct a feature that represents a point cloud
• above:

• embed each point in some hd space,
• max pool to single feature vector
• map that

• Why not use to build autoencoder, GAN, etc?
• Works, but how to evaluate?
• Standard metrics:

• EMD
• Chamfer distance

• Others

Achlioptas ea 18

EMD and Chamfer distance

You can get EMD by solving a linear program, but it’s nasty: see, for example,
 https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm

Achlioptas ea 18

Building an AE

• Tricks:
• work with a fixed number of points (2048)
• encoder follows pointnet trick
• then decoder is just a conv decoder to 2048x3
• Main issue:

• loss: EMD or CD?

Achlioptas ea 18

AEs can complete (think denoising)

Achlioptas ea 18

Achlioptas ea 18

Building a GAN

• Tricks:
• we know how to encode a point set for discriminator, so OK
• generator is easy

Achlioptas ea 18

Notes and queries

• Fixed size point cloud is a mild dodge
• likely easily remedied

• You could apply this to other things
• think of a CvxNet repn as a point cloud

• one point per convex, in 4x(# of planes) D
• what loss would one apply to train autoencoder?
• how would GAN training work?

Generating indoor scenes

• Goal:
• generate an overhead layout of objects for an indoor scene

• we can then place object models from some collection into this layout
• yielding a synthetic scene

• Issues:
• keep track of object interactions, counts, etc

• eg one bed implies likely no more than two nightstands
• eg objects may touch, but do not intersect

Ritchie et al 18

Generating indoor scenes

Ritchie et al 18

Strategy: auto-regressive model

• Construct the layout in steps
• Think of model as a string of unknown length

• x=(act1, act2, act3, …, stop)
• where act is

• choose object category
• choose location
• choose orientation
• choose size (and other attributes)
• insert into occupancy map

• Then p(x)=prod_i p(x_i| all previous)

• Models of this form have several advantages
• with appropriate choice of NN, can compute likelihood of points

• normalizing flow

• Not relevant here, but…

Ritchie et al 18

• Note:
• image representation is basically just a labelled layout map

• useful - summarizes where objects are
• Notice the conditioning here:

• category, location | labelled layout
• orientation, dimensions| category, location

• should be fairly obvious you can insert other blocks
• to predict other attributes

• there is a p(stop| input), too

I *think*

Ritchie et al 18

Training

• Take a set of authored scenes (SUNCG!?!)
• remove some objects, decide to insert one, train to do so
• Q: in what order?

• support before supporting
• first tier before second tier
• bigger before smaller

• Ordering is essential for category, insignificant for attributes, etc.

Overhead summary
(this has been beauty rendered,

which is ridiculous)

Probability of category
of next object

Notes and queries

• Autoregressive models have ups and downs
• Advantage:

• easy to author
• “make sense”

• Disadvantages:
• can get trapped (an error in early stages of generation persists)
• can be hard to learn accurately (above)

• What ordering is appropriate?
• Why is this not a point cloud?

• i.e. each object together with size, location, etc is a “point”
• and we do pointnet

• Q: is the underlying combinatorial structure meaningful?
• or just a nuisance?

Parsing and primitives

• Traditional idea, back to at least Binford 71
• Objects are a composite of primitive shapes
• Two issues:

• What are the primitives?
• Given some input, parse into the set of primitives?

• Traditional literature:
• Construct a set of primitives, using

• geometric insight, guessing, etc
• Now infer presence of primitive from local image properties, edges, etc.
• Major problem:

• objects aren’t precisely primitives, so….
• Could almost be made to work

Ioffe+Forsyth 01

Ioffe+Forsyth 01

Ioffe+Forsyth 01

Ioffe+Forsyth 01

More modern strategies

• Get a collection of shapes that has been parsed
• learn to predict segment labels
• straightforward supervised learning, data presents problems
• dominant process for (say) people

• But what if you don’t have parses?
• choose a set of possible primitives
• learn to represent shapes using these
• Q:

• what loss?
• how to handle number of primitives?

We’ve already seen one of these
(CvxNet); but it doesn’t handle
different numbers of primitives

Notice the varying number of primitives

Tulsiani et al 17

• Primitives are cuboids
• attached are shape and transformation parameters

• The number isn’t fixed
• choose M (largest number)
• give each primitive a “probability of existence”
• compute expected loss of assembly

• expectation over probability of existence
• at test time, threshold this probability, so get k<M primitives

Tulsiani et al 17

Probability of existence

Losses

• Note: primitives are convex, and constructions apply to
convex objects

• For general O, this function is nasty
• there may be multiple closest points on O
• for convex O, there is only one

Tulsiani et al 17

Losses

Tulsiani et al 17

Essentially, the shape lies inside the
union of the primitives

easy test with convex primitives

 Losses

• essentially, sample
primitives and check the
samples are inside O

• Likely easier to sample O
and check outside the
primitives

 Losses

• Manage the number of
primitives by rewarding
rep’ns in terms of few
primitives

• Cf CvxNet

Deng et al

Tulsiani et al 17

Tulsiani et al 17

• Primitives imply a segmentation of the original shape

Notes and queries

• They’re not really learning primitives
• all boxes
• But they are really learning to parse

• Q:
• could/should one do this with a richer vocabulary of primitives?

• eg large vocab and CSG
• remove primitives if not used

• what is the value of using primitives here?
• likely the implicit learned segmentation

• could one build a shape generator by:
• each primitive is a point
• point set generator to make these primitive repns
• something to make the residual wrt primitives

More complex primitives

• Superquadrics:

Paschalidou et al, 19

• Superquadrics come with a nasty issue
• distance, gradient become unstable with small eps
• standard fix: eps > 0.1 (adopted here)
• alternative in Vaskevicius and Birk

Vaskevicius and Birk 19

Vaskevicius and Birk 19

General structure

• Rather like Tulsiani et al (above), BUT
• Use chamfer distance to sampled primitives
• Do not require REINFORCE

• even though primitives could not exist (as in Tulsiani)

• notice a mild asymmetry, due to existence issue

Paschalidou et al, 19

Primitive to point cloud

• Sampling primitives helps a lot
• closest point on superquadric requires root finding if convex

• nastier if not

Paschalidou et al, 19

Point cloud to primitive

Minimum distance from i’th point
to m’th primitive, sorted in

ascending order

1 if m’th primitive exists

Paschalidou et al, 19

Parsimony

Paschalidou et al, 19

It’s now straightforward…

• Encoder
• accept input shape and make code

• Decoder
• make a fixed number of primitives

• parameters, rotations, translations, existence prob
• to minimize loss

• Unsupervised
• in the sense that it doesn’t see ground truth primitives for input

Closer than cuboids

Closer than cuboids

Notes and queries

• Closer than boxes
• but so what?

• are we trying to encode shape as primitives? or segment? or what?

• Chamfer distance seems clearly the way to go
• You could do this for many kinds of surface primitive

• eg Gaussian blobs, metaballs,

• Notice important advantage of CvxNet representation
• Can’t use Farkas’ lemma easily on superquadrics

• non-convex: obvious
• convex: the set of supporting planes is infinite, so impractical

• Q: what happens if you sample?
• A: why not just use the planes?

CSGNet - parsing into CSG

Sharma et al 18

Transformations are absent - just cause
they make the figure too busy?

Idea:
you can learn to parse into a CSG rep

by minimizing loss of generated
parse against true volume; you may

not need any actual CSG reps

Sharma et al 18

The form of the parses

All CSG trees are binary (fairly usual),
but aren’t required to be unbalanced

so

S1 S2 O1 S3 S4 O2 O3

is OK by this grammar.
Note also:

string==tree==program

Sharma et al 18

Parsing

• Parser output is a “categorical distribution over
instructions at each time step”
• I *think* this means

• we model string S1 S2 O1 etc with autoregressive model
• derived from network, which gives

• Learning
• supervised data: (bad idea, for reasons to follow)

• ie shape + program
• maximize likelihood of program

• unsupervised data:
• produce program that best encodes shape

p(si|s1 . . . si�1, input)

Encoding shape

• Network produces probability
distribution over programs
• conditioned on input shape

• Reward:
• similarity between input shape and

predicted shape

Sharma et al 18

?? We want a large reward, but we
don’t want a large chamfer distance?

Shaping function

Sharma et al 18

Minimizing loss

• Assert:
• can’t use gradient descent, because

• “output space is discrete”
• “execution engines are typically not differentiable”

• I have trouble buying this
• Consequence:

• use reinforcement learning, reward as above

• Inference
• beam search (MAP program is usually intractable)

Sharma et al 18

Sharma et al 18

Sharma et al 18

Notes and queries

• Supervised learning is dangerous
• same shape can have two parse trees implies
• same input to network must have high probability at two distinct outputs

• asking for trouble

• A CSG parse more important than the right CSG parse
• What is this for?

• very useful for reverse engineering (perhaps)
• do we need the combinatorial structure for (say) shape matching?
• CF Sharma et al with Paschalidou et al; Tulsiani et al

• Could one do shape completion like this?
• What about a pure shape generator?

• ie build an unconditional model using conditional examples

One form of shape generator

• Generating indoor scenes (as above, Ritchie et al)
• BUT

• parse examples to make codes
• build generator to produce new codes
• decode these into parse trees

• then indoor scenes

Li et al 19

Li et al 19

Li et al 19

End to end shape programs

• Idea:
• build an “execution engine” that is differentiable
• train together with parser

• Parser:
• LSTMs

• block LSTM to identify blocks of program
• step LSTM - contents of blocks

• Execution engine
• LSTM+CNN

Tian et al 19

Tian et al 19

Tian et al 19

Tian et al 19

Tian et al 19This is what the blocks are about?

Learn executor, freeze, learn parser

Tian et al 19

Primitives yield powerful smoothers

Tian et al 19

Notes and queries

• Power of primitives:
• smoothing
• compact representation

• Combinatorial structures are different but comparable
• Tian vs Sharma vs Li
• All use recurrent models (in different ways)

• What is the combinatorial structure for?
• does it simplify representation of distributions?
• why not regard as pointnet?

