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Abstract. Estimating human pose in static images is challenging due
to the high dimensional state space, presence of image clutter and am-
biguities of image observations. We present an MCMC framework for
estimating 3D human upper body pose. A generative model, comprising
of the human articulated structure, shape and clothing models, is used
to formulate likelihood measures for evaluating solution candidates. We
adopt a data-driven proposal mechanism for searching the solution space
efficiently. We introduce the use of proposal maps, which is an efficient
way of implementing inference proposals derived from multiple types of
image cues. Qualitative and quantitative results show that the technique
is effective in estimating 3D body pose over a variety of images.

1 Estimating Pose in Static Image

This paper proposes a technique for estimating human upper body pose in static
images. Specifically, we want to estimate the 3D body configuration defined by
a set of parameters that represent the global orientation of the body and body
joint angles. We are focusing on middle resolution images, where a person’s
upper body length is about 100 pixels or more. Images of people in meetings or
other indoor environment are usually of this resolution. We are currently only
concerned with estimating the upper body pose, which is relevant for indoor
scene. In this situation the lower body is often occluded and the upper body
conveys most of a person’s gestures. We do not make any restrictive assumptions
about the background and the human shape and clothing, except for not wearing
any head wear nor gloves.

1.1 Issues

There are two main issues in pose estimation with static images, the high di-
mension state space and pose ambiguity.
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High Dimension State Space. Human upper body pose has about 20 pa-
rameters and pose estimation involves searching in a high dimensional space
with complex distribution. With static images, there is no preceding pose for
initializing the search, unlike a video tracking problem. This calls for an effi-
cient mechanism for exploring the solution space. In particular, the search is
preferably data-driven, so that good solution candidates can be found easily.

Pose Ambiguity. From a single view, the inherent non-observability of some of
the degrees of freedom in the body model leads to forwards/backwards flipping
ambiguities [10] of the depth positions of body joints. Ambiguity is also caused
by noisy and false observations. This problem can be partly alleviated by using
multiple image cues to achieve robustness.

1.2 Related Work

Pose estimation on video has been addressed in many previous works, either
using multiple cameras [3] or a single camera [2, 9]. Many of these works used the
particle filter approach to estimate the body pose over time, by relying on a good
initialization and temporal smoothness. Observation-based importance sampling
scheme has also been integrated into this approach to improve robustness and
efficiency [5].
For static images, some works have been reported for recognizing prototype

body poses using shape context descriptors and exemplars [6]. Another related
work involves the mapping of image features into body configurations [8]. These
works however rely on either a clean background or that the human is segmented
by a background subtraction and therefore not suitable for fully automatic pose
estimation in static images.
Various reported efforts were dedicated to the detection and localization of

body parts in images. In [4, 7], the authors modeled the appearance and the
2D geometric configuration of body parts. These methods focus on real-time
detection of people and do not estimate the 3D body pose. Recovering 3D pose
was studied in [1, 11], but the proposed methods assume that image positions of
body joints are known and therefore tremendously simplify the problem.

2 Proposed Approach

We propose to address this problem, by building an image generative model and
using the MCMC framework to search the solution space. The image generative
model consists of (i) human model, which encompasses the articulated structure,
shape and the type of clothing, (ii) scene-to-image projection, and (iii) genera-
tion of image features. The objective is to find the human pose that maximizes
the posterior probability.
We use the MCMC technique to sample the complex solution space. The set

of solution samples generated by the Markov chain weakly converges to a sta-
tionary distribution equivalent to the posterior distribution. Data-driven MCMC
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framework [13] allows us to design good proposal functions, derived from image
observations. These observations include face, head-shoulder contour, and skin
color blobs. These observations, weighted according to their saliency, are used to
generate proposal maps, that represent the proposal distributions of the image
positions of body joints. These maps are first used to infer solutions on a set of
2D pose variables, and subsequently generate proposals on the 3D pose using
inverse kinematics. The proposal maps considerably improve the estimation, by
consolidating the evidences provided by different image cues.

3 Human Model

3.1 Pose Model

This model represents the articulated structure of the human body and the
degree of freedom in human kinematics. The upper body consists of 7 joints, 10
body parts and 21 degree of freedom (6 for global orientation and 15 for joint
angles). We assume an orthographic projection and use a scale parameter to
represent the person height.

3.2 Probabilistic Shape Model

The shape of each body part is approximated by a truncated 3D cone. Each cone
has three free parameters: the length of the cone and the widths of the top and
base of the cone. The aspect ratio of the cross section is assumed to be constant.
Some of the cones share common widths at the connecting joints. In total, there
are 16 shape parameters. As some of the parameters have small variances and
some are highly correlated, the shape space is reduced to 6 dimensions using
PCA, and this accounts for 95% of the shape variation in the training data set.

3.3 Clothing Model

This model describes the person’s clothing to allow the hypothesis on where the
skin is visible, so that observed skin color features can be interpreted correctly.
As we are only concerned with the upper body, we use a simple model with
only one parameter that describes the length of the sleeve. For efficiency, we
quantized this parameter into five discrete levels, as shown in Figure 1a.

4 Prior Model

We denote the state variable as m, which consists of four subsets: (i) global
orientation parameters: g, (ii) local joint angles: j, (iii) human shape parameters:
s, and (iv) clothing parameter: c.

m = {g, i, s, c} . (1)

Assuming that the subsets of parameters are independent, the prior distribution
of the state variable is given by:

p(m) ≈ p(g)p(j)p(s)p(c). (2)
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Global Orientation Parameters. The global orientation parameters consist
of image position (xg), rotation parameters (rg) and a scale parameter (hg). We
assume these parameters to be independent so that the following property holds:

p(g) ≈ p(xg)p(rg)p(hg). (3)

The prior distributions are modeled as normal distributions and learned from
training data.

Joint Angles Parameters. The subset j, consists of 15 parameters describing
the joint angles at 7 different body joint locations.

j = {ji, i = neck, left wrist, left elbow, . . . , right shoulder} . (4)

In general, the joint angles are not independent. However, it is impracticable to
learn the joint distribution of the 15 dimensional j vector, with a limited training
data set. As an approximation, our prior model consists of joint distribution of
pair-wise neighboring body joint locations. For each body location, i, we specify
a neighboring body location as its parent, where:

parent(left wrist) = left elbow parent(right wrist) = right elbow
parent(left elbow) = left shoulder parent(right elbow) = right shoulder
parent(left shoulder) = torso parent(right shoulder) = torso
parent(neck) = torso parent(torso) = ∅

The prior distribution is then approximated as:

p(j) ≈ λpose
i

p(ji) + (1− λpose)
i

p(ji, jparent(i)) (5)

where λpose is a constant valued between 0 and 1. The prior distributions p(ji)
and p(ji, jparent(i)) are modeled as Gaussians. The constant λpose is estimated
from training data using cross-validation, based on the maximum likelihood prin-
ciple.

Shape Parameters. PCA is used to reduce the dimensionality of the shape
space by transforming the variable s to a 6 dimensions variable sI and the prior
distribution is approximated by a Gaussian:

p(s) ≈ p(sI) ≈ N(sI, µs ,Σs ) (6)

where µs and Σs are the mean and covariance matrix of the prior distribution
of sI.

Clothing Parameters. The clothing model consists of a discrete variable c,
representing the sleeve length. The prior distribution is based on the empirical
frequency in the training data.
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Marginalized distribution of image positions of body joints. We denote
{ui} as the set of image positions of body joints. Given a set of parameters
{g, j, s}, we are able to compute the image position of each body joints {ui}:

ui = fi(g, j, s) (7)

where fi(.) is a deterministic forward kinematic function. Therefore, there exists
a prior distribution for each image position:

p(ui) = fi(g, j, s)p(g)p(j)p(s)dgdjds (8)

where p(ui) represents the marginalized prior distribution of the image position
of the i-th body joint. In fact, any variable that is derived from image positions
of the body joints has a prior distribution, such as the lengths of the arms in
the image or the joint positions of the hand and elbow. As will be described
later, these prior distributions are useful in computing weights for the image
observations. The prior distribution of these measures can be computed from
Equation (8) or it can be learned directly from the training data as was performed
in our implementation.

5 Image Observations

Image observations are used to compute data driven proposal distribution in the
MCMC framework. The extraction of observations consists of 3 stages: (i) face
detection, (ii) head-shoulders contour matching, and (iii) skin blobs detection.

5.1 Face Detection

For face detection, we use the Adaboost technique proposed by [12]. We denote
the face detection output as a set of face candidates,

IFace = {IFace Position, IFace Size}, (9)

where IFace Position is the detected face location and IFace Size is the estimated
face size. The observation can be used to provide a proposal distribution for the
image head position, uHead, modeled as a Gaussian distribution:

q(uHead|IFace) ∼ N(uHead − IFace Position, ·, ·). (10)

The parameters of the Gaussian are estimated from training data. The above
expression can be extended to handle multiple detected faces.

5.2 Head-Shoulder Contour Matching

Contour Model for Head-Shoulder. We are interested in detecting 2D con-
tour of the head and shoulders. Each contour is represented by a set of connected
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points. This contour is pose and person dependent. For robustness, we use a mix-
ture model approach to represent the distribution of the 2D contour space. Using
a set of 100 training data, a K-mean clustering algorithm is used to learn the
means of 8 components, as shown in Figure 1b. The joint distributions of these
contour and the image position of head, neck and shoulders are also learned from
the training data.

(a) (b)

Fig. 1.Models: (a) Quantized sleeve length of clothing model, (b) components of head-
shoulder model.

Contour Matching. In each test image, we extract edges using the Canny
detector, and a gradient descent approach is used to align each exemplar contour
to these edges. We define a search window around a detected face, and initiate
searches at different positions within this window. This typically results in about
200 contour candidates. The confidence of each candidate is weighted based
on (i) confidence weight of the detected face, (ii) joint probability of contour
position and detected face position, and (iii) edge alignment error. The number
of candidates is reduced to about 50, by removing those with low confidence.

The resulting output is a set of matched contours { IHead Shoulder,i}. Each
contour provides observations on the image positions of the head, neck, left shoul-
der and right shoulder, with a confidence weight wHS,i:

IHead Shoulder,i = {wHS,i, IHead Pos,i, INeck Pos,i, IL Shoulder Pos,i, IR Shoulder Pos,i}.
(11)

Each observation is used to provide proposal candidates for the image positions
of the head (uHead), left shoulder (uL Shoulder), right shoulder (uR Shoulder), and
neck (uNeck). The proposal distributions are modeled as Gaussian distributions
given by:

q(uHead|IHead Shoulder,i) ∼ wHS,iN(uHead − IHead Pos,i, ·, ·)
q(uNeck|IHead Shoulder,i) ∼ wHS,iN(uNeck − INeck Pos,i, ·, ·)
q(uL Shoulder|IHead Shoulder,i) ∼ wHS,iN(uL Shoulder − IL Shoulder Pos,i, ·, ·)
q(uR Shoulder|IHead Shoulder,i) ∼ wHS,iN(uR Shoulder − IR Shoulder Pos,i, ·, ·)

(12)
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The approach to combine all these observations is described in Section 5.4.

Fig. 2. Image observations, from left: (i) original image, (ii) detected face and head-
shoulders contour, (iii) skin color ellipses extraction.

5.3 Elliptical Skin Blob Detection

Skin color features provide important cues on arms positions. Skin blobs are de-
tected in four sub-stages: (i) color based image segmentation is applied to divide
the image into smaller regions, (ii) the probability of skin for each segmented
region is computed using a histogram-based skin color Bayesian classifier, (iii)
ellipses are fitted to the boundaries of these regions to form skin ellipse candi-
dates, and (iv) adjacent regions with high skin probabilities are merged to form
larger regions (see Figure 2).

The extracted skin ellipses are used for inferring the positions of limbs. The
interpretation of a skin ellipse is however dependent on the clothing type. For
example, if the person is wearing short sleeves, then the skin ellipse represent the
lower arm, indicating the hand and elbow positions. However, for long sleeve, the
skin ellipse should cover only the hand and used for inferring the hand position
only. Therefore the extracted skin ellipses provide different sets of interpretation
depending on the hypothesis on the clothing type in the current Markov chain
state.

For clarity in the following description, we assume that the clothing type
is short sleeve. For each skin ellipse, we extract the two extreme points of the
ellipse along the major axis. These points are considered as plausible candidates
for the hand-elbow pair, or elbow-hand pair of either the left or right arm. Each
candidate is weighted by (i) skin color probability of the ellipse, (ii) likelihood
of the arm length, (iii) joint probability of the elbow, hand positions with one
of the shoulder candidates (For each ellipse, we find the best shoulder candidate
that provides the highest joint probability.)



8 M. W. Lee, I. Cohen

5.4 Proposal Maps

In this section we present the new concept of proposal maps. Proposal maps are
generated from image observation to represent the proposal distributions of the
image positions of body joints. For this discussion, we focus on the generation of
a proposal map for the left hand. Using the skin ellipse cues presented earlier, we
generate a set of hypotheses on the left hand position, {IL Hand,i, i = 1, . . . , Nh},
where Nh is the number of hypotheses. Each hypothesis has an associated weight
wL Hand,i and a covariance matrix ΣL Hand,i representing the measurement un-
certainty. From each hypothesis, the proposal distribution for the left hand image
position is given by:

q(uL Hand|IL Hand,i) ∝ wL Hand,iN(uL Hand, IL Hand,i,ΣL Hand,i). (13)

Contributions of all the hypotheses are combined as follows:

q(uL Hand|{IL Hand,i}) ∝ max
i
q(uL Hand|IL Hand,i). (14)

As the hypotheses are, in general, not independent, we use the max function
instead of the summation in Equation (14); otherwise peaks in the proposal dis-
tribution would be overly exaggerated. This proposal distribution is unchanged
throughout the MCMC process. To improve efficiency, we approximate the dis-
tribution as a discrete space with samples corresponding to every pixel position.
This same approach is used to combine multiple observations for other body
joints. Figure 3 shows the pseudo-color representation of the proposal maps for
various body joints. Notice that the proposal maps have multiple modes, espe-
cially for the arms, due to ambiguous observations and image clutter.

Fig. 3. Proposal maps for various body joints. The proposal probability of each pixel
is illustrated in pseudo-color (or grey level in monochrome version).
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6 Image Likelihood Measure

The image likelihood P (I|m) consists of two components: (i) a region likeli-
hood, and (ii) a color likelihood. We have opted for an adaptation of the image
likelihood measure introduced in [14].

Region Likelihood. Color segmentation is performed to divide an input image
into a number of regions. Given a state variable m, we can compute the corre-
sponding human blob in the image. Ideally, the human blob should match to the
union of a certain subset of the segmented regions.
Denoting {Ri, i = 1, . . . , Nregion} as the set of segmented regions, Nregion is

the number of segmented regions and Hm the human blob predicted from the
state variable m. For the correct pose, each region Ri should either belong to
the human blob Hm or to the background blob H̄m. In each segmented region
Ri, we count the number of pixels that belong to Hm and H̄m.

Ni,human = count pixels (u, v) where (u, v) ∈ Ri and (u, v) ∈ Hm,
Ni,background = count pixels (u, v) where (u, v) ∈ Ri and (u, v) ∈ H̄m. (15)

We define a binary label, li for each region and classify the region, so that

li =
1 if Ni,human ≥ Ni,background
0 otherwise

(16)

We then count the number of incoherent pixels, Nincoherent, given as:

Nincoherent =

Nregion

i=1

(Ni,background)
li(Ni,human)

1−li . (17)

The region-based likelihood measurement is then defined by:

Lregion = exp(−λregionNincoherent) (18)

where λregion is a constant determined empirically using a Poisson model.

Color Likelihood. The likelihood measure expresses the difference between the
color distributions of the human blob Hm and the background blob H̄m. Given
the predicted blobs Hm and H̄m , we compute the corresponding color distribu-
tions, denoted by d and b. The color distributions are expressed by normalized
histograms with Nhistogram bins. The color likelihood is then defined by:

Lcolor = exp(−λcolorB2d,b) (19)

where λcolor is a constant and Bd,b is the Bhattachayya coefficient measuring
the similarity of two color distributions and defined by:

Bd,b =

Nhistogram

i=1

dibi. (20)

The combined likelihood measure is given by :

P (I|m) = Lregion × Lcolor. (21)
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7 MCMC and Proposal Distribution

We adapted the data-driven MCMC framework [13]. which allows the use of
image observations for designing proposal distribution to find region of high
density efficiently. At the t-th iteration in the Markov chain process, a candidate
mI is sampled from q(mt|mt−1) and accepted with probability,

p = min 1,
p(mI|I)q(mt−1|mI)
p(mt−1|I)q(mI|mt−1)

. (22)

The proposal process is executed by three types of Markov chain dynamics de-
scribed in the following.

Diffusion Dynamic. This process serves as a local optimizer and the proposal
distribution is given by:

q(mI|mt−1) ∝ N(mI,mt−1,Σdiffusion) (23)

where the variance Σdiffusion is set to reflect the local variance of the posterior
distribution, estimated from training data.

Proposal Jump Dynamic. This jump dynamic allows exploratory search
across different regions of the solution space using proposal maps derived from
observation. In each jump, only a subset of the proposal maps is used. For this
discussion, we focus on observations of the left hand. To perform a jump, we
sample a candidate of the hand position from the proposal map:

ûL hand ∼ q(uL hand|{IL hand,i}). (24)

The sampled hand image position is then used to compute, via inverse kinematics
(IK), a new state variable mI that satisfies the following condition:

fi(m
I) =

fi(mt−1) where j W= L hand
ûL hand where j = L hand

(25)

where fi(mt−1) is the deterministic function that generates image position of a
body joint, given the state variable. In other words, IK is performed by keeping
other joint positions constant and modify the pose parameters to adjust the
image position of the left hand. When there are multiple solutions due to depth
ambiguity, we choose the solution that has the minimum change in depth. If mI

cannot be computed (e.g. violate the geometric constraints), then the proposed
candidate is rejected.

Flip Dynamic. This dynamic involves flipping a body part (i.e. head, hand,
lower arm or entire arm) along depth direction, around its pivotal joint [10]. Flip
dynamic is balanced so that forward and backward flips have the same proposal
probability. The solution candidate mI is computed by inverse kinematics.
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8 Experimental Results

We used images of indoor meeting scenes as well as outdoors images for testing.
Ground truth is generated by manually locating the positions of various body
joints on the images and estimating the relative depths of these joints. This data
set is available at http://www-scf.usc.edu/˜munlee/PoseEstimation.html.

8.1 Pose Estimation.

Figure 4 shows the obtained results on various images. These images were not
among the training data. The estimated human model and its pose (solutions
with the highest posterior probability) are projected onto the original image and
a 3D rendering from a sideward view is also shown.
The estimated joint positions were compared with the ground truth data,

and a RMS error was computed. Since the depth had higher uncertainties, we
computed two separate measurements, one for the 2D positions, and the other
for the depth. The histograms of these errors (18 images processed) are shown
in Figure 5a. This set of images and the pose estimation results are available at
the webpage: http://www-scf.usc.edu/˜munlee/images/upperPoseResult.htm.

Fig. 4. Pose Estimation. First Row: Original images, second row: estimated poses,
third row: estimated poses (side view).
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8.2 Convergence Analysis.

Figure 5b shows the RMS errors (averaged over test images) with respect to
the MCMC iterations. As the figure shows, the error for the 2D image position
decreases rapidly from the start of the MCMC process and this is largely due to
the observation-driven proposal dynamics. For the depth estimate, the kinemat-
ics flip dynamic was helpful in finding hypotheses with good depth estimates.
It however required a longer time for exploration. The convergence time varies
considerably among different images, depending on the quality of the image ob-
servations. For example, if there were many false observations, the convergence
required a longer time. On average, 1000 iterations took about 5 minutes.

(a) (b)

Fig. 5. Results: (a) Histogram of RMS Error (b) Convergence Analysis.

9 Conclusion

We have presented an MCMC framework for estimating 3D human upper body
pose in static images. This hypothesis-and-test framework uses a generative
model with domain knowledge such as the human articulated structure and
allows us to formulate appropriate prior distributions and likelihood functions,
for evaluating samples in the solution space.
In addition, the concern with high dimensionality and efficiency postulates

that the searching process should be more driven by image observations. The
data-driven MCMC framework offers the flexibility in designing proposal mech-
anism for sampling the solution space. Our technique incorporates multiple cues
to provide robustness.
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We introduce the use of proposal map, which is an efficient way of consol-
idating information provided by observations and implementing proposal dis-
tributions. Qualitative and quantitative results are presented to show that the
technique is effective over a wide variety of images. In future work, we will extend
our work to full body pose estimation and video-based tracking.
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