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SVD in information retrieval

• Recall: D is word by document table
• Take an SVD of D to get
• cols of U are an orthogonal basis for the cols of D
• cols of V are an orthogonal basis for the rows of D (notice V^T!)
• Sigma is diagonal; sort the diagonal to get largest at top
• Notice
• cols of U span word count vectors (cols of D)
• cols of U corresponding to big singular values are common types of 

word count
• cols of U corresponding to small singular values are uncommon types 

of word count



The SVD

• Important notions:
• there are good algorithms (efficient, accurate, etc.)
• column rank of a matrix = number of linearly independent columns
• row rank of a matrix = number of linearly independent rows

• Approximation:
• start with 
• write              for  matrix obtained by taking       and setting all but the k 

largest singular values to zero
• the matrix                                        is the best  approximation to D with col 

rank (row rank) k

Σk Σ

Dk = UΣkVT

D = UΣVT



The SVD

• Important trick:
• assume we know that D should have rank k
• we measure D; the measured D will generally have higher rank (noise)
• Best estimate of D is then D_k from SVD, previous page

• Variant:
• assume we know that D factors
• into (tall+thin) x (short+fat)
• with known dimensions, hence known rank
• we measure D;  the measured D will generally have higher rank (noise)
• Best estimate of D is then D_k from SVD, previous page
• get the factors from SVD



Latent Semantic Analysis - II

• (we used SVD to smooth word counts)
• Recall: SVD of D is
• Strategy for smoothing word counts:
• take word count vector c
• expand on some of U’s cols corresponding to large singular values
• yields new, smoothed count vector
• eg if many “elephant” documents contain “pachyderm”, then smoothed 

“pachyderm” count will be non-zero for all elephant documents.

• Obtain a smoothed word document matrix hat(D) like this



Recommender systems: SVD as clustering

• Assume we have a (movie x viewer) table of scores
• large number=liked it
• small number = didn’t like
• for the moment, assume all entries are known

• Viewer model
• there are “types” of viewer
• i.e. columns tend to be repeated
• eg likes horror films vs likes romances
• viewers could be a “mixture” of types
• eg likes scary romances (?)
• suggests that column rank may be low



Recommender systems - II

• Assume we have a (movie x viewer) table of scores
• large number=liked it
• small number = didn’t like
• for the moment, assume all entries are known

• Movie model
• there are “types” of movie
• i.e. rows tend to be repeated
• eg appeals to people who like horror films vs appeals to people who 

like romances
• viewers could be a “mixture” of types
• eg appeals to people who like scary romances (?)
• suggests that row rank may be low 
• (which is good, cause it should be the same as column rank)



Recommender systems: - III

• If we knew all the entries, and the rank, SVD yields
• viewer types (or, at least, a basis)
• movie types (or, at least, a basis)

• don’t know rank - > search
• BUT
• we don’t know all the entries
• NETFLIX prize - predict the missing entries in this table
• because that allows you to suggest movies to viewers



Factors and the SVD

• Assume the true matrix M has the property
• where T is (tall+thin), S is (short+fat)
• inner dimension known, k, so rank of M is k

• We observe D
• rank is usually much higher
• SVD guarantees that D_k is the closest rank k matrix to D

• Factors
• we can estimate S and T from SVD, but not uniquely

M = T S



Recommender systems and Factors

• Write D for the data matrix, W for a mask matrix
• W_ij=0 if that entry of D is unknown, =1 if it is known

• Strategy:
• choose S, T to minimize

• now multiply these S, T - the result is the whole of D
• i.e. holes are filled in
• we expect this to work even if D has many holes in it because
• there are few parameters in S, T
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Recommender systems and Factors

• How to minimize?  set the gradient to zero

• gradient with respect to T_uv is

• gradient with respect to S_uv is
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Recommender systems and Factors

• We have two linear systems
• one in S, one in T
• can solve by matrix methods
• reshape into vectors
• write A(T) S=b,  C(S) T=d for the systems

• Strategy:  
• chose S^(0), T^(0)
• iterate
• A(T^(n-1)) S^(n)=b
• C(S^(n))T^(n)=d
• possibly changing order
• this tends to converge



Camera and structure from motion

• Assume:
• a moving camera views a static scene
• the camera is orthographic (explanation coming)

• Can get:
• the positions of all points in the scene
• the configuration of each camera

• Applications
• Reconstruction:  Build a 3D model out of the reconstructed points
• Mapping:  Use the camera information to figure out where you went 

(robotics)
• Object insertion:  Render a 3D model using the cameras, then composite 

the videos
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Rendering and compositing

• Rendering:
• take camera model, object model, lighting model, make a picture
• very highly developed and well understood subject
• many renderers available; tend to take a lot of skill to use (Luxrender)

• Compositing:
• place two images on top of one another
• new picture using some pixels from one, some from the other
• example:
• green screening 
• take non-green pixels from background, non-bg pixels from top







Orthographic cameras

• Standard model of a camera
• Imagine a film plane on the x-y plane
• Point (x, y, z) makes a mark at (s x, s y)
• here s is a scale (eg pixels/meter)

• What about a camera in general position?
• the camera film plane has 
• two axes, u and v
• an origin, at (tx, ty)
• they are at right angles
• they are the same length
• point in 3D is 
• equation:

(x, y, z) = x

x → (u · x+ tx,v · x+ ty)



Simplify

• Place the 3D origin at center of gravity of points
• ie mean of x over all points is zero, mean of y is zero, mean of z is zero

• Camera origin at center of gravity of image points
• we see all of them, so we can compute this
• this is the projection of 3D center of gravity

• Now camera becomes

• Index for points, views

xj → (ui · xj ,vi · xj)

x → (u · x,v · x)



Multiple views

• More notation:
• write          for the first (x) coordinate of the i’th picture of the j’th point
• write          for the second (y) coordinate of the i’th picture of the j’th point

• We had:
• Rewrite:

yi,j

xi,j

xj → (ui · xj ,vi · xj)
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Multiple views

D = VX
Data - observed!
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Multiple views

• The data matrix has rank 3!
• so we can factor it into an mx3 factor and a 3xn factor
• (tall+thin)x(short+fat)
• so we know what to do; SVD -> factors

• These factors are not unique
• assume A is 3x3 with rank 3, we get symmetry below

D = T S = (T A)(A−1S)



Camera and reconstruction

• Can choose factors uniquely
• recall v_i, u_i are
• at right angles
• same length

• Algorithm
• form D
• factor
• now choose A so that v_i, u_i are at right angles, same length
• by numerical optimization

• What if there are missing points?
• no problems, dealt with this already



Software

• Look up the Voodoo camera tracker

http://www.digilab.uni-hannover.de/docs/manual.html



Summary

• Getting (tall+thin)x(short+fat) factors of a matrix is easy
• and quite accurate
• can do it without knowing all the matrix

• Numerous problems take this form
• It’s (rather loosely) a form of clustering




