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Abstract

An algorithm for the recognition of human actions
in image sequences is presented. The algorithm con-
sists of 3 stages: background subtraction, body pose
classi�cation, and action recognition. A pose is repre-
sented in space-time { we call it `movelet'. A movelet
is a collection of the shape, motion and occlusion of
image patches corresponding to the main parts of the
body. The (in�nite) set of all possible movelets is
quantized into codewords obtained by vector quantiza-
tion. For every pair of frames each codeword is as-
signed a probability. Recognition is performed by si-
multaneously estimating the most likely sequence of
codewords and the action that took place in a sequence.
This is done using hidden Markov models. Experi-
ments on recognition of 3 periodic human actions, each
under 3 di�erent viewpoints, and 8 nonperiodic human
actions are presented. Training and testing are per-
formed on di�erent subjects with encouraging results.
The in
uence of the number of codewords on algorithm
performance is studied.

1 Introduction

Detecting and recognizing human actions and activi-
ties is one of the most important applications in ma-
chine vision. There are many approaches recently to
address it from di�erent point of view [5, 4, 6, 8, 9, 10,
1, 2, 11, 7, 3]. Both top-down methods starting with
human body silhouettes [5] and bottom-up methods
based on low level image features such as points [9]
and patches [6, 4] have been proposed for detecting
the human body and measuring body pose. In the
case of exploring patch features, typical bottom-up
method assumes the color and/or texture of each body
part is known in advance. We do not wish to make
any assumptions on the style of clothing (or absence
thereof) and/or on the presence of good boundaries
between limbs and torso. Therefore we take top-down
approach.
Our basic assumption is that a sequence of regions

of interest (ROI) containing a foreground moving ob-
ject is obtained. We discretize the space of poses into
a number of codewords which are �tted to ROI for the
recognition. In order to further improve the signal-to-
noise ratio we consider poses in space-time which are
called movelets. We model each action as a stochastic
concatenation of an arbitrary number of movelet code-
words, each one of which may generate images (also
stochastically). Hidden Markov models are used to
represent actions and the images they generate. The
Viterbi algorithm is used to �nd the most likely se-
quence of codewords and action that are associated to
a given observed sequence. The movelet codewords
are learned from training examples and are shared
amongst all actions (similarly to an alpabed of letters
which are shared by all words).

Results on training of models and recognition of
3 periodic actions and 8 nonperiodic actions imaged
from multiple viewpoints are presented. We also ex-
plore experimentally what is the necessary number of
codewords to represent the movelet space and how ac-
tion recognition performance varies as a function of
the number of frames that are available.

2 Movelet and Codeword: Hu-

man Body Modeling

If we only monitor the main body, a human body con-
�guration can be characterized by the shape and mo-
tion of the 10 parts: head, torso, 4 parts of upper
limb and 4 of lower limb. We name such con�gura-
tion representation movelets. The shape of each cor-
responding body part on the image plane is modeled
as a rectangle Sj (5 degree of freedom (DOF)). As-
sume this shape deforms to be S0

j (5 DOF) in the
next frame. This shape deformation is no longer 3
dimensional rigid motion on the image plane due to
loose clothes and occlusion etc., but a non-rigid mo-
tion applying in its full parametric space as S

0

j � Sj .
Therefore, a human body movelet can be represented
as M = (S; S0) = (

S10
j=1 Sj ;

S10
j=1 S

0

j). The advantage



of this parameterization over the direct shape and mo-
tion representation is its parameters are in the same
metric space.

Consider a set of human actions we are interested in.
The actions are sequences of movelets. Di�erent ac-
tions may contain similar movelets at certain time. We
collect the set of the movelets of all actions that have
been observed over a learning time period, and cluster
them into C codewords denoted as Ci; i = 1 : : :N us-
ing an unsupervised vector quantization method. We
choose K-means algorithm in this paper. The vector
quantization coarsely divides the whole movelet space
into N regions and represents each region by a code-
word.

There are two practical issues:

First, Origin Selection: The body movelet is de�ned
relative to an origin which we set at the center of the
rectangular shape of the head. The positions of all the
parts are relative positions to this origin. The DOF
of the movelet is reduced by 2 correspondingly.

The second issue is Self-Occlusion: we observe in
our experiments that over half of the movelets have
some of the parts occluded. Therefore their dimension
is reduced to a lower DOF. We divide the movelets
into subgroups according to their occlusion patterns.
The vector quantization is performed in each subgroup
with the number of codewords proportional to the rel-
ative frequency of the occlusion pattern. The union of
the trained codewords from subgroups gives the �nal
dataset of codewords.

3 Recognition of A Con�gura-

tion

To recognize the observed action, we assume that the
images of the moving body are segmented as the fore-
ground in image sequence, which sometimes can be
done by applying either background subtraction or in-
dependent moving object segmentation.

For each pair of frames, an observed con�guration is
de�ned as the foreground pixels X = fX;X 0g, where
X and X 0 respectively represent the 2D positions of
the foreground pixels in the �rst and second image
frame. Although we model the human body by parts
in the previous section, for the recognition, due to
the lack of technique to segment human body parts
robustly, the observed con�guration consists of fore-
ground pixels in their entirety and top-down approach
is applied. Given a codeword with shape S and de-
formed shape S0, we wish to calculate the likelihood
of observing X and X 0. We assume, given the shape

S, apriori probability to detect a pixel Xi in the im-
age as a foreground(fg) or background (bg) data is a
Binomial distribution as:

Xi 2 fg Xi 2 bg
Xi 2 S � 1� �
Xi =2 S � 1� �

Table 1: Binomial distribution for P (XijS)

Where � � �. Assuming the independence of pix-
els, the likelihood of observing the X as the fore-
ground data given the codeword shape S is: P (X jS) =Q

Xi2image P (XijS). The likelihood P (X 0jS0) is esti-
mated in the same way.
A codewordC includes both the human body shape

S and its deformed shape S0 in the next frame. The
likelihood of observing the con�guration X given a
codeword C = (S; S0) can then be estimated as:

P (XjC) = P (X;X 0jS; S0) = P (X jS)P (X 0jS0) (1)

4 HMM for Action Recognition

Assume the observation contains the sequence of the
foreground con�gurations as (X1;X2; : : : ;XT ), where
Xt; t = 1 : : : T are de�ned as same as X in Section
3. To recognize the observed sequence as one of the
learned actions, the slightly modi�ed Hidden Markov
Model (HMM) is applied. We de�ne the states of
HMM as the trained codewords. The probability of an
observation generated from a state is obtained in the
previous section as P (XjC). This probability is not
obtained through the usual HMM learning scheme be-
cause here we know exactly by construction what the
states are.
Assume there are K human actions we want to rec-

ognize: Hk; k = 1 : : :K. In the training, each movelet
has been assigned to one codeword. Therefore, for
each training action k, we obtain a codeword sequence
to represent its movelet sequence. Its HMM state
(codeword) transition matrix Ak can be easily trained
from this codeword sequence.
To recognize which action the observed sequence

(X1;X2; : : : ;XT ) represents and what is its best rep-
resentative codeword sequence, the following HMM so-
lutions are applied. First, for each action hypothesis
k 2 (1 : : :K), we apply the viberbi algorithm to search
for the single best state (codeword) sequence which
maximizes the following probability:

q�k1; q
�

k2; : : : ; q
�

kT

= max
qk1;qk2;:::;qkT

P (qk1; qk2; : : : ; qkT jX1;X2; : : : ;XT ; Ak)



Where qkt 2 (C1 : : :CN ). The human action
Hk� that best represents the observed sequence is de-
termined by:

k� = argmax
k

P (q�k1; q
�

k2; : : : ; q
�

kT ;X1;X2; : : : ;XT jAk)

Correspondingly the sequence q�k�1; q
�

k�2; : : : ; q
�

k�T is
the recognized most likely codeword sequence to rep-
resent the observed sequence (X1;X2; : : : ;XT ).

5 Experiments

5.1 Experimental Design for Code-

words Training

The objective of training is to obtain the dataset of
codewords from the movelets of training actions. The
human body movelet is represented by the union of
body parts and their motions. Therefore, we need to
identify each body part in the image frames of train-
ing actions. For this purpose, we made a set of spe-
cial clothes which has distinguishable color for each
body part. Also our training subject wears black mask
on the head. We make sure that any two neighbor-
ing parts have di�erent colors and the two parts hav-
ing same color are located far away from each other.
Therefore each body part can be segmented by its
color and location di�erence from the others and rep-
resented by a rectangle. A movelet is formed by stack-
ing the rectangular shapes of all body parts visible on
a pair of consecutive frames together. In a movelet,
the shapes in both frames are relative to the same ori-
gin which is the center of the head position in the �rst
frame. An example of a pair of training frames and
the extracted movelets is shown in Fig.1. Given the
movelets of all training actions, codewords are learned
following the scheme proposed in Section 2.

Figure 1: Example of Training Images and Movelet. Left
two: two consecutive images in the training sequence. Right
two: estimated rectangular shapes for both frames to form a
movelet.

5.2 Matching of Codeword to Fore-

ground Con�guration

To estimate the likelihood P (XjC) that a foreground
con�guration is observed given a codeword , we need
to eÆciently search for the position in the image to lo-
cate the codeword so that it �ts the foreground con�g-
uration best. Although the codewords are represented
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Figure 2: Log-likelihood Varies With Centroid Position.
Left: the searching region to place the centroid of a codeword is
the 49�49 square. Right: Log-likelihood logP (XjC) varies with
respect to the assumed centroid position in the searching region.
It is gray-scaled. Brighter indicates higher log-likelihood.

relative to the center of head, centroid is the most re-
liable point to detect a foreground object. Therefore,
instead of searching for the head to locate the code-
word, we match the codeword to the foreground con-
�guration according to their centroids. For each code-
word, we estimate the centroid of its shapes. Given a
pair of test frames, the centroid of �rst frame's fore-
ground data is computed. We then lock in the square
of 49�49 pixels centered at this centroid as the search-
ing region to place the codeword's centroid. Fig.2
shows an example of how log-likelihood varies with
respect to the centroid placed in this region. For each
codeword, we search in this region for the location
where the observation log-likelihood of the �rst frame
given the shape is maximized. The deformed shape of
the codeword is correspondingly placed on the second
frame. After locating the codeword, the log-likelihood
of P (XjC) can be determined by Eq.1. We arbitrarily
choose � = 0:9 and � = 0:1.

In our experiment we actually search for the cen-
troid location of a codeword on every third pixel in
the searching region, which ends up with 16� 16 pos-
sible searching locations. The computational time of
such searching for one codeword is 0:012 seconds on
Pentium 750MHz machine.

5.3 Periodic Action Recognition

In this experiment section we illustrate the recognition
of a set of 9 view-based periodic actions: 3 di�erent
gaits (stepping at same place, walking and running)
captured at 3 di�erent view angles (45Æ; 90Æ; 135Æ be-
tween the camera and subject direction). To make
the action and view angle controllable, a treadmill
was used on which all these periodic actions were per-
formed. The image sequences were captured at 30
frames/sec.

Training the Actions

Figure 3: Key Frames of the Training Periodic Actions.
45Æ stepping,90Æ walking,135Æ running.



Figure 4: Samples of Trained Codewords (deformed shape
S
0 is in gray, superimposed by the shape S in black). It shows

samples of codewords that actions 90Æ walking (�rst 5 plots),90Æ

running (last 5 plots) can pass, obtained from their HMM tran-
sition matrix.

The training actions were performed by 1 subject
wearing the special colored clothes. For each training
action, 1800 frames were collected and input to the
codewords training algorithm. Some key frames are
shown in Fig.3. Movelets are obtained from each pair
of frames as described in section 5.1.
From this set of movelets, we �rst train N = 270

codewords. The performance of recognition with
training of di�erent number N of codewords is re-
ported at the end of this section. As described in
Section 2, the movelets are grouped according to their
occlusion patterns. There are 15 occlusion patterns in
this training set. The proportional number of code-
words are trained from the group of movelets associ-
ated with each occlusion pattern.
Given the trained codewords and their associated

movelets, we learn the transition matrix of HMM for
each action. The transition matrix represents the pos-
sible temporal paths of codewords that an action can
pass through. In Fig.4, we show a few samples of
codewords that 90Æ walking and running actions pass.

Recognition of the Actions

6 subjects participated in the test experiments. A
sequence of 1050 frames (35 seconds video) was cap-
tured for each of 9 actions performed by each sub-
ject. Foreground data were obtained by background
subtraction. We answer three questions in this exper-
iment: 1. how well can the actions be recognized?
2. how many frames are needed to recognize the ac-
tion with certain accuracy? 3. how does the number
of trained codewords in
uence the recognition perfor-
mance?
Human vision doesn't need to observe the whole se-

quence (1050 frames) to recognize the action. To test
how many frames are necessary for a good recognition,
each sequence is split into segments of T frames long.
The tail frames are ignored. We classify each segment
into a learned action. Table 2 shows the confusion
matrix at T = 20.
We make the following two observations from table

2. First, the direction of the action is more diÆcult
to recognize than the gait. In other words, we have
no problem to tell if the action is stepping, walking
or running, but have some diÆculty in telling its di-

Act 45
Æ
S 90

Æ
S 135

Æ
S 45

Æ
W 90

Æ
W 135

Æ
W 45

Æ
R 90

Æ
R 135

Æ
R

45
Æ
S 66% 1% 42%

90
Æ
S 99%

135
Æ
S 34% 58%

45
Æ
W 67% 3% 31%

90
Æ
W 84%

135
Æ
W 33% 13% 69%

45
Æ
R 83% 57%

90
Æ
R 84%

135
Æ
R 17% 16% 43%

Table 2: Confusion Matrix for Periodic Action Recog-
nition (T = 20)

Figure 5: Top row: sample images of subject's 45Æ walking,135Æ

walking,90Æ stepping,90Æ running. Bottom row: �t codewords.

rection. Secondly, we claim that 45Æ viewangle is ba-
sically not separable from 135Æ viewangle using only
shape and motion cues. Fig.5 shows the examples of
original images and best �t codeword of a few test
actions. In this �gure, although the �rst two actions,
45Æ and 135Æ walking, were performed by two di�erent
subjects, their individual foreground data are so sim-
ilar to each other that they are represented by same
codeword. Therefore 45Æ and 135Æ walking can be re-
garded as one action, so is 45Æ and 135Æ stepping, as
well as 45Æ and 135Æ running.
The left two plots in Fig.6 demonstrate how the cor-

rect recognition rate varies as the segment length T
varies from 1 to 40 for six actions (here we regard 45Æ

and 135Æ actions as one already). From the plots, we
observe that better performance is gained with longer
segment length T . The action can be reliably recog-
nized within about 20 frames, which is 0:66 seconds of
action.
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Figure 6: Performance for Periodic Actions. Left two:
recognition rate vs. segment length T . Right two: recognition
rate vs. number of trained codewords.

What is the appropriate number of code-
words we should train to represent the space
of movelets? This question can be answered
by experiments. We train the di�erent number
N = (5; 9; 18; 27; 36; 45; 90; 135; 180; 225; 270) of
codewords from the training set of movelets, and
repeat the recognition experiments with each group
of trained codewords. The right two plots in Fig.6



Reach A000
Æ

A045
Æ

A090
Æ

A135
Æ

A180
Æ

A225
Æ

A270
Æ

A315
Æ

A000
Æ 90%

A045
Æ 100%

A090
Æ 100%

A135
Æ 100%

A180
Æ 100%

A225
Æ 100%

A270
Æ 100%

A315
Æ 10% 100%

Table 3: Confusion Matrix for Nonperiodic Action
Recognition

Figure 7: Top row: sample images of reaching actions for test-
ing. Bottom row: �t codewords.

show how the recognition rate at segment length
T = 20 varies with respect to di�erent number of
trained codewords. For all the actions, above 80%
recognition rates are achieved with N � 135.

5.4 Nonperiodic Action Recognition

In this section we describe the experiments in mod-
eling and recognizing nonperiodic reaching actions.
The actions are reaching 8 di�erent directions using
right arm and captured with front view. From reach-
ing the top, we name the actions counter clockwise
as A000Æ; A045Æ; A090Æ; A135Æ; A180Æ; A225Æ; A270Æ

and A315Æ.

Training the Actions

The training actions were performed by 1 subject
with the specially designed color clothes. The training
subject repeated each reaching action 20 times which
last 40 seconds. We learned 240 codewords �rst for
this set of actions.

Recognition of the Actions

A set of 400 sequences of reaching di�erent di-
rections done by 5 subjects were captured for test-
ing. Each sequence is about 60 frames (2 seconds
video) long. For the nonperiodic action, the recog-
nition is done by using all of the frames the se-
quence contains. The confusion matrix is shown in
Table 3. We also train the di�erent number N =
(4; 8; 16; 24; 32; 40; 80; 120; 160; 200; 240) of codewords
for this set of actions, and repeat the recognition ex-
periments with each group of trained codewords. The
results are shown in Fig.8. For all the actions, above
80% recognition rates are achieved with N � 120 and
100% recognition rate are achieved for 6 out of 8 ac-
tions.
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Figure 8: Performance for Nonperiodic Actions. Recog-
nition Rate vs. Number of Trained Codewords.

6 Conclusion and Discussion

In this paper we proposed and tested an algorithm
for the recognition of both human poses and action si-
multaneously in the image sequence. The experiments
show above 80% recognition rate is achieved for all the
test actions while over half of the actions can be rec-
ognized with the accuracy rate higher than 98%. Our
fundamental idea can be extended to other types of
action recognition, as long as the experimental setup
for the training is properly designed. A possible future
work that we may pursue is to recognize the actions
from sequence without background subtraction.
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