Rendering diffuse interreflections

D.A. Forsyth

with slides from John Hart

Diffuse-diffuse transfer

O Focal point

Interreflections are significant

From Koenderink slides on image texture and the flow of light

Radiosity and diffuse interreflections

- Assume we're in a world of diffuse surfaces
- Rendering
- cast eye rays
- evaluate radiosity at first hit
- average, stick into pixel
- Not practical --- we don’t know radiosity
- Model

Interreflection model

$$
B(x)=E(x)+\int_{\Omega}^{\text {Integral over all incoming directions }}\left\{\begin{array}{l}
\text { radiosity due to } \\
\text { incoming radiance }
\end{array}\right\} d \omega
$$

For the moment, read this as
incoming light

All diffuse surfaces are area sources!

- Receiver can't tell whether light is created or reflected at source
- If receiver is luminaire (makes light), that just adds
- Diffuse interreflection equation
- $\operatorname{vis}(x, u)=1$ if they can see each other, 0 otherwise
- Notice nasty property
- B (unknown) is inside the integral!
- Fredholm equation of the second kind

$$
B(\mathbf{x})=E(\mathbf{x})+\rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} \operatorname{Vis}(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d A_{s}
$$

Evaluating the radiosity

- cast eye rays
- evaluate radiosity at first hit
- average, stick into pixel
- Not practical --- we don’t know radiosity
- But

$$
B(\mathbf{x})=E(\mathbf{x})+\rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} \operatorname{Vis}(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d A_{s}
$$

This is an average over all light coming from somewhere else; this average smoothes

Rewrite model

$$
B(x)=E(x)+\int_{\Omega}\left\{\begin{array}{l}
\text { radiosity due to } \\
\text { incoming radiance }
\end{array}\right\} d \omega
$$

$$
\mathrm{B}(\mathrm{x})=\mathrm{E}(\mathrm{x})+\rho(x) \int_{\mathrm{D}}\left\{\begin{array}{l}
\text { power due to } \\
\text { radiosity at } \mathrm{u}
\end{array}\right\} d u
$$

Here D is every point that can be seen from x
$\mathrm{B}(\mathrm{x})=\mathrm{E}(\mathrm{x})+\rho(x) \int_{\mathrm{D}}^{\downarrow}\{$ power arriving due to $B(u)\} d u$

Rewrite model

$$
\mathrm{B}(\mathrm{x})=\mathrm{E}(\mathrm{x})+\rho(x) \int_{\mathrm{D}}\{\text { power arriving due to } \underset{\uparrow}{B}(u)\} d u
$$

We know an expression for this
$\mathrm{B}(\mathrm{x})=\mathrm{E}(\mathrm{x})+\rho(x) \int_{\mathrm{D}_{x}}\left\{\right.$ power due to $\left[E(u)+\rho(u) \int_{\mathrm{D}_{u}}\{\right.$ power due to $\left.\left.B(v) d v\}\right]\right\} d u$

Here D_x is every point that can be seen from x,
D_u is every point that can be seen from u

Notation

- We know form of "Power arriving due to $\mathrm{B}(\mathrm{u})$ "
- but it's tediously long
- rewrite

From our work on area sources

$\rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} \operatorname{Vis}(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d \mathbf{u}_{s}=\rho(\mathbf{x}) \int_{S} K(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d \mathbf{u}_{s}$

Notation

- Think of
- functions as very long vectors
- $K(x, u)$ as a matrix
- write

$$
\rho(\mathbf{x}) \int_{S} K(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d \mathbf{u}_{s}=\rho \mathcal{K} B
$$

Core idea: Neumann series

- We have

$$
B(\mathbf{x})=E(\mathbf{x})+\rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} \operatorname{Vis}(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d A
$$

- Can write:

$$
B=E+\rho \mathcal{K} B
$$

- Which gives

$$
B=E+(\rho \mathcal{K}) E+(\rho \mathcal{K})(\rho \mathcal{K}) E+(\rho \mathcal{K})^{3} E+\ldots
$$

Exitance
Source term

The terms

$$
B=E+(\rho \mathcal{K}) E+(\rho \mathcal{K})(\rho \mathcal{K}) E+(\rho \mathcal{K})^{3} E+\ldots
$$

mostly zero
Source term

Can change fast - shadows, etc.
One bounce
Two bounces

Changes much more slowly, because K smoothes

Changes even more slowly, because K smoothes

Using an estimate

- Notice:

$$
B=E+(\rho \mathcal{K}) B
$$

- Assume that I have a very rough estimate of B
- I could render this using

$$
B=E+(\rho \mathcal{K}) \hat{B}
$$

- This isn't such a good idea, because our shadows will be mangled

Lischinski ea 93

The right way

$$
B=E+(\rho \mathcal{K}) E+(\rho \mathcal{K})(\hat{B}-E)
$$

Can change fast - shadows, etc.

One or more bounces

Changes much more slowly, because K smoothes, so we should approximate this

Computing the integrals

- Two terms
- source term

$$
\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u}) E(\mathbf{u}) d \mathbf{u}
$$

- we expect to need multiple samples, some large values, large changes over space
- large variance will be ugly - should compute this term carefully at each point to render
- indirect term
- this term should change slowly over space, and should be smaller in value
- large variance less ugly - we can use fewer samples and pool samples

$$
\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u})(\hat{B}(\mathbf{u})-E(\mathbf{u})) d \mathbf{u}
$$

Integrals with importance sampling

- Recall definition:

$$
\rho(\mathbf{x}) \mathcal{K} F=\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u}) F(\mathbf{u}) d \mathbf{u}
$$

- How to evaluate this integral at a point?
- obtain

$$
\begin{gathered}
\mathbf{u}_{i} \sim p(\mathbf{u}) \\
\frac{1}{N} \sum_{i=1}^{N} \frac{K\left(\mathbf{x}, \mathbf{u}_{i}\right) F\left(\mathbf{u}_{i}\right)}{p\left(\mathbf{u}_{i}\right)}
\end{gathered}
$$

- Form:
- Similar to evaluating illumination from area source

Importance sampling

- What is a good $\mathrm{p}(\mathrm{u})$?
- $p(u)$ should be big when $K(x, u) F(u)$ is big
- this helps to control variance
- known as importance sampling
- Significant considerations:
- fast variation in $\mathrm{F}(\mathrm{u})$
- fast variation in K
- usually due to visibility
- How many samples?
- fixed number
- may be expensive, ineffective
- by estimate of variance
- this goes down as $1 / \mathrm{N}$, which is very bad news

Computing the direct term

- We know where E is non-zero
- luminaires
- zero at most points
- Treat these as area sources
- ie samples randomly distributed across area
- number of samples prop to intensity, total energy
- or stratified sampling
- use visibility considerations to choose which sources are sampled

$$
\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u}) E(\mathbf{u}) d \mathbf{u}
$$

Computing the indirect term

- Small (ish)
- Varies relatively slowly across space
- Non-zero at most points
- Don't really know where it will be large
- Strategies
- choose directions on the input hemisphere uniformly at random
- make an importance map for input hemisphere, reuse

$$
\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u})(\hat{B}(\mathbf{u})-E(\mathbf{u})) d \mathbf{u}
$$

