Recommender systems and Structure from Motion Or Neat tricks with SVD's

D.A. Forsyth

SVD in information retrieval

- Recall: D is word by document table
- Take an SVD of D to get

$$
\mathcal{D}=\mathcal{U} \Sigma \mathcal{V}^{T}
$$

- cols of U are an orthogonal basis for the cols of D
- cols of V are an orthogonal basis for the rows of D (notice $\mathrm{V}^{\wedge} \mathrm{T}$!)
- Sigma is diagonal; sort the diagonal to get largest at top
- Notice
- cols of U span word count vectors (cols of D)
- cols of U corresponding to big singular values are common types of word count
- cols of U corresponding to small singular values are uncommon types of word count

The SVD

- Important notions:
- there are good algorithms (efficient, accurate, etc.)
- column rank of a matrix = number of linearly independent columns
- row rank of a matrix = number of linearly independent rows
- Approximation:
- start with $\mathcal{D}=\mathcal{U} \Sigma \mathcal{V}^{T}$
- write Σ_{k} for matrix obtained by taking \sum and setting all but the k largest singular values to zero
- the matrix $\mathcal{D}_{k}=\mathcal{U} \Sigma_{k} \mathcal{V}^{T}$ is the best approximation to D with col rank (row rank) k

The SVD

- Important trick:
- assume we know that D should have rank k
- we measure D ; the measured D will generally have higher rank (noise)
- Best estimate of D is then D_k from SVD, previous page
- Variant:
- assume we know that D factors
- into (tall+thin) x (short+fat)
- with known dimensions, hence known rank
- we measure D ; the measured D will generally have higher rank (noise)
- Best estimate of D is then $\mathrm{D} _\mathrm{k}$ from SVD, previous page
- get the factors from SVD

Latent Semantic Analysis - II

- (we used SVD to smooth word counts)
- Recall: SVD of D is
$\mathcal{D}=\mathcal{U} \Sigma \mathcal{V}^{T}$
- Strategy for smoothing word counts:
- take word count vector c
- expand on some of U's cols corresponding to large singular values
- yields new, smoothed count vector
- eg if many "elephant" documents contain "pachyderm", then smoothed "pachyderm" count will be non-zero for all elephant documents.
- Obtain a smoothed word document matrix hat(D) like this

Write \mathcal{U}_{k} for the matrix consisting of the first k columns of $\mathcal{U}, \mathcal{V}_{k}$ for the matrix consisting of the first k columns of \mathcal{V}, Σ_{k} for Σ with all but the k largest singular values set to be zero, and write $\hat{\mathcal{D}}=\mathcal{U}_{k} \Sigma_{k} \mathcal{V}_{k}^{T}$.

Recommender systems: SVD as clustering

- Assume we have a (movie x viewer) table of scores
- large number=liked it
- small number $=$ didn't like
- for the moment, assume all entries are known
- Viewer model
- there are "types" of viewer
- i.e. columns tend to be repeated
- eg likes horror films vs likes romances
- viewers could be a "mixture" of types
- eg likes scary romances (?)
- suggests that column rank may be low

Recommender systems - II

- Assume we have a (movie x viewer) table of scores
- large number=liked it
- small number = didn't like
- for the moment, assume all entries are known
- Movie model
- there are "types" of movie
- i.e. rows tend to be repeated
- eg appeals to people who like horror films vs appeals to people who like romances
- viewers could be a "mixture" of types
- eg appeals to people who like scary romances (?)
- suggests that row rank may be low
- (which is good, cause it should be the same as column rank)

Recommender systems: - III

- If we knew all the entries, and the rank, SVD yields
- viewer types (or, at least, a basis)
- movie types (or, at least, a basis)
- don't know rank -> search
- BUT
- we don't know all the entries
- NETFLIX prize - predict the missing entries in this table
- because that allows you to suggest movies to viewers

Factors and the SVD

- Assume the true matrix M has the property

$$
\mathcal{M}=\mathcal{T S}
$$

- where T is (tall+thin), S is (short+fat)
- inner dimension known, k , so rank of M is k
- We observe D
- rank is usually much higher
- SVD guarantees that D_k is the closest rank k matrix to D
- Factors
- we can estimate S and T from SVD , but not uniquely

Recommender systems and Factors

- Write D for the data matrix, W for a mask matrix
- W_ij=0 if that entry of D is unknown, $=1$ if it is known
- Strategy:
- choose S, T to minimize

$$
\sum_{i, j} W_{i j}\left(D_{i j}-\sum_{k} T_{i k} S_{k j}\right)^{2}
$$

- now multiply these S, T - the result is the whole of D
- i.e. holes are filled in
- we expect this to work even if D has many holes in it because
- there are few parameters in S, T

Recommender systems and Factors

- How to minimize? set the gradient to zero
- gradient with respect to T_uv is

$$
2 \sum_{j} W_{u j}\left(D_{u j}-\sum_{k} T_{u k} S_{k j}\right) S_{v j}
$$

- gradient with respect to $S _u v$ is

$$
2 \sum_{i} W_{i v}\left(D_{i v}-\sum_{k} T_{i k} S_{k v}\right) T_{i u}
$$

Recommender systems and Factors

- We have two linear systems
- one in S, one in T
- can solve by matrix methods
- reshape into vectors
- write $A(T) S=b, C(S) T=d$ for the systems
- Strategy:
- chose $S^{\wedge}(0), T^{\wedge}(0)$
- iterate
- $\mathrm{A}\left(\mathrm{T}^{\wedge}(\mathrm{n}-1)\right) \mathrm{S}^{\wedge}(\mathrm{n})=\mathrm{b}$
- $C\left(S^{\wedge}(n)\right) T^{\wedge}(n)=d$
- possibly changing order
- this tends to converge

Camera and structure from motion

- Assume:
- a moving camera views a static scene
- the camera is orthographic (explanation coming)
- Can get:
- the positions of all points in the scene
- the configuration of each camera
- Applications
- Reconstruction: Build a 3D model out of the reconstructed points
- Mapping: Use the camera information to figure out where you went (robotics)
- Object insertion: Render a 3D model using the cameras, then composite the videos

M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch, Visual modeling with a hand-held camera, International Journal of Computer Vision 59(3), 207-232, 2004

Rendering and compositing

- Rendering:
- take camera model, object model, lighting model, make a picture
- very highly developed and well understood subject
- many renderers available; tend to take a lot of skill to use (Luxrender)
- Compositing:
- place two images on top of one another
- new picture using some pixels from one, some from the other
- example:
- green screening
- take non-green pixels from background, non-bg pixels from top

Orthographic cameras

- Standard model of a camera
- Imagine a film plane on the x-y plane
- Point (x, y, z) makes a mark at ($s x, s y$)
- here s is a scale (eg pixels/meter)
- What about a camera in general position?
- the camera film plane has
- two axes, u and v
- an origin, at (tx, ty)
- they are at right angles
- they are the same length
- point in 3D is $\quad(x, y, z)=\mathbf{x}$
- equation:

$$
\mathbf{x} \rightarrow\left(\mathbf{u} \cdot \mathbf{x}+t_{x}, \mathbf{v} \cdot \mathbf{x}+t_{y}\right)
$$

Simplify

- Place the 3D origin at center of gravity of points
- ie mean of x over all points is zero, mean of y is zero, mean of z is zero
- Camera origin at center of gravity of image points
- we see all of them, so we can compute this
- this is the projection of 3D center of gravity
- Now camera becomes

$$
\mathbf{x} \rightarrow(\mathbf{u} \cdot \mathbf{x}, \mathbf{v} \cdot \mathbf{x})
$$

- Index for points, views

$$
\mathbf{x}_{j} \rightarrow\left(\mathbf{u}_{i} \cdot \mathbf{x}_{j}, \mathbf{v}_{i} \cdot \mathbf{x}_{j}\right)
$$

Multiple views

- More notation:
- write $x_{i, j}$ for the first (x) coordinate of the i 'th picture of the j 'th point
- write $y_{i, j}$ for the second (y) coordinate of the i^{\prime} th picture of the j 'th point
- We had:

$$
\mathbf{x}_{j} \rightarrow\left(\mathbf{u}_{i} \cdot \mathbf{x}_{j}, \mathbf{v}_{i} \cdot \mathbf{x}_{j}\right)
$$

- Rewrite:

$$
\binom{x_{i, j}}{y_{i, j}}=\binom{\mathbf{u}_{i}^{T}}{\mathbf{v}_{i}^{T}} \mathbf{x}_{j}
$$

Multiple views

$\left(\begin{array}{cccc}x_{1,1} & x_{1,2} & \ldots & x_{1, n} \\ x_{2,1} & x_{2,2} & \ldots & x_{2, n} \\ \ldots & & & \\ y_{m, 1} & y_{m, 2} & \ldots & y_{m, n} \\ y_{1,1} & y_{1,2} & \ldots & y_{1, n} \\ y_{2,1} & y_{2,2} & \ldots & y_{2, n} \\ \ldots & & & \\ y_{m, 1} & y_{m, 2} & \ldots & y_{m, n}\end{array}\right)=\left(\begin{array}{c}\mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \ldots \\ \mathbf{u}_{m}^{T} \\ \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \ldots \\ \mathbf{v}_{m}^{T}\end{array}\right)\left(\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n}\end{array}\right)$
Data - observed!

Multiple views

- The data matrix has rank 3!
- so we can factor it into an mx3 factor and a $3 \times n$ factor
- (tall+thin)x(short+fat)
- so we know what to do; SVD -> factors
- These factors are not unique
- assume A is 3×3 with rank 3 , we get symmetry below

$$
\mathcal{D}=\mathcal{T} \mathcal{S}=(\mathcal{T A})\left(\mathcal{A}^{-1} \mathcal{S}\right)
$$

Camera and reconstruction

- Can choose factors uniquely
- recall v_i, u_i are
- at right angles
- same length
- Algorithm
- form D
- factor
- now choose A so that $\mathrm{v} _i, u_{-} \mathrm{i}$ are at right angles, same length - by numerical optimization
- What if there are missing points?
- no problems, dealt with this already

Software

- Look up the Voodoo camera tracker
http://www.digilab.uni-hannover.de/docs/manual.html

Summary

- Getting (tall+thin)x(short+fat) factors of a matrix is easy
- and quite accurate
- can do it without knowing all the matrix
- Numerous problems take this form
- It's (rather loosely) a form of clustering

