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Abstract. A new, exemplar-based, probabilistic paradigm for visual tracking is presented. Probabilistic mecha-
nisms are attractive because they handle fusion of information, especially temporal fusion, in a principled manner.
Exemplars are selected representatives of raw training data, used here to represent probabilistic mixture distributions
of object configurations. Their use avoids tedious hand-construction of object models, and problems with changes
of topology.

Using exemplars in place of a parameterized model poses several challenges, addressed here with what we call the
“Metric Mixture” (M2) approach, which has a number of attractions. Principally, it provides alternatives to standard
learning algorithms by allowing the use of metrics that are not embedded in a vector space. Secondly, it uses a noise
model that is learned from training data. Lastly, it eliminates any need for an assumption of probabilistic pixelwise
independence.

Experiments demonstrate the effectiveness of the M2 model in two domains: tracking walking people using
“chamfer” distances on binary edge images, and tracking mouth movements by means of a shuffle distance.
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1. Introduction

There is, of course, a substantial literature on tracking,
driven either by image features (Amini et al., 1988;
Kass et al., 1987) or by raw intensity (Bascle and
Deriche, 1995; Black and Jepson, 1996; Hager and
Toyama, 1996), or both (Cootes et al., 1998). Tracking
can be formulated in a probabilistic framework in both
the feature-driven (Terzopoulos and Szeliski, 1992) and
intensity-driven (Storvik, 1994) settings. The proba-
bilistic formulation has the attraction that uncertainty
is handled in a systematic fashion, allowing principled
handling of sensor fusion and temporal fusion. Many
such tracking algorithms, however, demand that com-
plex models be defined and trained for each object class

∗http://research.microsoft.com/vision.

to be tracked—a process that is often laborious and dif-
ficult to automate fully.

Our aim, therefore, is to develop a paradigm which
retains the probabilistic setting while avoiding the use
of explicit models to describe target objects. The use
of exemplars, for example, the contour exemplars in
Fig. 1, offers an alternative that can tackle this prob-
lem (Brand, 1999; Efros and Leung, 1999; Freeman
and Pasztor, 1999; Frey and Jojic, 2000; Gavrila and
Philomin, 1999). Exemplar-based models can be con-
structed very directly from training sets, without the
need to set up complex intermediate representations,
such as parameterized contour models or 3D articu-
lated models.

Existing tracking algorithms that use exemplar-
based models have certain limitations. Single-frame
exemplar-based tracking (Gavrila and Philomin, 1999),
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Figure 1. Cropped, sample frames from a tracked test sequence. The overlays represent the maximum a posteriori exemplars. Exemplars
and dynamics were learned from an independent training sequence of the same individual walking along a similar path (see also the video
walk1.mpg, viewable at http://research.microsoft.com/vision/papers).

though effective, is limited by its inability to incorpo-
rate temporal constraints, resulting in jerky recovered
motion and reduced power to recover from occlusion.
Full temporal tracking can be obtained via Kalman
filtering or particle filtering, for which a probabilis-
tic framework is needed. Frey and Jojic (2000) have
demonstrated elegantly how exemplars can be embed-
ded in learned probabilistic models by treating them
as centers in probabilistic mixtures. Their motion-
sequence analysis is, in principle, fully automated,
requiring only the structural form of a generative
image-sequence model to be specified in advance.
However, the approach has serious drawbacks:

• inference is done with online expectation-
maximization (EM), which is computation intensive
and limited, for practical purposes, to low resolution
images;

• images have to be represented simply as arrays of
pixels, ruling out nonlinear transformations that can
help with invariance to scene conditions, including
the conversion of images to edge maps that proves so
powerful with non-probabilistic exemplars (Gavrila
and Philomin, 1999);

• finally, image noise is treated as white despite known,
strong statistical correlations between pixels (Field,
1987).

The problem, therefore, is to combine exemplars in
a metric space (Gavrila and Philomin, 1999) with a
probabilistic treatment (Frey and Jojic, 2000), retain-
ing the best features of each approach. Unfortunately,

this combination is not straightforward. The very
techniques which make probabilistic treatment pos-
sible (i.e., modeling with Gaussians, PCA, k-means,
EM, etc.), are not applicable given that exemplar-based
models need have no vector-space structure. (There is
no clear sense in which two of the outline contours in
Fig. 1 can be added together.) We propose the Metric
Mixture (M2) model, described below, to solve this
problem. Figure 1 shows the approach applied to track-
ing a walking person.

One note on terminology: the theory and algorithms
could be presented as for true metrics. A function ρ is
a metric when (1) ρ(a, b) ≥ 0, ∀a, b, (2) ρ(a, b) = 0
iff a = b, (3) ρ(a, b) = ρ(b, a), and (4) ρ(a, b) +
ρ(b, c) ≥ ρ(a, c). The M2 theory, however, can also
apply to certain functions without axioms (3) and (4).
We will refer to these latter functions as “distance
functions.”

2. Pattern-Theoretic Tracking

Test image sequences Z = {z1, . . . , zT } are to be an-
alyzed in terms of a probabilistic model learned from
a training image sequence Z∗ = {z∗

1, . . . , z∗
T ∗ }. Images

may be preprocessed for ease of analysis, for example
by filtering to produce an intensity image with certain
features (e.g., ridges) enhanced, or nonlinearly filtered
to produce a sparse binary image with feature pixels
marked. A given image z is to be approximated, in a
standard pattern theoretic manner (Mumford, 1996), as
an ideal image or object x ∈X that has been subjected
to a geometrical transformation Tα from a continuous
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set α ∈A, i.e.:

z ≈ Tαx . (1)

2.1. Transformations and Exemplars

The partition of the underlying image space into the
transformation set A and class X of normalized im-
ages could take a variety of forms. For example, in
analysis of face images, A could be a shape space,
modeling geometrical distortions, and X could be a
space of textures, in the manner of Cootes et al. (1998)
and Vetter and Poggio (1996). Alternatively A could
be a space of planar similarity transformations, leaving
X to absorb both distortions and texture/shading dis-
tributions. In any case, A is to be defined analytically
in advance, leaving X to be inferred from the training
sequence Z∗. A feature of this work is that the class X
of normalized images is not assumed to be amenable
to straightforward analytical description; instead X is
defined in terms of a set {x̃k, k = 1, . . . , K } of ex-
emplars, together with a distance function ρ, in the
spirit of Gavrila (Gavrila and Philomin, 1999). For
example, the face of a particular individual, might be
represented by a set of exemplars x̃k consisting of nor-
malized (registered), frontal views of that face, wearing
a variety of expressions, and in a variety of poses and
lighting conditions. Crucially, exemplars will be inter-
preted probabilistically, so that the uncertainty inher-
ent in the approximation (1) is accounted for explicitly.
The interpretation of an image z is then as a state vector
X = (α, k).

2.2. Learning

Aspects of the probabilistic model that must be learned
from Z∗ include:

1. The set of exemplars {x̃k, k = 1, . . . , K }.
2. Component distributions, centered on each of the

Tα x̃k , for some α for observations given state
X = (α, k). The details of this density, and the
algorithm for learning it, constitute a new approach
to the vexed question of how to model image obser-
vations probabilistically without tripping over the
issue of statistical independence.

3. A predictor in the form of a conditional density
p(Xt | Xt−1) to represent the (typically strong) prior
dependency between states at successive time steps.

These elements (together with a prior p(X1)) form
a structured prior distribution for a randomly sam-
pled image sequence z1, . . . , zT , which can be tested
for plausibility by random simulation (see Fig. 3, for
example).

The prior model then forms a basis for interpretation
of image sequences via the posterior

p(X1, X2, . . . | z1, z2, . . . ; �)

where � is the set of learned parameters of the prob-
abilistic model, including the exemplar set, the noise
parameters, and the dynamic model.

3. Probabilistic Modeling of Images
and Observations

The probabilistic dependency structure for the M2

model is depicted in Fig. 2 and is similar to Frey
and Jojic (2000). However, the similarity of depen-
dency structure belies crucial innovations in represen-
tation and probability distributions which are explained
below.

3.1. Objects

An object in the class X is taken to be an image that
has been preprocessed to enhance certain features, re-
sulting in a preprocessed image x . The M2 approach is
general enough to apply to a variety of such images—
we will consider two: unprocessed raw images, and
sparse binary images with true-valued pixels marking
a set of feature curves.

Figure 2. Probabilistic graphical structure for the M2 model:
The observation zt at time t is an image drawn from a mixture
with centers {Tα x̃k , k = 1, . . . , K }, where {x̃k , k = 1, . . . , K } are
exemplars; Tα is a geometrical transformation, indexed by the (real-
valued) parameter α.
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3.1.1. Patches. In the case of real-valued output from
preprocessing, z is an image subregion, or patch,
visible as an intensity function Iz(r). As mentioned
earlier, it is undesirable to have to assume a known pa-
rameterization of the intensity function on that patch.
For now, we make the conservative assumption that
some linear parameterization, with parameters y ∈ Rd ,
of a priori unknown form and dimension d , exists,
so that:

Iz(r) =
d∑

i=1

Ii (r)yi (2)

where I1(r), . . . , Id(r) are independent image basis
functions and y = (y1, . . . , yd). Given the linearity as-
sumption, all that will need be inferred about the nature
of the patch basis is its dimensionality d . There is no
requirement to know or infer the form of the Ii . A
suitable distance function ρ is needed for patches. For
robustness we will use a “shuffle distance” (Kutulakos,
2000), which is an L2 norm applied after first associat-
ing each pixel in one image with the most similar pixel
in a neighborhood around the corresponding pixel in
the other image. (We show later why we chose this
distance over others.)

3.1.2. Curves. The situation for binary images is sim-
ilar to that for patches, except that a different distance
function is needed, and the interpretation of the lin-
ear parameterization is a little different, too. Now z is
visible as a curve rz(s), with curve-parameter s, and
linearly dependent on y ∈ Rd :

rz(s) =
d∑

i=1

ri (s)yi , (3)

where r1(s), . . . , rd(s) are now independent curve ba-
sis functions such as parametric B-splines (Bartels
et al., 1987). In this case, the distance measure ρ

used is a (non-symmetric) chamfer distance (Gavrila
and Philomin, 1999). The chamfer distance is defined
to be

ρ(z̃, z) = min
s ′(s)

∫
ds g(|rz(s

′) − rz̃(s)|), (4)

where g(·) is the profile of the chamfer. A particu-
larly interesting case is the quadratic chamfer, in which
g(u) = u2, or a truncated form g(u) = min(u2, g0). In
that case, chamfer distance (4) is known to approx-
imate a curve-normal-weighted L2 distance between

the two curves, in the limit that they are similar.
(Note that chamfer distance is related to Hausdorff
distance which has been used successfully in tracking
(Huttenlocher et al., 1993); the difference is that the in-
tegral in (4) becomes a max operator in the Hausdorff
distance.)

A great attraction of the chamfer distance is that it
can be computed directly from the (binary) images z
and z̃, as

ρ(z̃, z) =
∫

ds γ (z, rz̃(s)) (5)

using a chamfer image

γ (z, r) = min
s ′

g(|rz(s
′) − r|)

constructed directly from z. This allows ρ(z̃, z) to be
evaluated repeatedly for a given z and various z̃ di-
rectly from (5) which, being simply a curve integral
(approximated), is numerically very efficient.

3.2. Geometric Transformations

Geometric transformations α ∈A are applied to exem-
plars to give transformed mixture centers:

z̃ = Tα x̃ .

For example, in the case of Euclidean similarity, α =
(u, θ, s) and vectors transform as

Tαr = u + R(θ) s r,

in which (u, θ, s) are offset, rotation angle and scaling
factor respectively. Where the observations are curves,
this induces a transformation

rz(s) = Tαrx (s)

and in the case of patches, the induced transformation is

Iz(Tαr) = Ix (r).

3.3. The Metric Mixture (M2) Model

The observation likelihood function, at the heart of the
M2 approach, can now be specified. Note that the ob-
servation is deemed to be the finite dimensional vector
y, rather than the infinite dimensional image or curve z.
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The full image/curve is accessed only as a “machine”
for computing an observation density. Note also, We
exploit the fact that we only need to know enough about
p(y | X) to evaluate it. There is no call to sample from
it. Hence no constructive form for the observer need be
given, and we can avoid controversies about pixelwise
independence.

3.3.1. Exemplars as Mixture Centers. The object
class is defined in terms of a setX = {x̃k, k = 1, . . . , K }
of untransformed exemplars, to be inferred from the
training set Z . A transformed exemplar z̃ serves as a
center in a mixture component:

p(y | z̃) ∝ 1

Z
exp − λρ(z̃, z) (6)

—a “metric exponential” distribution—whose normal-
ization constant or “partition function” is Z .

3.3.2. Metric-Based Mixture Kernels. For tracking
of the full state, both motion and shape, the hypothesis
is X = (α, k). The mixture model above leads to an
observation likelihood

p(y | X) ≡ p(y | α, k) ∝ 1

Z
exp − λρ(Tα x̃k, z). (7)

If only motion is to be tracked, the hypothesis is simply
α so the observation likelihood becomes

p(y | α) ∝
∑

k

πk
1

Z
exp − λρ(Tα x̃k, z),

a mixture with component priors πk . For this interpre-
tation to make sense, it is necessary to “tie” the dimen-
sion dk of the y-space associated with each component
to be a constant dk = d . Henceforth, we deal with the
joint α, k space as in (7) so that tying the dk will not be
necessary.

3.3.3. Partition Function. In order to learn the value
of an exponential parameter λ from training data, it is
necessary to know something about the partition func-
tion Z . This is difficult in general, but straightforward
in the case that ρ is a (truncated) quadratic chamfer
function because that gives an approximately Gaussian
distribution. Similarly, an L2 norm on patches leads to
a Gaussian mixture distribution, as does the shuffle-
metric used in experiments reported here.1 In that case,
the exponential constant λ in the observation likelihood

is interpreted as λ = 1
2σ 2 , where σ is an distance con-

stant, and the partition function is Z ∝ σ d . From this, it
can be shown (see appendix) that the chamfer distance
ρ | z̃ ≡ ρ(z̃, z) is a σ 2χ2

d random variable (i.e., ρ/σ 2

has a χ2
d distribution) which is in fact also a � distribu-

tion. This allows the parameters σ, d of the observation
likelihood (7) to be learned from training data, as set
out below.

4. Learning Algorithms

4.1. Learning Mixture Kernel Centers

Following the probabilistic interpretation of exemplars
as kernel centers x̃k in (6), we exploit the temporal
continuity of the training sequence Z∗ to choose initial
mixture centers, and proceed to cluster iteratively.

1. The training set is assumed to be approximately
aligned from the outset (this is easily achieved
provided the foreground in the training sequence
is reasonably easy to separate, for example by
background subtraction/filtering). To improve the
initial alignment, first a datum, z∗

0, is chosen from
the entire training sequence Z∗ according to a
minimax rule:

z∗
0 ← arg min

z∈Z∗
max

z′∈Z∗−{z}
ρ(z, z′).

Then,

α∗
t = arg min

α
ρ
(
T −1

α z∗
t , z∗

0

)
and x∗

t = T −1
α∗

t
z∗

t ,

minimizing by direct descent.
2. To initialize centers, a subsequence of the x∗

t is cho-
sen to form the initial x̃k , selected in such a way as
to be evenly spaced in chamfer distance. Thus the
x̃k are chosen so that ρ(x̃k+1, x̃k) ≈ ρc, for some ap-
propriate choice of ρc that gives approximately the
required number K of exemplars.

3. For the remainder of the aligned training data x∗
t ,

t = 1 . . . T ∗, find the cluster that minimizes the
distance from x∗

t to the cluster center:

kt (x∗
t ) = arg min

k
ρ(x̃k, x∗

t ). (8)

Label the set of all elements in cluster k as Ck =
{x∗

t : kt (x∗
t ) = k} and let Nk = |Ck |.
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4. For each cluster k, find the new representative,
which is the element in that cluster that minimizes
the maximum distance to all other elements in that
cluster:

x̃k ← arg min
x∈Ck

max
x ′∈Ck−{x}

ρ(x, x ′). (9)

5. Repeat Steps 3 and 4 for a fixed number of iterations
or until convergence and save the final exemplars x̃k .

6. Set mixture weights: πk ∝ Nk .

Steps 3 and 4 implement a k-medoids algorithm
(Ripley, 1996). This is analogous to the iterative com-
putation of cluster centers in the k-means algorithm,
but is applicable in a non-metric space where it is im-
possible to compute cluster means. In place of a mean,
an existing member of the training set is chosen by a
minimax rule, since that is equivalent to the mean in
the limit that the training set is dense and is defined
over a vector space with a Euclidean distance.

4.2. Learning the M2 Kernel Parameters

To learn observation likelihood parameters σ, d , we ob-
tain a validation setZv . (This could simply be the train-
ing setZ less the (unaligned) exemplars {z̃k}.) For each
zv from Zv , the corresponding aligning transformation
αv and mixture center x̃v is estimated by minimizing,
by direct descent, the distance:

min
α∈A,x̃∈X

ρ(Tα x̃, zv).

Now, following Section 3.3, we treat the distances

ρv(zv) = ρ
(
Tαv

x̃v, zv

)
, zv ∈ Zv

as σ 2χ2
d distributed. An approximate but simple ap-

proach to parameter estimation is via the sample
moments

ρ̄k = 1

Nk

∑
zv∈Ck

ρv(zv) and ρ̄2
k = 1

Nk

∑
zv∈Ck

ρ2
v (zv),

which, from the form of the mean and variance of the χ2

statistic, in terms of ρ, σ , gives the following estimates
for dk and σk :

dk = 2
ρ̄2

k

ρ̄2
k − ρ̄2

k

and σk =
√

ρ̄k/d. (10)

Intuitively, dk is estimated here in terms of the his-
togram of ρ-values. A histogram whose mass is con-
centrated at low ρ-values gives a lower d estimate.

Alternatively, the full maximum likelihood (MLE)
solution, complete with integer constraint on d, yields
σ values in terms of d, exactly as above, and integer
d ≥ 1 as the value maximizing the likelihood

L(d) = −log �(d/2) + (d/2)(log(d/2)

−1 − log(ρ̄a/ρ̄g)) (11)

(dropping the k-subscripts for simplicity), where ρ̄a , ρ̄g

are respectively the arithmetic and geometric means of
the ρ-samples, and �(·) is the well-known, transcen-
dental �-function. Such a d can always be found since
L(d) is asymptotically a decreasing function of d.

4.2.1. Notes

1. If ρ̄a/ρ̄g > 4/e the solution for d is the trivial d = 1.
2. The estimation procedures are equivalent to fitting a

�-distribution to the ρ-values to determine parame-
ters dk . The moments estimator fits an unconstrained
�-distribution, so the integer constraint on d is not
applied.

3. The MLE applies the integer constraint to d.
However, in practice the MLE turns out to be less
robust than a moments estimator, in cases when the
observed ρ statistic does not follow the assumed
distribution closely.

4.3. Learning Dynamics

In line with recent developments in probabilistic track-
ing (Blake and Isard, 1998), sequences of estimated Xt

from a training set are treated as if they were fixed time-
series data, and used to learn two components (assumed
independent) of p(Xt | Xt−1):

1. a Markov matrix M for p(kt | kt−1), learned by his-
togramming transitions;

2. a first order auto-regressive process (ARP) for
p(αt | αt−1), with coefficients calculated using the
Yule-Walker algorithm (Gelb, 1974).

5. Results

In order to demonstrate the necessity for, and applica-
bility of, the M2 model, we performed tracking ex-
periments in two separate domains. In the first, we
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tracked walking people using contour edges. Here,
background clutter and simulated occlusion threaten to
distract tracking without a reasonable dynamic model
and a good likelihood function.

In the second, we track a person’s mouth based
on raw pixel values. Unlike the pedestrian-tracking
domain, images are cropped such that only the
mouth, and no background, is visible. While dis-
traction is not a problem, the complex articulations
of the mouth make tracking difficult (even state-of-
the-art face-tracking algorithms (Cootes et al., 1998;
Neven, 2000) have difficulty tracking lip and tongue
articulation).

5.1. Tracking Human Motion

For the person tracking experiments, training and test
sequences show various people walking from right to
left in front of a stationary camera. The background
in all of the training sequences is fixed, allowing us to
use simple background subtraction and edge-detection
routines to automatically generate the exemplars

Figure 3. A sequence generated at random from a model based on
learned dynamics and exemplars. Edges shown represent the con-
tours of successive model exemplars.

Figure 4. Convergence of d-estimate with cluster size, for synthesized polygons. (a) Estimated dimension converges to around d = 24 as
cluster size increases to 1000 (true dimension d = 22). (b) Estimated dimensionality (solid) closely follows ground truth dimensionality (dashed).
Dimension appears to be consistently slightly overestimated (cluster size N = 1000). This may be due to the approximation inherent in using
the chamfer distance.

(naturally, we took advantage of the fixed background
only for the purposes of generating exemplars—not for
tracking). Examples of a few exemplars are shown in
Fig. 3.

Dynamics were learned as described in Section 4.3
on 5 sequences of the same walking person, each
about 100 frames long. Figure 3 overlays several
frames from a sequence generated at random from
the learned model. The full sequence is available as
generatd.mpg.2

5.1.1. Validity of the M2 Model. A practical test of
the M2 methodology is whether consistent d values can
be estimated from Eq. (10). We tested this for chamfer
distance by conducting experiments on synthetically
generated polygons with d vertices, with the results
shown in Fig. 4.

Figure 5 shows values of dimension d for the pedes-
trian contour exemplars. Note that dimensionality in-
creases with cluster size up to a point, but it eventually
converges to d ≈ 10. We read the fact that d does not
simply increase unboundedly with cluster size, as an in-
dication that d reflects an intrinsic local dimensionality.

5.1.2. Practical Tracking. We can now compute
observation likelihoods as in Eq. (7) and track
using the following Bayesian framework. A classi-
cal forward algorithm (Rabiner, 1989) would give
pt (Xt ) ≡ p(Xt | z1, . . . , zt ) as:

pt (Xt ) =
∑
kt−1

∫
αt−1

p(yt | Xt )p(Xt | Xt−1)pt−1(Xt−1),

where p(yt | Xt ) is computed according to Eq. (7).
Exact inference is infeasible given that α is real-valued,
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Figure 5. Estimated dimension d for image contour exemplars,
using quadratic chamfer distance, appears to behave consistently: it
converges to d = 10 as data set size increases.

so the integral is performed using a form of particle fil-
ter (Gordon et al., 1993; Isard and Blake, 1996). To
display results, we calculate X̂t = arg max pt (Xt ).

Figure 1 shows cropped, sample images of tracking
on a sequence that was not in the training sequence.
Tracking in this case is straightforward and accurate.
Figure 6 shows the same exemplar set (trained on

Figure 6. Cropped, sample frames from a tracked test sequence. The same learned model is used as Fig. 1, but now the test sequence contains
a new individual walking. The motion is captured nonetheless, though the match is not quite so close—note the arms in the final frame (see also
video walk3.mpg).

Figure 7. Cropped, sample frames from a tracked test sequence. The same learned model and test sequence is used as in Fig. 6, but now the
test sequence is periodically blanked out, to test robustness to occlusion (see also video walk3occ.mpg).

one person) used to track a different person entirely.
Although the swing of this subject’s arms is not cap-
tured by the existing exemplars, the gait is nevertheless
accurately tracked. Finally, we ran an experiment to
verify tracking robustness against occlusion and other
visual disturbances. In Fig. 7, we simulated occlusions
by rendering black two adjacent frames out of every
ten frames in the test sequence, and so tracking was
forced to rely on the prior in these frames.

The sequence was accurately tracked in the non-
occluded frames, bridged by reasonable state estimates
in the black frames—something that would be impos-
sible without incorporation of a dynamic model.

Experiments with a more complex and agile set of
movements are shown in Fig. 8. In this case it is neces-
sary to use a greater number of exemplars (K = 300).
Note that the experiments here show unsupervised
learning—parameter estimation and tracking—on a
single sequence.
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Figure 8. Results on learning only, with a more varied set of motions, requiring a larger number of exemplars. The sequence is taken from the
movie, Center Stage (see also video ballet0.mpg).

5.2. Mouth Tracking

The mouth tracking sequences consisted of closely
cropped images of a single subject’s mouth while the
person was speaking and making faces. The training
sequence consisted of 210 frames captured at 30 Hz.
We tested on a longer test sequence of 570 frames
(of which 270 are shown in the video files described
below). Dynamics were learned as in Section 4.3, with
K = 30 exemplar clusters. Tracking was performed as
in Section 5.1, but with no α transformations, since the
images were largely registered. On this training set,
the shuffle distance d values exhibited greater variance
(the extremes running from 1.2 to 13.8), but the ma-
jority of clusters showed a dimensionality of d = 4 ± 1,
indicating again that the dimension constant d in the M2

model is learned consistently (see Fig. 9 for a histogram
showing the distribution of estimated dimensions).

The results for this experiment can be seen in video
format (see also, Fig. 10): ml2.mpg shows the result of
tracking based on the L2 distance (Euclidean distance
between vectors formed by concatenating the raw pixel
values of an image), and mshuffle.mpg shows track-
ing using the shuffle distance.

In the videos, the left-hand image shows the test
image, and the right-hand image shows the a posteri-

Figure 9. A histogram of estimated dimensionality for clusters
learned for the mouth-tracking sequence.

ori best-match exemplar from the training sequence.
Both functions do well with the initial two-thirds of
the test sequence, while the subject is speaking. As
soon as the subject begins to make faces and stick
out his tongue, the L2-based likelihood fails, whereas
tracking based on the shuffle distance continues largely
successfully.
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Figure 10. A sampling of frames from the mouth sequence. Top row, the test sequence; middle row, tracking using the L2 distance; bottom
row, tracking using the shuffle distance. The shuffle distance produces matches that are perceptually more similar to the test sequence.

Figure 11. Best match, based on various distance functions: (a) test image, (b) L2 distance, (c) L2 after blurring, (d) histogram matching,
(e) L2 distance after projecting to PCA subspace with 20 bases, (f) L2 after projection to PCA subspace with 80 bases, (g) L2 after image warp
based on optic flow, (h) shuffle distance as described in text.

Figure 11 shows a comparison of maximum-
likelihood matches, on one of the difficult test images—
a tongue sticking out to the left—for a variety of
distance functions. Most of the functions prefer an
exemplar without the tongue. This may be because of
the high contrast between pixels projected dimly by
the inside of the mouth and those projected brightly
by lip and tongue; even a small difference in tongue
configuration can result in a large difference in L2, and
other, distances. On the other hand, the flow-based dis-
tance and the shuffle distance (really an inexpensive
version of the flow-based distance) return exemplars
that are perceptually similar. These functions come
closer to approximating perceptual distances by their
relative invariance to local warping of images. These
observations were what originally led to our experi-
ments with different distance functions, and they jus-
tify the need for the ability to handle metrics that are
not embedded in a vector space.

6. Conclusion

The Metric Mixture approach combines the advan-
tages of exemplar-based models (Gavrila and Philomin,
1999) with a probabilistic framework (Frey and
Jojic, 2000) into a single probabilistic exemplar-based
paradigm. The power of the M2 technique comes from
its generality: both object models and noise models

can be learned automatically, and metrics can be cho-
sen without significant restrictions on the structure of
the metric space (a drawback of Markov random field
models of image-pixel dependencies, for example).

We intend to explore several avenues in future work:

• One problem with exemplar sets is that they can grow
exponentially with object complexity. Tree struc-
tures appear to be an effective way to deal with
this problem (Gavrila and Philomin, 1999; Wei and
Levoy, 2000), and we would like to find effective
ways of using them in a probabilistic setting. Note
however, that the use of a dynamical model for pre-
diction greatly reduces the effective size (perplexity)
of the exemplar set, so the lack of tree structure has
not been a serious limiting factor yet.

• We propose to continue testing on sequences with
more intense background clutter, and with more var-
ied transformations α, to explore the limits of the
exemplar approach.

Appendix: Quadratic Chamfer Distance
has a Scaled χ2 Distribution

We have, from (4) with quadratic g(u) = u2,

ρ | z̃ ≡ ρ(z̃, z) = ‖rz(s) − rz̃(s)‖2.



Probabilistic Tracking with Exemplars in a Metric Space 19

From (3),

ρ | z̃ = y�H−1y + O(y)

where O(y) is a linear term in the parameter vector y.
Matrix Hi, j is a nonsingular, symmetric, metric matrix
(Blake and Isard, 1998) which can be diagonalized as
H= UDU�, in which U is orthogonal and D is di-
agonal. Now, from (6), and using the normalization
properties of Gaussians,

p(z | z̃) = (
√

2πσ)−d |H|−1/2 exp − 1

2σ 2
(ρ | z̃),

where 1/(2σ 2) = λ as before. Therefore y is a normal
random variable:

y = Bw where w ∼ N (0, Id) and

B = σH−1/2 = σU D−1/2U�.

Finally,

ρ | z̃ = w� B�H−1 Bw = σ 2w�w

so (ρ | z̃) is a σ 2χ2
d random variable, as claimed.
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Notes

1. The shuffle-metric can be thought of as using an image-sized
array s of hidden variables augmenting the state vector X , before
applying a classical L2 norm.

2. All movie files mentioned in this paper are available at
http://research.microsoft.com/vision/papers.
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