Distributed Ray Tracing

D.A. Forsyth, using John Hart's slides

Ray traced images look fake

- Jagged edges
- Hard shadows
- Everything in focus
- Objects completely still
- Surfaces perfectly shiny
- Glass perfectly clear

Randomized estimates of integrals

if
$$x_i \sim p(x)$$

then $\frac{1}{N} \sum_{i=1}^N f(x_i) \to \int f(x) p(x) dx$

- i.e. we can approximate integrals with sums
 - example: p(x) uniform, stochastic sampling of pixel

Recall our image sensor model

- How do we get motion blur?
 - integrate over time

value =
$$\int_{A} \int_{\Omega} \int_{T} I(x, y, \omega, t) w(x, y, \omega, t) dt d\omega dx dy$$

Motion Blur

Multiple rays from eye through same point in each pixel Each intersects the scene at a different time Weight function (reconstruction filter) controls shutter speed, length

Box filter – fast shutter Triangle filter – slow shutter

Depth of Field

- Better simulation of camera model
 - f-stop
 - focus

Pinhole Problems

Pinhole too big: brighter, but blurred

2 mm

1 mm

0.6mm

0.35 mm

Pinhole too small: diffraction effects blur, dark

Pinhole right size: crisp, but dark

0.15 mm

0.07 mm

- Thin circular pieces of refracting material
 - spherical in cross-section
 - circular, so we can use symmetry to draw, reason, etc.
- Make images brighter by collecting light from multiple directions

- Rays parallel to axis pass through focal point
 - which is a property of the lens
 - Rays through center are not refracted
- Pairs object planes and image planes
- Any point p on an object yields an object plane
 - <u>all rays leaving p arrive at p' on the image plane for that object plane</u>

- Any point p on an object yields an object plane
 - all rays leaving p arrive at p' on the image plane for that object plane

- Thin lens equation
 - relates object distance, image distance, focal length
- Crucial, useful fact:
 - tells us where all rays arriving at a point on the image plane came from in space (we have a fixed image plane)

• Yields

- a model of aperture and defocus
 - because points not on the object plane given by our image plane become "blobs"
- how to ray trace a thin lens
 - because we can tell where every ray arriving at p' on our image plane came from

Computing depth of field of a lens

- Choose an acceptable circle of confusion size
 - this gives a range of depths around the object plane where objects will be in focus

Aperture

- The size of the "opening" represented by the lens
 - height of lens in drawing
- Smaller aperture -> bigger depth of field, darker
 - smallest=pinhole=infinite depth of field
 - but it's dark
- Larger aperture -> more light, smaller depth of field

Rendering

- At each pixel, fire rays in randomly chosen directions toward the lens
 - average (this average is an integral!)
 - where do these rays go?
 - use thin lens equation!
 - effects
 - depth of field (or defocus)
 - aperture

Advanced camera models

figure from Kolb, Mitchell and Hanrahan, 1995

Advanced lens systems

