Interpolating Curves

D.A. Forsyth UIUC

Central issues in modelling

- Construct families of curves, surfaces and volumes that
- can represent common objects usefully;
- are easy to interact with; interaction includes:
- manual modelling;
- fitting to measurements;
- support geometric computations
- intersection
- collision
- Question: How much do you know about B-Splines?

Main topics

- Simple curves
- Interpolation
- Continuity and splines for interpolation

Parametric forms

- A parametric curve is
- a mapping of one parameter into
- 2D
- 3D
- Examples
- circle as $\quad(\cos t, \sin t)$
- twisted cubic as ($\mathrm{t}, \mathrm{t} * \mathrm{t}, \mathrm{t}^{*} \mathrm{t}^{*} \mathrm{t}$)
- circle as
$\left(1-t^{\wedge} 2,2 \mathrm{t}, 0\right) /\left(1+\mathrm{t}^{\wedge} 2\right)$
- domain of the parametrization MATTERS
- $(\cos \mathrm{t}, \sin \mathrm{t}), 0<=\mathrm{t}<=\mathrm{pi}$ is a semicircle

Curves - basic ideas

- Important cases on the plane
- Monge (or explicit)
- $\mathrm{y}(\mathrm{x})$
- Examples:
- many lines, bits of circle, sines, etc
- Implicit curve
- $\mathrm{F}(\mathrm{x}, \mathrm{y})=0$
- Examples:
- all lines, circles, ellipses
- any explicit curve; any parametric algebraic curve; lots of others
- Important special case: F polynomial
- Parametric curve
- ($\mathrm{x}(\mathrm{s}), \mathrm{y}(\mathrm{s}))$ for s in some range
- Examples
- all lines, circles, ellipses
- Important special cases: x, y polynomials, rational

Powerful view of a curve

- A set of points pasted together by blending functions
- blending functions depend on parameter
- points (control points; control vectors) don't
- representation isn't unique (but that really doesn't matter very much)

$$
\mathbf{p}_{0} \phi_{0}(t)+\mathbf{p}_{1} \phi_{1}(t)+\mathbf{v}_{0} \phi_{2}(t)+\mathbf{v}_{1} \phi_{3}(t)
$$

- Advantage:
- we don't need to worry much about dimension
- that's carried by the points
- we can do a variety of clever tricks with the blending functions
- meet constraints
- convert from form to form

Interpolation

- Construct a parametric curve that passes through (interpolates) a set of points.
- Lagrange interpolate:
- give parameter values associated with each point
- use Lagrange polynomials (one at the relevant point, zero at all others) to construct curve
- curve is:

$$
\sum_{i \notin p o i n t s} p_{i} \phi_{i}^{(l)}(t)
$$

Lagrange interpolate

- Construct a parametric curve that passes through (interpolates) a set of points.
- Lagrange interpolate:
- give parameter values associated with each point
- use Lagrange polynomials (one at the relevant point, zero at all others) to construct curve
- degree is (\#pts-1)
- e.g. line through two points
- quadratic through three.

Lagrange polynomials

- Interpolate points at $\mathrm{s}=\mathrm{s} _\mathrm{i}, \mathrm{i}=1 . . \mathrm{n}$
- Blending functions

$$
\phi_{i}(s)= \begin{cases}1 & s=s_{i} \\ 0 & s=s_{k}, k \neq i\end{cases}
$$

- Can do this with a polynomial

$$
\frac{\prod_{j=1 . . i-1, i . . n}\left(s-s_{j}\right)}{\prod_{j=1 . . i-1, i . . n}\left(s_{j}-s_{i}\right)}
$$

Fig 2.16a. Interpolation by a polynomial of degree 4 .

Fig 2.16c. Interpolation by a polynomial of degree 14 .

Hermite interpolation

- Hermite interpolate
- give parameter values and derivatives associated with each point
- curve passes through given point and the given derivative at that parameter value
- For two points (most important case) curve is:

$$
\mathbf{p}_{0} \phi_{0}(t)+\mathbf{p}_{1} \phi_{1}(t)+\mathbf{v}_{0} \phi_{2}(t)+\mathbf{v}_{1} \phi_{3}(t)
$$

- use Hermite polynomials to construct curve
- one at some parameter value and zero at others or
- derivative one at some parameter value, and zero at others

Hermite curves

- Natural matrix form:
- solve linear system to get curve coefficients
- Easily "pasted" together

$$
\mathbf{p}_{0} \phi_{0}(t)+\mathbf{p}_{1} \phi_{1}(t)+\mathbf{v}_{0} \phi_{2}(t)+\mathbf{v}_{1} \phi_{3}(t)
$$

Blending functions are cubic polynomials, so we write as:

$$
\left[\begin{array}{llll}
\phi_{0}(t) & \phi_{1}(t) & \phi_{2}(t) & \phi_{3}(t)
\end{array}\right]=\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left\{\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}
$$

This allows us to write the curve as:

$$
\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left\{\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}\left\{\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right\}
$$

Basis matrix Geometry matrix

Hermite polynomials

$$
\begin{aligned}
& {\left[\begin{array}{llll}
\phi_{0}(t) & \phi_{1}(t) & \phi_{2}(t) & \phi_{3}(t)
\end{array}\right]=\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left\{\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}} \\
& \frac{d}{d t}\left[\begin{array}{llll}
\phi_{0}(t) & \phi_{1}(t) & \phi_{2}(t) & \phi_{3}(t)
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 2 t & 3 t^{2}
\end{array}\right]\left\{\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}
\end{aligned}
$$

Constraints

$$
\left[\begin{array}{cccc}
\phi_{0}(0) & \phi_{1}(0) & \phi_{2}(0) & \phi_{3}(0) \\
\phi_{0}(1) & \phi_{1}(1) & \phi_{2}(1) & \phi_{3}(1) \\
\frac{d \phi_{0}}{d t}(0) & \frac{d \phi_{1}}{d t}(0) & \frac{d \phi_{2}}{d t}(0) & \frac{d \phi_{3}}{d t}(0) \\
\frac{d \phi_{0}}{d t}(1) & \frac{d \phi_{1}}{d t}(1) & \frac{d \phi_{2}}{d t}(1) & \frac{d \phi_{3}}{d t}(1)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

These constraints give:
Interpolate each endpoint
Have correct derivatives at each endpoint

We can write individual constraints like:

$$
\left[\begin{array}{llll}
\phi_{0}(0) & \phi_{1}(0) & \phi_{2}(0) & \phi_{3}(0)
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0^{2} & 0^{3}
\end{array}\right]\left\{\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}
$$

To get:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 3
\end{array}\right]\left\{\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Hermite blending functions

Hermite Blending Polynomials

$$
\begin{aligned}
& h_{1}(u)=2 u^{3}-3 u^{2}+1 \\
& h_{2}(u)=-2 u^{3}+3 u^{2} \\
& h_{3}(u)=u^{3}-2 u^{2}+u \\
& h_{4}(u)=u^{3}-u^{2}
\end{aligned}
$$

Bezier curves

Linear Interpolation

where $0 \leq u \leq 1$

Bezier curves

"Doubled" Linear Interpolation

Bezier curves

"Tripled" Linear Interpolation

Get a cubic polynomial curve

$$
\begin{aligned}
\mathbf{b}_{0}^{3}(u)= & (1-u)^{3} \mathbf{b}_{0} \\
& +3(1-u)^{2}(u) \mathbf{b}_{1} \\
& +3(1-u)(u)^{2} \mathbf{b}_{2} \\
& +(u)^{3} \mathbf{b}_{3}
\end{aligned}
$$

This is a cubic Bézier curve

Bezier curves as a tableau

"Tripled" Linear Interpolation

Repeated averaging in tableau form:

$\stackrel{\text { Input points }}{\text { lan }}$			
\mathbf{b}_{0}			
\mathbf{b}_{1}	\mathbf{b}_{0}^{1}		
\mathbf{b}_{2}	\mathbf{b}_{1}^{1}	\mathbf{b}_{0}^{2}	
\mathbf{b}_{3}	\mathbf{b}_{2}^{1}	\mathbf{b}_{1}^{2}	$\underbrace{\mathbf{b}_{0}^{3}}_{\text {Point on curve }}$

This clearly suggests a recursive procedure ...

de Casteljau (formal version)

General Bézier Curves

Given $n+1$ control points

$$
\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \in R^{3}
$$

We can define a Bézier curve

$$
\mathbf{b}(u)=\mathbf{b}^{n}(u)=\mathbf{b}_{0}^{n}(u)
$$

via the recursive construction

$$
\begin{aligned}
& \mathbf{b}_{i}^{r}(u)=(1-u) \mathbf{b}_{i}^{r-1}(u)+(u) \mathbf{b}_{i+1}^{r-1}(u) \\
& \mathbf{b}_{i}^{0}(u)=\mathbf{b}_{i}
\end{aligned}
$$

This is the de Casteljau Algorithm

Bezier curve blending functions

Common Bernstein Polynomials

$$
B_{0}^{3}=(1-u)^{3}
$$

Curve has the form:

Bezier blending functions

- Bezier-Bernstein polynomials

$$
B_{i}^{n}(u)=C(n, i)(1-u)^{i} u^{n-1}
$$

- here $\mathrm{C}(\mathrm{n}, \mathrm{i})$ is the number of combinations of n items, taken i at a time

$$
C(n, i)=\frac{n!}{(n-i)!!i!}
$$

Bezier curve properties

- Pass through first, last points
- Tangent to initial, final segments of control polygon
- Lie within convex hull of control polygon
- Subdivide

Equivalences

- 4 control point Bezier curve is a cubic curve
- so is an Hermite curve
- so we can transform from one to the other
- Easy way:
- notice that 4-point Bezier curve
- interpolates endpoints
- has tangents 3(b_1-b_0), 3(b_3-b_2)
- this gives Hermite->Bezier, Bezier->Hermite
- Hard way:
- do the linear algebra

4-point Bezier curve:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left\{\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right\}\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right] \mathcal{B}_{b} \mathcal{G}_{b}}
\end{aligned}
$$

Hermite curve:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left\{\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 3 & -2 & -1 \\
2 & -2 & 1 & 1
\end{array}\right\}\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right] \mathcal{B}_{h} \mathcal{G}_{h}}
\end{aligned}
$$

Converting

- Say we know G_b $\quad \mathcal{B}_{h} \mathcal{G}_{h}=\mathcal{B}_{b} \mathcal{G}_{b}$
- what G_h will give the same curve?

$$
\mathcal{G}_{h}=\mathcal{B}_{h}^{-1} \mathcal{B}_{b} \mathcal{G}_{b}
$$

- known G_h works similarly

Joining up curves

- Two kinds of join
- Geometric continuity
- $G^{\wedge} 0$ - end points join up
- $G^{\wedge} 1$ - end points join up, tangents are parallel
- Idea: the curves *could* be parametrized with a $\mathrm{C}^{\wedge} 0\left(\mathrm{C}^{\wedge} 1\right)$ parametrization, but currently are not
- Very important in modelling
- Parametric continuity, or continuity
- $\mathrm{C}^{\wedge} 0$ - the parameter functions of the curve are continuous
- $\mathrm{C}^{\wedge} 1$ - the parameter functions are continuous, have continuous deriv
- $\mathrm{C}^{\wedge} 2$ - and continuous second deriv
- Very important in animation (the parametrization is usually time)

Simple cases

- Join up two point Hermite curves
- endpoints the same, vectors not - $\mathrm{G}^{\wedge} 0$
- endpoints, vectors the same - $\mathrm{G}^{\wedge} 1$ (easy)
- endpoints the same, vectors same direction - $\mathrm{G}^{\wedge} 1$ (harder)
- Catmull Rom construction if we don't know tangents
- Subdivide a Bezier curve
- result is G^{\wedge} infinity if we reparametrize each segment as we should - but not necessarily if we move the control points!
- Join up Bezier curves
- endpoints join - $\mathrm{G}^{\wedge} 0$
- endpoints join, end segments collinear - $\mathrm{G}^{\wedge} 1$

Catmull-Rom construction (partial)

$$
\mathbf{p}_{0}, \ldots, \mathbf{p}_{n} \quad \text { define tangent } \mathbf{r}_{i}=s\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right)
$$

Cubic interpolating splines

- $\mathrm{n}+1$ points $\mathrm{P} _\mathrm{i}$
- $X _i(t)$ is curve between $P _i, P _i+1$

Fig. 3.11. The spline segment \boldsymbol{X}_{i}.

Interpolating Cubic splines, $\mathrm{G}^{\wedge} 1$

- join a series of Hermite curves with equal derivatives.
- But where are the derivative values to come from?
- Measurements
- Cardinal splines

$$
\frac{d \mathbf{X}_{i}}{d t}(0)=\frac{1}{2}(1-t)\left(\mathbf{P}_{i+1}-\mathbf{P}_{i-1}\right)
$$

- average points
- t is "tension"
- specify endpoint tangents
- or use difference between first two, last two points

Tension

$t<0$
(Looser Curve)

$t>0$
(Tighter Curve)

Interpolating Cubic splines: $\mathrm{C} \wedge 2$

- One parametrization for the whole curve
- divided up into intervals, called knots

$$
a=t_{0}<t_{1}<t_{2}<\cdots<t_{N-1}<t_{N}=b .
$$

$$
\Delta t_{i}:=t_{i+1}-t_{i} .
$$

- In each segment, there is a cubic curve FOR THAT SEGMENT

$$
\mathbf{A}_{i}\left(t-t_{i}\right)^{3}+\mathbf{B}_{i}\left(t-t_{i}\right)^{2}+\mathbf{C}_{i}\left(t-t_{i}\right)+\mathbf{D}_{i}
$$

- And we must make this lot $\mathrm{C}^{\wedge} 2$

$$
t_{i} \leq t<t_{i+1}
$$

Continuity

- at interval endpoints, curves must be
- Continuous

$$
\mathbf{X}_{i}\left(t_{i}\right)=\mathbf{X}_{i-1}\left(t_{i}\right)
$$

- have continuous derivative

$$
\frac{d \mathbf{X}_{i}}{d t}\left(t_{i}\right)=\frac{d \mathbf{X}_{i-1}}{d t}\left(t_{i}\right)
$$

- have continuous second derivative

$$
\frac{d^{2} \mathbf{X}_{i}}{d t^{2}}\left(t_{i}\right)=\frac{d^{2} \mathbf{X}_{i-1}}{d t^{2}}\left(t_{i}\right)
$$

Curves

- Assume we KNOW the derivative at each point
- write derivatives with ${ }^{\prime}$

$$
\mathbf{X}_{i}\left(t_{i}\right)=\mathbf{P}_{i}=\mathbf{D}_{i}
$$

$$
\frac{d \mathbf{X}_{i}}{d t}\left(t_{i}\right)=\mathbf{X}_{i}^{\prime}\left(t_{i}\right)=\mathbf{P}_{i}^{\prime}=\mathbf{C}_{i}
$$

$$
\mathbf{X}_{i}\left(t_{i+1}\right)=\mathbf{P}_{i+1}=\mathbf{A}_{i} \Delta t_{i}^{3}+\mathbf{B}_{i} \Delta t_{i}^{2}+\mathbf{C}_{i} \Delta t_{i}+\mathbf{D}_{i}
$$

$$
\mathbf{X}_{i}^{\prime}\left(t_{i+1}\right)=\mathbf{P}_{i+1}^{\prime}=3 \mathbf{A}_{i} \Delta t_{i}^{2}+2 \mathbf{B}_{i} \Delta t_{i}+\mathbf{C}_{i}
$$

Curves

$$
\begin{aligned}
\mathbf{X}_{i}(t)= & \mathbf{P}_{i}\left(2 \frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{3}}-3 \frac{\left(t-t_{i}\right)^{2}}{\left(\Delta t_{i}\right)^{2}}+1\right)+ \\
& \mathbf{P}_{i+1}\left(-2 \frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{3}}+3 \frac{\left(t-t_{i}\right)^{2}}{\left(\Delta t_{i}\right)^{2}}\right)+ \\
& \mathbf{P}_{i}^{\prime}\left(\frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{2}}-2 \frac{\left(t-t_{i}\right)^{2}}{\left(\Delta t_{i}\right)}+\left(t-t_{i}\right)\right)+ \\
& \mathbf{P}_{i+1}^{\prime}\left(\frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{2}}-\frac{\left(t-t_{i}\right)^{2}}{\left(\Delta t_{i}\right)}\right)
\end{aligned}
$$

$\mathrm{C}^{\wedge} 2$ Continuity supplies derivatives

- Second derivative is continuous

$$
\mathbf{X}^{\prime \prime}{ }_{i-1}\left(t_{i}\right)=\mathbf{X}_{i}\left(t_{i}\right)
$$

- Differentiate curves, rearrange to get

$$
\begin{array}{r}
\Delta t_{i} \mathbf{P}_{i-1}^{\prime}+2\left(\Delta t_{i-1}+\Delta t_{i}\right) \mathbf{P}_{i}^{\prime}+\Delta t_{i-1} \mathbf{P}^{\prime}{ }_{i+1}= \\
3 \frac{\Delta t_{i-1}}{\Delta t_{i}}\left(\mathbf{P}_{i+1}-\mathbf{P}_{i}\right)+3 \frac{\Delta t_{i}}{\Delta t_{i-1}}\left(\mathbf{P}_{i}-\mathbf{P}_{i-1}\right)
\end{array}
$$

- This is a linear system in tridiagonal form
- can see as recurrence relation - we need two tangents to solve

C^2 cubic splines

- Recurrence relations
- $\mathrm{d}(\mathrm{n}-1)$ equations in $\mathrm{d}(\mathrm{n}+1)$ unknowns (d is dimension)
- Options:
- give $\mathrm{P}^{\prime} _0, \mathrm{P}^{\prime} _1$ (easiest, unnatural)
- second derivatives vanish at each end (natural spline)
- give slopes at the boundary
- vector from first to second, second last to last
- parabola through first three, last three points
- third derivative is the same at first, last knot

More general splines

- We would like to retain continuity, local control
- but drop interpolation
- Mechanism
- get clever with blending functions
- continuity of curve=continuity of blending functions
- we will need to "switch" on or off pieces of function
- e.g. linear example
- This takes us to B-splines, which you know
- so we'll move on to surface constructions

