
Interpolating Curves
D.A. Forsyth UIUC

Central issues in modelling

• Construct families of curves, surfaces and volumes that
• can represent common objects usefully;
• are easy to interact with; interaction includes:

• manual modelling;
• fitting to measurements;

• support geometric computations
• intersection
• collision

• Question: How much do you know about B-Splines?

Main topics

• Simple curves
• Interpolation
• Continuity and splines for interpolation

Parametric forms

• A parametric curve is
• a mapping of one parameter into

• 2D
• 3D

• Examples
• circle as (cos t, sin t)
• twisted cubic as (t, t*t, t*t*t)
• circle as (1-t^2, 2 t, 0)/(1+t^2)

• domain of the parametrization MATTERS
• (cos t, sin t), 0<=t<= pi is a semicircle

Curves - basic ideas

• Important cases on the plane
• Monge (or explicit)

• y(x)
• Examples:

• many lines, bits of circle, sines, etc
• Implicit curve

• F(x, y)=0
• Examples:

• all lines, circles, ellipses
• any explicit curve; any parametric algebraic curve; lots of others
• Important special case: F polynomial

• Parametric curve
• (x(s), y(s)) for s in some range
• Examples

• all lines, circles, ellipses
• Important special cases: x, y polynomials, rational

Powerful view of a curve

• A set of points pasted together by blending functions
• blending functions depend on parameter
• points (control points; control vectors) don’t
• representation isn’t unique (but that really doesn’t matter very much)

• Advantage:
• we don’t need to worry much about dimension

• that’s carried by the points
• we can do a variety of clever tricks with the blending functions

• meet constraints
• convert from form to form

p0�0(t) + p1�1(t) + v0�2(t) + v1�3(t)

Interpolation

• Construct a parametric curve that passes through
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials (one at the relevant point, zero at all others) to

construct curve
• curve is:

piφ i

l() t()
i∈points
∑

Lagrange interpolate

• Construct a parametric curve that passes through
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials (one at the relevant point, zero at all others) to

construct curve
• degree is (#pts-1)

• e.g. line through two points
• quadratic through three.

•

Lagrange polynomials

• Interpolate points at s=s_i, i=1..n
• Blending functions

• Can do this with a polynomial

�i(s) =

⇢
1 s = si
0 s = sk, k 6= i

Q
j=1..i�1,i..n(s� sj)Q
j=1..i�1,i..n(sj � si)

Hermite interpolation

• Hermite interpolate
• give parameter values and derivatives associated with each point
• curve passes through given point and the given derivative at that parameter

value
• For two points (most important case) curve is:

• use Hermite polynomials to construct curve
• one at some parameter value and zero at others or
• derivative one at some parameter value, and zero at others

p0�0(t) + p1�1(t) + v0�2(t) + v1�3(t)

Hermite curves

• Natural matrix form:
• solve linear system to get curve coefficients

• Easily “pasted” together

Blending functions are cubic polynomials, so we write as:

This allows us to write the curve as:

Basis matrix Geometry matrix

p0�0(t) + p1�1(t) + v0�2(t) + v1�3(t)

⇥
�0(t) �1(t) �2(t) �3(t)

⇤
=

⇥
1 t t2 t3

⇤

8
>><

>>:

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

9
>>=

>>;

⇥
1 t t2 t3

⇤

8
>><

>>:

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

9
>>=

>>;

8
>><

>>:

p0

p1

v0

v1

9
>>=

>>;

Hermite polynomials

⇥
�0(t) �1(t) �2(t) �3(t)

⇤
=

⇥
1 t t2 t3

⇤

8
>><

>>:

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

9
>>=

>>;

d

dt

⇥
�0(t) �1(t) �2(t) �3(t)

⇤
=

⇥
0 1 2t 3t2

⇤

8
>><

>>:

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

9
>>=

>>;

Constraints

These constraints give:

 Interpolate each endpoint
 Have correct derivatives at each endpoint

2

664

�0(0) �1(0) �2(0) �3(0)
�0(1) �1(1) �2(1) �3(1)
d�0

dt (0)
d�1

dt (0)
d�2

dt (0)
d�3

dt (0)
d�0

dt (1)
d�1

dt (1)
d�2

dt (1)
d�3

dt (1)

3

775 =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775

We can write individual constraints like:

To get:

⇥
�0(0) �1(0) �2(0) �3(0)

⇤
=

⇥
1 0 02 03

⇤

8
>><

>>:

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

9
>>=

>>;

2

664

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

3

775

8
>><

>>:

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

9
>>=

>>;
=

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775

Hermite blending functions

Bezier curves

Bezier curves

Bezier curves

Bezier curves as a tableau

de Casteljau (formal version)

Bezier curve blending functions

n�

i=0

biB
n
i (u)

Curve has the form:

Bezier blending functions

• Bezier-Bernstein polynomials
• here C(n, i) is the number of combinations of n items, taken i at a time
•

Bn
i (u) = C(n, i)(1� u)iun�1

C(n, i) =
n!

(n� i)!i!

Bezier curve properties

• Pass through first, last points
• Tangent to initial, final segments of control polygon
• Lie within convex hull of control polygon
• Subdivide

Equivalences

• 4 control point Bezier curve is a cubic curve
• so is an Hermite curve
• so we can transform from one to the other
• Easy way:

• notice that 4-point Bezier curve
• interpolates endpoints
• has tangents 3(b_1-b_0), 3(b_3-b_2)
• this gives Hermite->Bezier, Bezier->Hermite

• Hard way:
• do the linear algebra

4-point Bezier curve:

Hermite curve:

⇥
1 t t2 t3

⇤

8
>><

>>:

1 0 0 0
�3 3 0 0
3 �6 3 0
�1 3 �3 1

9
>>=

>>;

2

664

p0

p1

p2

p3

3

775

⇥
1 t t2 t3

⇤

8
>><

>>:

1 0 0 0
0 0 1 0
�3 3 �2 �1
2 �2 1 1

9
>>=

>>;

2

664

p0

p1

v0

v1

3

775

⇥
1 t t2 t3

⇤
BbGb

⇥
1 t t2 t3

⇤
BhGh

• Say we know G_b
• what G_h will give the same curve?

• known G_h works similarly

Converting

BhGh = BbGb

Gh = B�1
h BbGb

Joining up curves

• Two kinds of join
• Geometric continuity

• G^0 - end points join up
• G^1 - end points join up, tangents are parallel
• Idea: the curves *could* be parametrized with a C^0 (C^1)

parametrization, but currently are not
• Very important in modelling

• Parametric continuity, or continuity
• C^0 - the parameter functions of the curve are continuous
• C^1 - the parameter functions are continuous, have continuous deriv
• C^2 - and continuous second deriv
• Very important in animation (the parametrization is usually time)

Simple cases

• Join up two point Hermite curves
• endpoints the same, vectors not - G^0
• endpoints, vectors the same - G^1 (easy)
• endpoints the same, vectors same direction - G^1 (harder)
• Catmull Rom construction if we don’t know tangents

• Subdivide a Bezier curve
• result is G^infinity if we reparametrize each segment as we should

• but not necessarily if we move the control points!

• Join up Bezier curves
• endpoints join - G^0
• endpoints join, end segments collinear - G^1

Catmull-Rom construction (partial)

Cubic interpolating splines

• n+1 points P_i
• X_i(t) is curve between P_i, P_i+1

Interpolating Cubic splines, G^1

• join a series of Hermite curves with equal derivatives.
• But where are the derivative values to come from?

• Measurements

• Cardinal splines
• average points
• t is “tension”
• specify endpoint tangents

• or use difference between first two, last two points

dXi

dt
(0) =

1

2
(1� t)(Pi+1 �Pi�1)

Tension

Interpolating Cubic splines: C^2

• One parametrization for the whole curve
• divided up into intervals, called knots

• In each segment, there is a cubic curve FOR THAT SEGMENT

• And we must make this lot C^2

ti t < ti+1

Ai(t� ti)
3 +Bi(t� ti)

2 +Ci(t� ti) +Di

• at interval endpoints, curves must be
• Continuous

• have continuous derivative

• have continuous second derivative

Continuity

Xi(ti) = Xi�1(ti)

d2Xi

dt2
(ti) =

d2Xi�1

dt2
(ti)

dXi

dt
(ti) =

dXi�1

dt
(ti)

Curves

• Assume we KNOW the derivative at each point
• write derivatives with ‘

Xi(ti) = Pi = Di

dXi

dt
(ti) = X0

i(ti) = P0
i = Ci

Xi(ti+1) = Pi+1 = Ai�t3i +Bi�t2i +Ci�ti +Di

X0
i(ti+1) = P0

i+1 = 3Ai�t2i + 2Bi�ti +Ci

Curves

Xi(t) = Pi

✓
2
(t� ti)3

(�ti)3
� 3

(t� ti)2

(�ti)2
+ 1

◆
+

Pi+1

✓
�2

(t� ti)3

(�ti)3
+ 3

(t� ti)2

(�ti)2

◆
+

P0
i

✓
(t� ti)3

(�ti)2
� 2

(t� ti)2

(�ti)
+ (t� ti)

◆
+

P0
i+1

✓
(t� ti)3

(�ti)2
� (t� ti)2

(�ti)

◆

C^2 Continuity supplies derivatives

• Second derivative is continuous

• Differentiate curves, rearrange to get

• This is a linear system in tridiagonal form
• can see as recurrence relation - we need two tangents to solve

X00
i�1(ti) = Xi(ti)

�tiP
0
i�1 + 2(�ti�1 +�ti)P

0
i +�ti�1P

0
i+1 =

3
�ti�1

�ti
(Pi+1 �Pi) + 3

�ti
�ti�1

(Pi �Pi�1)

C^2 cubic splines

• Recurrence relations
• d(n-1) equations in d(n+1) unknowns (d is dimension)

• Options:
• give P’_0, P’_1 (easiest, unnatural)
• second derivatives vanish at each end (natural spline)
• give slopes at the boundary

• vector from first to second, second last to last
• parabola through first three, last three points
• third derivative is the same at first, last knot

More general splines

• We would like to retain continuity, local control
• but drop interpolation

• Mechanism
• get clever with blending functions
• continuity of curve=continuity of blending functions
• we will need to “switch” on or off pieces of function

• e.g. linear example

• This takes us to B-splines, which you know
• so we’ll move on to surface constructions

