
Image features:
Histograms, Aliasing,

Filters, Orientation
and HOG

D.A. Forsyth

Simple color features

• Histogram of image colors in a window
• Opponent color representations
• R-G
• B-Y=B-(R+G)/2
• Intensity=(R+G+B)/3

• Percentage of blue pixels
• Blue pixel map

Matlab slide

Scaled representations

• Represent one image with many different resolutions
• Why?

• find bigger, smaller swimming pools

Carelessness causes aliasing

Obtained pyramid of images by subsampling

Matlab slide: subsampling

Aliasing and fast changing signals

More aliasing examples

• Undersampled sine wave ->

• Color shimmering on striped shirts on TV
• Wheels going backwards in movies
• temporal aliasing

Another aliasing example

• location of a
sharp
change is
known
poorly

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fundamental facts

• A sine wave will alias if sampled less often than twice per
period

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Fundamental facts

• Sample(A+B)=Sample(A)+Sample(B)
• if a signal contains a high frequency sine wave, it will alias

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Weapons against aliasing

• Filtering
• or smoothing
• take the signal, reduce the fast-changing/high-frequency content
• can do this by weighted local averaging

Prefiltering (Ideal case)

Continuous
Image

Sampling Continuous
Image

Discrete
Samples Reconstruction

p p
Reconstruction

Kernel

1 1

Sampling
Function

Filter

Smoothing by Averaging

Nij =
1
N

ΣuvOi+u,j+v

where u, v, is a window of N pixels in total centered at 0, 0

• A Gaussian gives a good
model of a fuzzy blob

Smoothing with a Gaussian

• Notice “ringing”
• apparently, a grid is

superimposed

• Smoothing with an average
actually doesn’t compare at
all well with a defocussed
lens
• what does a point of light

produce?

Gaussian filter kernel

Kuv =
�

1
2πσ2

�
exp

�
−

�
u2 + v2

�

2σ2

�

We’re assuming the index can take negative values

Nij =
�

uv

Oi−u,j−vKuv Notice the curious looking form

Smoothing with a Gaussian

Matlab slide: convolution in 2D

Linear Filters

• Example: smoothing by averaging
• form the average of pixels in a neighbourhood

• Example: smoothing with a Gaussian
• form a weighted average of pixels in a neighbourhood

• Example: finding a derivative
• form a weighted average of pixels in a neighbourhood

Finding derivatives

Nij =
1

∆x
(Ii+1,j − Iij)

• Each of these involves a weighted sum of image pixels
• The set of weights is the same
• we represent these weights as an image, H
• H is usually called the kernel

• Operation is called convolution
• it’s associative

• Any linear shift-invariant operation can be represented by
convolution
• linear: G(k f)=k G(f)
• shift invariant: G(Shift(f))=Shift(G(f))
• Examples:
• smoothing, differentiation, camera with a reasonable, defocussed lens

system

Convolution

Nij =
�

uv

HuvOi−u,j−v

Filters are templates

• At one point
• output of convolution is a (strange) dot-product

• Filtering the image involves a dot product at each point
• Insight
• filters look like the effects they are intended to find
• filters find effects they look like

Nij =
�

uv

HuvOi−u,j−v

Smoothing reduces noise

• Generally expect pixels to “be like” their neighbours
• surfaces turn slowly
• relatively few reflectance changes

• Expect noise to be independent from pixel to pixel
• Implies that smoothing suppresses noise, for appropriate noise models

• Scale
• the parameter in the symmetric Gaussian
• as this parameter goes up, more pixels are involved in the average
• and the image gets more blurred
• and noise is more effectively suppressed

Kuv =
�

1
2πσ2

�
exp

�
−

�
u2 + v2

�

2σ2

�

Representing image changes: Edges

• Idea:
• points where image value change very sharply are important

• changes in surface reflectance
• shadow boundaries
• outlines

• Finding Edges:
• Estimate gradient magnitude using appropriate smoothing
• Mark points where gradient magnitude is

• Locally biggest and
• big

Matlab slide: gradients

Matlab slide: smoothed gradients

1 pixel 3 pixels 7 pixels

Scale affects derivatives

Scale affects gradient magnitude

Smoothing and Differentiation

• Issue: noise
• smooth before differentiation
• two convolutions to smooth, then differentiate?
• actually, no - we can use a derivative of Gaussian filter

Matlab slide: orientations and arrow plots

Matlab slide: rose plots

Hog features

• Take a window
• subdivide into boxes, each with multiple pixels
• these might overlap

• for each box, build a histogram of gradient orientations
• possibly weighting by distance from center
• possibly normalizing by intensity over the box

• string these histograms together to a vector

• Extremely strong at spatial coding

Vlfeat pointer

Image HOG features Positive terms
in linear classifier

Negative terms
in linear classifier

