

CS-543, D.A. Forsyth

Cameras

- First photograph due to Niepce
- First on record, 1822
- Key abstraction
 - Pinhole camera

Pinhole camera

Freestanding room-sized <u>camera obscura</u> outside Hanes Art Center at the <u>University of North</u> <u>Carolina at Chapel Hill</u>. Picture taken by <u>User:Seth Ilys</u> on 23 April 2005 and released into the public domain.

A photo of the Camera Obscura in San Francisco. This Camera Obscura is located at the Cliff House on the Pacific ocean. Credit to Jacob Appelbaum of <u>http://www.appelbaum.net</u>.

Distant objects are smaller in a pinhole camera

Parallel lines meet in a pinhole camera

Vanishing points

- Each set of parallel lines meets at a different point
 - The vanishing point for this direction
- Coplanar sets of parallel lines have a horizon
 - The vanishing points lie on a line
 - Good way to spot faked images

Railroad tracks "vanishing" into the distance Source own work 2006-05-23 Author

User:MikKBDFJKGeMalak

Camera obscura - aus einer franz. "Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers" von 1772

Public Domain

Projection in Coordinates

- From the drawing, we have X/Z = -x/f
- Generally

Homogeneous coordinates

- Add an extra coordinate and use an equivalence relation
- for 2D
 - three coordinates for point
 - equivalence relation
 k*(X,Y,Z) is the same as (X,Y,Z)
- for 3D
 - four coordinates for point
 - equivalence relation
 k*(X,Y,Z,T) is the same as (X,Y,Z,T)
- Canonical representation
 - by dividing by one coordinate (if it isn't zero).

Homogeneous coordinates

• Why?

- Possible to represent points "at infinity"
- Where parallel lines intersect (vanishing points)
- Where parallel planes intersect (horizons)
- Possible to write the action of a perspective camera as a matrix

A perspective camera as a matrix

- Turn previous expression into HC's
 - HC's for 3D point are (X,Y,Z,T)
 - HC's for point in image are (U,V,W)

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

A general perspective camera - I

• Can place a perspective camera at the origin, then rotate and translate coordinate system

 $\mathcal{C}\mathcal{E}$

• In homogeneous coordinates, rotation, translation are:

$$\mathcal{E} = \left(egin{array}{cc} \mathcal{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{array}
ight)$$

• So rotated, translated camera is:

A general perspective camera - II

• In the camera plane, there can be a change of coordinates

- choice of origin
 - there is a "natural" origin --- the camera center
 - where the perpendicular passing through the focal point hits the image plane
- rotation
- pixels may not be square
- scale

• Camera becomes

Intrinsics - typically come with the camera

Extrinsics - change when you move around

What are the transforms?

Camera Calibration

• Issues:

- what is the camera matrix? (including intrinsic and extrinsic)
- what are intrinsic parameters of the camera?
- General strategy:
 - view calibration object
 - identify image points
 - obtain camera matrix by minimizing error
 - obtain intrinsic parameters from camera matrix

• Error minimization:

- Linear least squares
 - easy problem numerically, solution can be rather bad
- Minimize image distance
 - more difficult numerical problem, solution is better

Problem: Vanishing points

- Lines in world coordinates: $\mathbf{u} + t\mathbf{v}$
- Camera: \mathcal{MCE}
- Vanishing point in camera coordinates?

Weak perspective

• Issue

- perspective effects, but not over the scale of individual objects
 - For example, texture elements in picture below
- collect points into a group at about the same depth, then divide each point by the depth of its group
- Adv: easy, useful when depth range is small
- Disadv: wrong when depth range is large

Orthographic projection

- Perspective effects are often not significant
 - eg
 - pictures of people
 - all objects at the same distance

Orthographic projection in HC's

• In conventional coordinates, we just drop z

• In Homogeneous coordinates, can write a matrix

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

Calibration and orthographic cameras

- Some parameters can't be estimated
 - translation of camera perpendicular to image plane
- Intrinsics slightly different:
 - no "natural" origin in the image plane

Pinhole Problems

Pinhole too big: brighter, but blurred

2 mm

1 mm

0.6mm

0.35 mm

Pinhole right size: crisp, but dark

0.15 mm

0.07 mm

Lens Systems

• Collect light from a large range of directions

Lens Systems

• Collect light from a large range of directions

A lens model - the thin lens

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

Lens Problems

• Chromatic aberration

- Light at different wavelengths follows different paths; hence, some wavelengths are defocussed
- Machines: coat the lens
- Humans: live with it
- Scattering at the lens surface
 - Some light entering the lens system is reflected off each surface it encounters (Fresnel's law gives details)
 - Machines: coat the lens, interior
 - Humans: live with it (various scattering phenomena are visible in the human eye)
- Geometric phenomena (Barrel distortion, etc.)

Lens Problems - Spherical Aberration

Lens Systems

Vignetting

Geometric properties of projection

- Points -> points
- Lines -> lines
- Polyhedra -> polyhedra
- Degeneracies
 - line through focal point (pinhole) -> point
 - plane through focal point (pinhole) -> line
- Curved surfaces are complicated

Polyhedra project to polygons

because lines project to lines, etc

Junctions are constrained

- Which leads to a process called line labelling
 - look for consistent junction, edge labels
 - BUT can't get real lines, junctions from real images

Curved surfaces are more interesting

• Outline

- set of points where view direction is tangent to surface
- projection of a space curve which varies from view to view of a surface

Panagis Alexatos, by Jim Childs