Shape Representations

D.A. Forsyth, UIUC



Key 1deas

® There are many representations of 3D shapes
® cach is good at some things, bad at others
® one can usually move between representations
® can be hard for some pairs

® Networks can make any of them
® conventional paper:
® | made a network whose input 1s
® pic, multiple pics, range map
® and whose output is
® some shape representation that hasn’t been tried yet



Point clouds

® FEasy to:
® measure
® render (easyish)

e Hard to:

® compute most geometric properties
® (eg volume; recover curvature; find features)
® occlusion
® use near neighbor, etc

® Dubious properties:
® ysually either

® massively redundant
® or tricky to work with



Voxels and octrees

® Voxels:

® break space into an even grid; place something in each box
® usually, an indicator function (0-1), but can get more interesting

® (ctree:

® slightly more efficient structure
® gtart with unit box;
® subdivide into 8 children (halving each dimension)
® for each child either
® recur
® put something in child and stop
® savings may not be as big as you think
® function could be represented in a variety of ways
® values in leaves; wavelet-like representation



Octree Octree Octree
level 1 level 2 level 3

323 643 1283

Figure 1. The proposed OGN represents its volumetric output as an
octree. Initially estimated rough low-resolution structure is gradu-
ally refined to a desired high resolution. Ateach level only a sparse
set of spatial locations is predicted. This representation is signifi-
cantly more efficient than a dense voxel grid and allows generating
volumes as large as 512° voxels on a modern GPU in a single for-
ward pass.

Tatarchenko et al 17



Polygon soups and meshes

® (Collection of polygons (usually triangles)
® Meshes:

® polygons share some edges and vertices
® often, not always, rules about how
® cg in manifold meshes (pl manifolds) disallow some configurations
® some rules make mesh rendering/representation much more efficient
(eg triangle strips)
® two structures:
® combinatorial
® which triangle has which vertex, which edge
® gcometric (embedding)
® where the vertices are in 3D



Self-intersections

Nonmanifold edges

'\ <——Open boundaries

Coros slides




Meshes

e Standard problems with known solutions:
® constructing meshes from: point clouds; implicit surfaces; csg, etc.
® simplifying meshes
® FEasy to:
® render (very fast)
® compute normals, local geometric properties
® smooth

® Nasty features:
® not necessarily solid
® tricky to tell if point is inside or out if it is
® surface detail can require fine polygons and still be poorly represented
® can be very large



Implicit surfaces

® Most general form:

flz,y,2,6) =0

® Important cases:
® algebraic surfaces
® { polynomial
® composite surfaces
® cg metaballs; f is a weighted sum of shifted primitives



Implicit surfaces

e Standard problems with known solutions
® meshing: pass from implicit surface to mesh
® not straightforward, I’ll sketch issues
® rendering: ray trace OR mesh

® FEasy (ish)
® meshing; rendering
® forming solids

® Nasty features
® hard to know number of connected components
® can be tricky to fit to data
® casiest: data is well sampled point cloud, fit classifier
® depends on parametrization



Marching cubes (sketch)

e Key ideas:
® for small enough box, replace f with trilinear interpolate across box
® there is mischief in this assumption
® the mesh inside the box now takes a small set of possible patterns
® indexed by the sign on the vertices; at most 256
® symmetry etc. reduces the number of patterns
® current estimate is 33

e Fast, efficient, practical, largely right



Composite surfaces

m

1=1

® Metaballs

® Choice of f matters; want

® cheap to evaluate

® |ocal support

® smooth
® Common choices

® 1/(r"2+e); 1/(r"2)A2; gaussian
® Original metaballs did not have c_i

—_—



Figure credit: Wikipedia



e Stored in a Binary Tree

data structure

/ subtrat\

Intersect / union




Leaves: CSG Primitives

« Simple shapes
- Cuboids

- Cylinders @

) Pr]smS. subtract
- Pyramids
- Spheres
- Cones

e Extrusions

» Surfaces of |‘ || -I lﬁn
revolution
e Swept surfaces | =| v I | ‘I

Intersect union



« Boolean Operations
- Union

- Intersection g
- Difference subtract
e Rigid Transformations S

- Scale . '

- Translation intersect / union
- Rotation /

- Shear ‘ - lﬁm




Root: The Final Object




« Software for creating solid
3D CAD models

« Not an interactive modeler
— Very basic Ul

« A 3D-compiler
— Geometry written as a script

— Executed using CGAL/OpenCSG
— Rendered with OpenGL

« Available for Linux/UNIX,
Windows, Mac OS X

— http://www.openscad.org




Procedural modelling

® Idea:
® make CSG tree out of “program”

for (1 = [10:50])
assign (angle = i*360/20, distance = i*10, r =
rotate(angle, [1, 0, 0])
translate( [0, distance, 0] ) sphere(r




Procedural Modeling

e Goal:
- Describe 3D models algorithmically
e Best for models resulting from ...

- Repeating or similar structures
- Random processes

« Advantages:

- Automatic generation
- Concise representation
- Parameterized classes of models




Formal Grammars and Languages

e A finite set of nonterminal symbols: {S, A, B}
e A finite set of terminal symbols: {a, b}
« A finite set of production rules: S —> AB; A —> aBA

e A start symbol: S

e Generates a set of finite-length sequences of
symbols by recursively applying production rules
starting with S



L-systems (Lindenmayer systems)

A model of morphogenesis, based on
formal grammars (set of rules and |
symbols) i

= 'f[";f.;.? <&

e Introduced in 1968 by the Swedish %
biologist A. Lindenmayer S

e Originally designed as a formal /
description of the development of SRS 4

simple multi-cellular organisms e T

e Later on, extended to describe
higher plants and complex branching
structures



e nonterminals : O, 1

e terminals: [, ]

e start : O

e rules : (1 —>11), (0 — 1[0]0)

How does it work?

start:

1st recursion:
2nd recursion:
3rd recursion:

0
1[0]0

11[1[0]0]1[0]0
1111[11[1[0]0]1[0]0]11[1[0]0]1[0]0



start:

1st recursion:
2nd recursion:
3rd recursion:

L-system Example

e Visual representation: turtle graphics

0: draw a line segment ending in a leaf

1: draw a line segment

[: push position and angle, turn left 45 degrees
]: pop position and angle, turn right 45 degrees

Axiom First recursion Second recursion

0

1[0]0

11[1[0]0]1[0]0 il eceusion v o ——
1111[11[1[0]0]1[0]0]11[1[0]0]1[0]0 down en times



 Algorithmic Botany @ the University of Calgary

- Covers many variants of L-Systems, formal
derivations, and exhaustive coverage of different
plant types.

- http://algorithmicbotany.org/papers

- http://algorithmicbotany.org/virtual_laboratory/







Procedural Modeling of Buildings

Procedural Modeling of Buildings / Muller et al, Siggraph 2006
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Output:
Fabricatable
Parts and
Connectors

Converting 3D Furniture Models to Fabricable Parts and Connectors, Lau et al., Siggraph 2011



Natural problems

From input create model
® inputs: point cloud, depth map, image, images, etc
® model: in one of these forms

From format A, create format B
® mostly covered in classical literature

From 3D rep’n, segment into semantic components
From 3D rep’n, impute CSG
From many 3D examples, impute procedural model



Pointnet - a neat trick

Required: learned feature representation of a point cloud
Difficulty: point cloud has no order

® you can get the same point cloud in a different order
® could impose order, but...

Permutation invariants:

® the basis for permutation invariants are the symmetric functions
® mostly, a nuisance to work with

Idea:

® for any point cloud of n points in d dimensions,

maX(ZIJ1,1, 332,17 SR Cl?n,l)

1s permutation invariant

maX(ﬂjl,dg $2,d7 S len,d)



Pointnet - a neat trick - 11

So:

embed points in high dimension (K)
compute this pooling
now compute embedding of this feature vector
the resulting object is permutation invariant
® and “general”

® assume

® {(S) continuous in hausdorff distance on point sets
® hausdorff distance on point sets = max dist to nearest
neighbor
® choose eps, and K big enough
® then there is some g(S) of this form st [f(S)-g(S)l<eps



Formally...

Theorem 1. Suppose f : X — R is a continuous
set function w.rt Hausdorff distance dg(-,-). Ye >
0, 3 a continuous function h and a symmetric function
g(zy,...,x,) =~ o MAX, such that for any S € X,

< €

15) - (aax (hte})

where x1,...,x, is the full list of elements in S ordered
arbitrarily, v is a continuous function, and MAX is a vector
max operator that takes n vectors as input and returns a
new vector of the element-wise maximum.



Classification Network

n input mlp (64,64) feature mlp (64,128,1024) max mlp
8 transform ] transform o N pool 1024 (512,256 k)
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers

Affine transformation:
in embedding Space  segmentation Network

mlp (512,256,128)

mlp (128,m)

in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

Qietal 17
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Figure 3. Qualitative results for part segmentation. We
visualize the CAD part segmentation results across all 16 object
categories. We show both results for partial simulated Kinect scans
(Ieft block) and complete ShapeNet CAD models (right block).

Qietal 17



Figure 4. Qualitative results for semantic segmentation. Top
row is input point cloud with color. Bottom row is output semantic

segmentation result (on points) displayed in the same camera

viewpoint as input. Qietal 17
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Figure 16. PointNet normal reconstrution results. In this figure,
we show the reconstructed normals for all the points in some

sample point clouds and the ground-truth normals computed on
the mesh.
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Figure 13. Shape correspondence between two chairs. For the

clarity of the visualization, we only show 20 randomly picked
correspondence pairs.
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Figure 14. Shape correspondence between two tables. For the
clarity of the visualization, we only show 20 randomly picked

Qi etal 17 correspondence pairs.



This 1s a general summarization procedure

® Point clouds aren’t just 3D points
e Examples:

® (x,y,z,1,8,b)

® (x,y,z, feature vector)

® feature vectors of a batch

® useful idea in adversarial learning?
® center positions, params, weights of each metaball



Pointnet++: Further tricks

® (lustering points 1s permutation invariant
® 50 one could build clusters from a point cloud, then describe those



Notes and queries

e (Claim: the set of points that represent the set 1s sparse
® At most K points participate, so if true if K<n
® not true otherwise

® (: Assume we formed
gl (MAX{h(fCi)}>
I@ES
® and y_iclose to x_i
® what is gamma(max{h(y_1)}) like?
® Jikely controlled by learning procedure



CvxNet

® Represent objects as union of convexes
® convexes == polyhedra, with smoothed indicator function

® [mportant:

® convexes are intersections of half planes, rather than (say) vertices, meshes
® this is a CSG representation
® union of intersections



Input Image Object Reconstruction

BRIJLLET
Frrhich LisRaay

Explode of {Convexes}

Figure 1. Our method reconstruct a 3D object from an input image
as a collection of convex hulls, and we visualize the explode of
these convexes. Notably, CvxNet outputs polygonal mesh repre-
sentations of convex polytopes without requiring the execution of
computationally expensive iso-surfacing (e.g. Marching Cubes).
This means the representation outputted by CvxNet can then be
readily used for physics simulation [17], as well as many other
downstream applications that consume polygonal meshes.



Convex sets

A set of points C 1s convex if

for z1,20 € Cand 0 <t < 1,tx1 + (1 —t)zg €C

A hyperplane H is a supporting hyperplane of C if:

® at least one point of C lies on H
® all of C lies on one side of H

Every point on C has at least one supporting hyperplane
passing through it - but there can be more

C 1s the intersection of the half-spaces defined by
supporting hyperplanes



Convex sets

Can write C as

C = {z|m(x) + ¢; > 0}

® where pi_i(x)+c_i is the equation of the 1’th supporting hyperplane on x
® deliberate vagueness about indexing here
® there may be an infinite set of supporting hyperplanes

Confine to finite sets of supporting hyperplanes, so

C = {x|Mx+c >0}

® M a matrix, c a vector

Such convex sets are not necessarily bounded



A construction....

® (Given a set of hyperplanes, how do we know it makes a
convex set?



A construction....

® Assume C 1s not empty, then it contains some point
® 50 there is some point X such that

Mx+c >0

® Notice that any non-negative combination of inequalities

1s also valid for every point in the set

® Picture can help here;
® but basically, these inequalities are + at every point in C
® 50 a non-neg combination is also +

e [f C 1s empty, then some combination of inequalities
should make this obvious



A construction....

e [f C 1s empty, then some combination of inequalities

should make this obvious

® cquivalently, I can derive a contradiction == inequality that can’t be true
for any point

® Now consider:
a such that al M =0and a> 0

® this represents a non-negative combination of inequalities, so should be
non-negative for any point in C

e [f, in addition, aAT c< O, we have our contradiction



Contradiction

® [fxisinC,then

al Mx+alc>0

® but by hypothesis
al Mx =0

alMx+alec=ale <0



Farkas’ L.emma

Either there exists an x such that

Mx+c >0

or there exists an a such that

a such that al M =0and a> 0 and a’c < 0

(This 1s one of many forms of Farkas’ Lemma; it turns up
all over the place — eg linear programming in dual
constructions; functional analysis as Hahn-Banach thrm)



Another form of Farkas’ lemma

e Fither a point X 1s in a convex set or there exists a

hyperplane separating x from the convex set
® i.c.such that the hyperplane is + on convex set, and - on point

® Prove as assignment in homework; straightforward



Two natural representations

® (C represented by hyperplanes
® finite set, so polyhedron or cone
® may not be bounded
® impressively easy to work with

® Casconvex_hull(p_1, ... p_k)

® bounded

® [ssues:
® passing from one to another can be tricky
® in 2D relatively straightforward
® in 3D do-able
® in ND, hard



Easy constructions

® (CvxNet represents a convex as a set of hyperplanes
® fixed number

® o test:
® Point x 1s inside a set

min(Mx +c) > 0

® Point x 1s outside a set

min(Mx +c¢) < 0

® convex_hull(p_1, ... p_n) inside a set

min; (min(Mp; +c)) > 0

1.e. if every point is in, then hull is in



What CvxNet does...

® We have a set of sample points inside and outside object

® Object 1s a union of a fixed number of convexes
® some smoothing of the indicator function with sigmoid; largely ignore

® Choose these convexes so that
® cvery point that should be inside is inside some convex
® cvery point that should be outside is outside every convex
® cvery convex accounts for at least one sample point
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Figure 2. From {hyperplanes} to occupancy — A collection of hyperplane parameters for an image specifies the indicator function of
a convex. The soft-max allows gradients to propagate through all hyperplanes and allows for the generation of smooth convex, while the
sigmoid parameter controls the slope of the transition in the generated indicator — note that our soft-max function is a LogSumExp.
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Figure 3. Convex auto-encoder — The encoder £ creates a low dimensional latent vector representation A, decoded into a collection of
hyperplanes by the decoder D. The training loss involves reconstructing the value of the input image at random pixels x.
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Figure 6. From {hyperplanes} to polygonal meshes — The
polygonal mesh corresponding to a set of hyperplanes (a) can be
computed by transforming planes into points via a duality trans-
form (b), the computation of a convex hull (c), a second duality
transform (d), and a final convex hull execution (e). The output of
this operation is a polygonal mesh. Note this operation is efficient,
output sensitive, and, most importantly does not suffer the curse
of dimensionality. Note that, for illustration purposes, the duality
coordinates in this figure are fictitious.
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Figure 12. ShapeNet/Multi — Qualitative comparisons to SIF [21], AtlasNet [26], OccNet [“4], VP [65] and SQ [50]; on RGB Input,
while VP uses voxelized, and SQ uses a point-cloud input. (*Note that the OccNet [+4] results are post-processed with smoothing).



INnput CvxNet Selectlon Retrieved

Figure 10. Part based retrieval — Two inputs (left) are first en-
coded into our CvxNet representation (middle-left), from which
a user can select a subset of parts (middle-right). We then use
the concatenated latent code as an (incomplete) geometric lookup
function, and retrieve the closest decomposition in the training
database (right).

Object B Object A




N+Q

Very neat fitting results
Some cases will work badly (I’ll draw)

Samples are a fantastically inefficient geometric rep’n (to
follow)

Part claim 1s weird
® why bother? why not use partnet style rep’n on params of convex

Why not use other CSG constructions?
® this is union of intersections
® but we could do differences - eg rooms



Harder

® A convex set D represented by N, d 1s outside C

® cquivalently, there is no point inside D and C
® cquivalently, there exists a such that

a” |

— 0 and a’ <Qanda>0

C
d

® You could write this as a loss
® first term: minimize a’T a
® second term introduce slacks, etc to get hinge loss
® third term introduce slacks, etc. to get hinge loss



Slacks

We want

Choose a scale to get (for x1 positive)

Or

So minimize

a

w < 0

alw< —1+4¢

aTw+1§§

¢ = max(a

W

1,0)



Notice

® This construction doesn’t penalize volume
® 50 size of loss is not proportional to volume of intersection
® Jikely quite hard to do



Constructions:

® How do we know two convex sets do not intersect
® FM elimination



