Radiosity estimates via finite elements

D.A. Forsyth
after slides by John Hart

In a world of diffuse surfaces ...

- Recall
- radiosity is radiated power per unit area, independent of direction
- we obtained:

$$
B(\mathbf{x})=E(\mathbf{x})+\rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} \operatorname{Vis}(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d A_{s}
$$

- which we wrote as:

$$
B(\mathbf{x})-E(\mathbf{x})-\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d A_{\mathbf{u}}=0
$$

Radiosity estimate via finite elements

- Divide domain into patches
- Radiosity will be constant on each patch
- patch basis function, or element

$$
\phi_{i}(\mathbf{x})= \begin{cases}1 & \text { if } \mathbf{x} \text { in patch } i \\ 0 & \text { otherwise }\end{cases}
$$

- Now write
- B_i for radiosity at patch i
- E_i for exitance at patch i
- Substitute into eqn:

$$
B(\mathbf{x})-E(\mathbf{x})-\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d A_{\mathbf{u}}=0
$$

Becomes

$$
\left(\sum_{i} B_{i} \phi_{i}(\mathbf{x})\right)-\left(\sum_{i} E_{i} \phi_{i}(\mathbf{x})\right)-\left(\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u})\left(\sum_{i} B_{i} \phi_{i}(\mathbf{u})\right) d A_{\mathbf{u}}\right)=R(\mathbf{x})
$$

This should be "like zero"

Obtaining an estimate: Finite elements

- But in what sense is it zero?
- Galerkin method

$$
\int R(\mathbf{x}) \phi_{k}(\mathbf{x}) d A_{x}=0 \forall k
$$

- Apply to:

$$
\left(\sum_{i} B_{i} \phi_{i}(\mathbf{x})\right)-\left(\sum_{i} E_{i} \phi_{i}(\mathbf{x})\right)-\left(\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u})\left(\sum_{i} B_{i} \phi_{i}(\mathbf{u})\right) d A_{\mathbf{u}}\right)=R(\mathbf{x})
$$

- And get

$$
B_{k} A_{k}-E_{k} A_{k}-\sum_{j}\left(\int_{\text {patch } k} \rho(\mathbf{x}) \int_{\text {patch } j} K(\mathbf{x}, \mathbf{u}) d \mathbf{u} d \mathbf{x}\right) B_{j}=0
$$

Finite Element Radiosity Equation

- Start with:
$B_{k} A_{k}=E_{k} A_{k}+\sum_{j}\left(\int_{\text {patch } k} \rho(\mathbf{x}) \int_{\text {patch } j} K(\mathbf{x}, \mathbf{u}) d \mathbf{u} d \mathbf{x}\right) B_{j}$
- Divide through by A_k, assume constant albedo patches, get

$$
B_{k}=E_{k}+\sum_{j} \rho_{k} F_{j k} B_{j}
$$

- Where geometric effects are concentrated in the form factor

$$
F_{j k}=\frac{1}{A_{k}} \int_{\text {patch } k} \int_{\text {patch } j} K(\mathbf{x}, \mathbf{u}) d \mathbf{u} d \mathbf{x}
$$

Finite Element Radiosity

- This is a linear system

$$
B_{k}=E_{k}+\sum_{j} \rho_{k} F_{j k} B_{j}
$$

- fold in albedo, write

$$
B_{k}=E_{k}+\sum_{j} \Gamma_{k j} B_{j}
$$

- or in terms of matrices and vectors

$$
\mathbf{B}=\mathbf{E}+\Gamma \mathbf{B}
$$

- BUT YOU SHOULD NEVER DO:

$$
\mathbf{B}=(\mathcal{I}-\Gamma)^{-1} \mathbf{E}
$$

- B might have $10^{\wedge} 6$ elements or more!

Form factors

- Recall:

$$
F_{j k}=\frac{1}{A_{k}} \int_{\text {patch } k} \int_{\text {patch } j} K(\mathbf{x}, \mathbf{u}) d \mathbf{u} d \mathbf{x}
$$

- if patches are all flat, then:

$$
F_{i i}=0
$$

- if i can't see j at all, then:

$$
F_{i j}=0
$$

- reciprocity:

$$
A_{k} F_{j k}=A_{j} F_{k j}
$$

Form Factors

- Power leaving patch k :

$$
B_{k} A_{k}
$$

- Power leaving patch k for patch j :

$$
\int_{\text {patch } k} \int_{\text {patch } j} K(\mathbf{x}, \mathbf{u}) B_{k} d \mathbf{u} d \mathbf{x}
$$

- Interpretation:
- Fjk is percentage of power leaving k that arrives at j

$$
F_{j k}=\frac{1}{A_{k}} \int_{\text {patch } k} \int_{\text {patch } j} K(\mathbf{x}, \mathbf{u}) d \mathbf{u} d \mathbf{x}
$$

- this gives:

$$
\sum_{j} F_{j k}=1
$$

Computing form factors

- Nusselt's analogy

The Hemicube

- Render onto faces of cube on receiver

Random samples

- with N uniform samples on patches j and k

$$
A_{j} A_{k} F_{j k} \approx \frac{1}{N} \sum \frac{\cos \theta_{i} \cos \theta_{j} \operatorname{Vis}(i, j)}{\pi r^{2}}
$$

Finite Element Radiosity

- This is a linear system

$$
B_{k}=E_{k}+\sum_{j} \rho_{k} F_{j k} B_{j}
$$

- fold in albedo, write

$$
B_{k}=E_{k}+\sum_{j} \Gamma_{k j} B_{j}
$$

- or in terms of matrices and vectors

$$
\mathbf{B}=\mathbf{E}+\Gamma \mathbf{B}
$$

- BUT YOU SHOULD NEVER DO:

$$
\mathbf{B}=(\mathcal{I}-\Gamma)^{-1} \mathbf{E}
$$

- B might have $10^{\wedge} 6$ elements or more!

Solving the radiosity system: Gathering

- Neumann series (again!)

$$
\mathbf{B}=\mathbf{E}+\Gamma \mathbf{E}+\Gamma^{2} \mathbf{E}+\Gamma^{3} \mathbf{E}+\ldots
$$

- Easy iteration

$$
\begin{gathered}
\mathbf{B}^{(0)}=\mathbf{E} \\
\mathbf{B}^{(n+1)}=\mathbf{E}+\Gamma \mathbf{B}^{(n)}
\end{gathered}
$$

Not a good idea in this form, because we must evaluate the whole of Gamma for EACH iteration; Gamma might be millions by millions

Gathering with iterative methods

- Linear system $\mathrm{Ax}=\mathrm{b}$

$$
\sum_{j} a_{i j} x_{j}=b_{i}
$$

- Jacobi iteration
- reestimate each x

$$
x_{j}^{(n+1)}=\frac{1}{a_{j j}}\left(b_{i}-\sum_{l \neq j} a_{i l} x_{l}^{(n)}\right)
$$

- Gauss-Seidel
- reuse new estimates

$$
x_{j}^{(n+1)}=\frac{1}{a_{j j}}\left(b_{i}-\sum_{l<j} a_{i l} x_{l}^{(n+1)}-\sum_{l>j} a_{i l} x_{l}^{(n)}\right)
$$

Southwell iteration: Progressive radiosity

- Gauss-Seidel, Jacobi, Neumann require us to evaluate whole kernel at each iteration
- this is vilely expensive $10^{\wedge} 6 \mathrm{x} 10^{\wedge} 6$ matrix?
- it's also irrational
- in G-S, Jacobi, for one pass through the variables,
- we gather at each patch, from each patch
- but some patches are not significant sources
- we should like to gather only from bright patches
- or rather, patches should "shoot"
- This is Southwell iteration

Southwell iteration: update x

- Define a residual:

$$
R=(b-A x)
$$

- whose elements are

$$
r_{i}^{(n)}=b_{i}-\sum_{j} a_{i j} x_{j}^{(n)}
$$

- now choose the largest r_i
- and adjust the corresponding x component to make it zero

$$
x_{l}^{(n+1)}=\left\{\begin{array}{cl}
r_{i}^{(n+1)}=0 \\
x_{l}^{(n)} & \text { if } l \neq i \\
\frac{1}{a_{i i}}\left(r_{i}^{(n)}+a_{i i} x_{i}^{(n)}\right) & \text { if } l=i
\end{array}\right\}
$$

Southwell iteration: update r

- Update the residual by adding old x col, subtracting new

$$
r_{l}^{(n+1)}=r_{l}^{(n)}+a_{l i}\left(x_{i}^{(n)}-x_{i}^{(n+1)}\right)
$$

- but this takes an easy form

$$
r_{l}^{(n+1)}=r_{l}^{(n)}-\frac{a_{l i}}{a_{i i}} r_{i}^{(n)}
$$

- Notice we can update variables in order of large residual, using only one col of kernel to do so
- this converges (non-trivial) rather fast (non-trivial)
- to get a solution, we need evaluate only a small proportion of the kernel (non-trivial)

Applying Southwell iteration to radiosity

- Our linear system is:

$$
(\mathcal{I}-\Gamma) \mathbf{B}=\mathbf{E}
$$

- And so we can write the residual as:

$$
\mathbf{r}^{(n)}=\mathbf{E}-\mathbf{B}^{(n)}+\Gamma \mathbf{B}^{(n)}
$$

- Interpretation:
- update B at i’th entry
- at every other entry, we add energy shot from this update to that location
- therefore residual is energy received, but not yet shot
- which is zero, eventually

Applying Southwell iteration to radiosity

- Introduce a new variable:

$$
\mathbf{N}^{(n)}=\mathbf{B}^{(n)}+\mathbf{r}^{(n)}
$$

- Notice
- when iteration converges, $\mathrm{N}=\mathrm{B}$
- N is: current estimate of radiosity+unshot radiosity
- so N is a better rendering estimate than B
- N is easy to update
- need only a column of matrix
- use equations on following page
- small r=small $\mathrm{N}-\mathrm{B}$

Applying Southwell iteration to radiosity

$$
\begin{aligned}
\Delta B & =\frac{r_{i}^{(n)}}{\left(1-\Gamma_{i i}\right)} \\
B_{j}^{(n+1)} & = \begin{cases}B_{j}^{(n)}+\Delta B & \text { if } j=i \\
B_{j}^{(n)} & \text { if } j \neq i\end{cases} \\
r_{j}^{(n+1)} & = \begin{cases}0 & \text { if } j=1 \\
r_{j}^{(n)}-\Gamma_{j i} \Delta B & \text { otherwise }\end{cases} \\
N_{j}^{(n+1)} & = \begin{cases}B_{j}^{(n)}+\Delta B & \text { if } j=1 \\
B_{j}^{(n)}+r_{j}^{(n)}-\Gamma_{j i} \Delta B & \text { otherwise }\end{cases}
\end{aligned}
$$

Applying Southwell iteration to radiosity

$$
\begin{aligned}
\Delta B & =\frac{N_{i}^{(n)}-B_{i}^{(n)}}{\left(1-\Gamma_{i i}\right)} \\
B_{j}^{(n+1)} & = \begin{cases}B_{j}^{(n)}+\Delta B & \text { if } j=i \\
B_{j}^{(n)} & \text { if } j \neq i\end{cases} \\
N_{j}^{(n+1)} & = \begin{cases}B_{j}^{(n)}+\Delta B & \text { if } j=1 \\
N_{j}^{(n)}-\Gamma_{j i} \Delta B & \text { otherwise }\end{cases}
\end{aligned}
$$

And check N-B rather than r to choose i !

From Cohen, SIGGRAPH 88

Hierachical radiosity

- Radiosity similar to n-body problems
- gathering can be grouped
- Recall iteration

$$
\begin{gathered}
\mathbf{B}^{(0)}=\mathbf{E} \\
\mathbf{B}^{(n+1)}=\mathbf{E}+\Gamma \mathbf{B}^{(n)}
\end{gathered}
$$

- Can we make matrix multiplication more efficient?
- Gamma "gathers" old radiosity solution to each patch
- But distant patches contribute a near constant value
- so when we gather from distant patches, we should use a big receiver

Alternative meshes

Gathering from
distant patch in a corner

A mesh hierarchy

- Represent patch with big AND small elements
- big elements gather from distant
- small elements gather from nearby
- how do we know element is small enough
- check size
- check FF
- check radiosity*FF
- Rendering
- we need to know the radiosity at a point
- walk the point down hierarchy
- radiosity is radiosity of smallest element containing point

A mesh hierarchy

- Recall
- radiosity is power /unit area
- Procedure
- build initial mesh
- until (no fixing)
- until (converged)
- compute a term in neumann series by
- elements gather radiosity
- distribute across the hierarchy
- check whether mesh is fine enough

```
struct Quadnode {
    float
    float
    float
    float
    float
    struct Quadnode**
    struct Linknode*
};
struct Linknode {
    struct Quadnode* / ; /* gathering node */
    struct Quadnode* p; /* shooting node */
    float
    struct Linknode* next; /* next gathering link of node q*/
Fqp; /* form factor from q to p */
};
```

This is radiosity we have gathered, but haven't accounted for
$B_{g} ; \quad / *$ gathering radiosity $* /$ yet
$B_{s} ; \quad / *$ shooting radiosity */
$E ; \quad / *$ emission */ This is the radiosity of the element
float
float
struct Quadnode** struct Linknode* \};
struct Linknode \{
struct Quadnode*
struct Quadnode*
float
struct Linknode*
area;
ρ;
children;/* pointer to list of four children */
$L ; \quad \quad^{*}$ first gathering link of node */
q; /* gathering node */
/* shooting node */
/* form factor from q to p */
/* next gathering link of node $q^{* /}$

Figure 7.7: Ouadnode and Linknode data structures

HierarchicalRad(float $B F_{\epsilon}$)

\{
Quadnode $* p$, $* q$;
Link $* L$;
int Done $=$ FALSE;
for (all surfaces p) $p \rightarrow B_{s}=p \rightarrow E$;
for (each pair of surfaces p, q)
Refine $\left(p, q, B F_{\epsilon}\right) ; \quad$ Make the mesh hierarchy
while (not Done) \{
Done = TRUE;
SolveSystem(); /* as in Figure 7.9 */ Solve using mesh hierarchy
for (all links L)
/* RefineLink returns FALSE if any subdivision occurs */
if(RefineLink $\left(L, B F_{\epsilon}\right)==$ FALSE $)$
Done $=$ FALSE;
If there is evidence this hierarchy is not fine enough somewhere, refine and go again

```
Refine(Quadnode *p, Quadnode *q, float }\mp@subsup{F}{\epsilon}{}\mathrm{ )
{
```

 Quadnode which, \(r\);
 if (Oracle1 \(\left(p, q, F_{\epsilon}\right)\))
 Link \((p, q)\);
 else \{
 which \(=\operatorname{Subdiv}(p, q)\);
 if \((\) which \(==q\))
 for(each child node \(r\) of \(q\)) Refine (\(p, r, F_{\epsilon}\));
 else if (which \(==p\))
 for (each child node \(r\) of \(p\)) Refine \(\left(r, q, F_{\epsilon}\right)\);
 else
 \(\operatorname{Link}(p, q) ;\)
 Compute the form factor for p, q by casting
\} random rays (as above) then put it in the appropriate spot in datastructures

Figure 7.8: Refine pseudocode.

SolveSystem()

\{
Until Converged \{
for (all surfaces p) GatherRad(p);
Gather radiosity across link for (all surfaces p) PushPullRad ($p, 0.0$); \}

Adjust values in hierarchy so they're consistent

Figure 7.9: SolveSystem pseudocode.

Gathering radiosity

Gathering radiosity

Gathering radiosity


```
GatherRad( Quadnode \(* p\) )
\{
1 Quadnode \(* q\); Link \(* L\);
2
\(3 p \rightarrow B_{g}=0\);
4 for (each gathering link \(L\) of \(p\) )/* gather energy across link */
\(5 \quad p \rightarrow B_{g}+=p \rightarrow \rho^{*} L \rightarrow F_{p q} * L \rightarrow q \rightarrow B_{s}\);
6 for each child node \(r\) of \(p\)
7 GatherRad( \(r\) );
\}
                                    Notice that we gather from B_s into B_g
```

Figure 7.10: GatherRad pseudocode.

```
PushPullRad( Quadnode \(* p\), float \(B_{\text {down }}\) )
\{
1 float \(B_{u p}, B_{t m p}\);
2 if \((p \rightarrow\) children \(==N U L L) \quad / * \mathrm{p}\) is a leaf \(* /\)
\(3 \quad B_{u p}=p \rightarrow E+p \rightarrow B_{g}+B_{\text {down }}\);
4 else
5 \{ Radiosity is power/unit area
\(6 \quad B_{u p}=0\);
so parent adds to children,
    for (each child node \(r\) of \(p\) ) children add area weighted sum to parent
        \{
            \(B_{t m p}=\) PushPullRad \(\left(r, p \rightarrow B_{g}+B_{\text {down }}\right)\);
            \(B_{u p}+=B_{\text {tmp }} * \frac{r \rightarrow \text { area }}{p \rightarrow \text { area }}\)
        \}
    \}
    \(p \rightarrow B_{s}=B_{u p}\);
    return \(B_{u p}\);
```

Figure 7.11: PushPullRad pseudocode.
float Oracle1(Quadnode $* p$, Quadnode $* q$, float $F \epsilon$)
\{
if $\left(p \rightarrow\right.$ area $<A_{\epsilon}$ and $q \rightarrow$ area $<A_{\epsilon}$)
return(FALSE);
if (EstimateFormFactor $(p, q)<F \epsilon$)
return(FALSE);
else
return(TRUE);
\}

Figure 7.12: Oracle1 pseudocode.

```
int RefineLink(Linknode *L, float }B\mp@subsup{F}{\epsilon}{}\mathrm{ )
```

\{
int no_subdivision $=$ TRUE;
Quadnode* $p=L \rightarrow p ; \quad / *$ shooter */
Quadnode* $q=L \rightarrow q$; /* receiver */
if (Oracle2 $\left(L, B F_{\epsilon}\right)\{$
no_subdivision $=$ FALSE ;
which = Subdiv($p, q)$;
DeleteLink(L);
if (which $==q$)
for (each child node r of q) Link (p, r);
else
for (each child node r of p) Link (r, q);
\}
return(no_subdivision);
\}

Figure 7.15: RefineLink pseudocode.
float Oracle2(Linknode $* L$, float $B F_{\epsilon}$)
\{
1 Quadnode* $p=L \rightarrow p$; /* shooter */
2 Quadnode* $q=L \rightarrow q$; /* receiver */
if $\left(p \rightarrow\right.$ are $a<A_{\epsilon}$ and $q \rightarrow$ are $a<A_{\epsilon}$) return(FALSE);
if $\left(p \rightarrow B_{s}==0.0\right)$
return(FALSE);
if $\left(\left(p \rightarrow B_{s} * p \rightarrow\right.\right.$ Area $\left.\left.* L \rightarrow F_{p q}\right)<B F_{\epsilon}\right)$;
return(FALSE);
else 10 return(TRUE);

Figure 7.16: Oracle2 pseudocode.

BIF links, from Hanrahan et al, 91

