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Registration

Computing a transformation that aligns an image or a depth map or a set
of images with another such is generally known as registration. One approach to
registration is to abstract the image (etc.) as a set of points, often referred to as
point clouds. Generally, we will write P for a point cloud whose i’th point is pi and
so on. Now assume we have two point clouds, X and Y. Each is obtained by starting
with a set of reference points, dropping some of them at random, transforming the
remaining points, then adding noise to the points and also including some pure noise
points. This is a reasonable model of what a depth camera or a LIDAR sensor might
produce when it views an object. The model means that there is transformation
that maps from one to the other, though it may not place every point in one on
top of some point in the other. We want to determine the transformation between
the two point clouds.

12.1 PRELIMINARIES

Registration occurs in a wide range of practical applications. As we shall see,
calibrating a camera involves solving a version of this problem (Section 35.2). De-
termining where you are in a known map very often involves solving a version of
this problem. Imagine, for example, a camera looking directly downwards from an
aircraft flying at fixed height. The image in the camera translates and rotates as
the aircraft moves. If we can compute the transformation from image i to image
i+ 1, we can tell how the aircraft has moved. Another useful case occurs when we
have a depth map of a known object and want to compute the pose of the object
(its position and orientation in the frame of the depth sensor). We could do so
by reducing the object model to a point cloud, then computing the transformation
from the object model to the point cloud from the depth sensor.

How one approaches this class of problem depends on three important factors.

• Correspondence: if it is known which observation corresponds to which
reference point, the problem is relatively straightforward to solve (unless there
are unusual noise effects). If correspondence is not known, computing the
transformation becomes rather harder.

• Transformation: there are closed form solutions for known correspondence
and some kinds of transformation. When a closed form solution is known, you
should use it. In other cases, we are forced to use some kind of optimization
procedure.

• Robustness: computing a transformation can become very hard if many of
the observations do not come from reference points, if many of the reference
points are dropped, or if some observations are subject to very large noise
effects.
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12.1.1 Types of Transformation

Generally, we are going to transform points in Y to lie on X . These points could
be in either 3D or in 2D (or others – very little of what we will do depends on
dimension). We will consider a variety of types of affine transformation and of
projective transformations.

Affine transformations transform y to x =My+t, whereM has non-zero
determinant. Some kinds of affine transform have specialized names:

• Translation: whenM is the identity.

• Rotation: when t = 0; MTM is the identity andM has positive determi-
nant.

• Homogenous scaling: whenM is σ times the identity, and σ ̸= 0.

• Scaling: whenM is diagonal.

• Euclidean or rigid body: whenMTM is the identity andM has positive
determinant.

Projective transformations are a new class. We will see much more of the
geometry underlying projective transformations later. A projective transformation
in N dimensions is given by an N +1×N +1 dimensional matrix P with non-zero
determinant. There are a number of different ways of representing the effect of a
projective transformation. For now, we will write an N D projective transformation
as (

M v
mT

N+1 vN+1

)
=


mT

1 v1
. . .
mT

N vN
mT
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whereM is N ×N , and the vectors are N × 1. This transformation takes y to

x =
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mT
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mT
2 y+m2
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mT

Ny+mN

mT
N+1y+mN+1

 .

Notice that there could be a divide by zero issue here. For the moment, we will
ignore this and assume it never happens. In fact, a great deal of interesting geometry
follows from paying attention to this issue, as we shall see in Chapter 35.2.

Notice that every affine transformation is a projective transformation (set
mN = 0 and mN+1,N+1 = 1). As we shall see, a projective transformation from 2D
to 2D is a model of what happens when a plane is viewed in a camera; this model
is sometimes referred to as a homography.
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12.1.2 Correspondence

In the simplest case, correspondences are known (i.e. we know which point in Y
comes from which point in X ). This case occurs in applications.

Image registration consists of finding a transformation that places a part
of one image A on top of part of an image B. We did the simplest cases in Chap-
ter ??), but we now have more sophisticated tools. We could register images by
finding interest points, computing local coordinate systems and descriptors, then
matching interest points in A to those in B. The descriptor is a vector, and we
have constructed the descriptor to have two important properties: the descriptor for
the same interest point in different images should be similar; and different interest
points should have different descriptors. We could then match by finding nearest
neighbors. In particular, for each interest point in A (write the feature vector of
the i’th as ai), find the interest point in B whose feature vector is most similar.
Assume that this is the j’th point in B, so that (ai −bj)

T (ai −bj) is smaller than
(ai − bk)

T (ai − bk) for k ̸= j. Now check the matching is symmetric – if bj is
closest to ai in B, then ai should be the closest to bj in A. Now look at pairs where
the matching is symmetric and the distance between matched feature vectors is
small – these are likely to be corresponding points if the distance threshold is small
enough.

Localization and mapping by registration is common in robotics. A
beacon is an object that identifies itself (perhaps by wearing a barcode; by trans-
mitting some code; by a characteristic pattern) and can be localized. Place beacons
at various points in an environment, and record where those beacons are in a map.
Now a robot observes those beacons, but in its own coordinate system because
its sensors are attached to it. If this robot can compute the transformation that
registers its observations to the map, it knows where it is. In fact, the robot can
do more. Assume you lose the map, or fail to record beacon locations. If the robot
explores and sees enough beacons in each observation, it can register the beacons
to one another. Once it has done so, it has a map, and can now register itself to
that map (and so determine where it is within that map).

12.2 REGISTRATION WITH KNOWN CORRESPONDENCE AND GAUSSIAN NOISE

12.2.1 Affine Transformations and Gaussian Noise

In the simplest case, the correspondence is known – perhaps Y consists of beacons
and X of observations – and the only noise is Gaussian (so N = M). We will
assume the noise is isotropic, which is by far the most usual case. Once you have
followed this derivation, you will find it easy to incorporate a known covariance
matrix. We have

xi =Myi + t+ ξi (12.1)

where ξi is the value of a normal random variable with mean 0 and covariance matrix
Σ = σ2I. A natural procedure to estimateM and t is to maximize the likelihood
of the noise. Because it will be useful later, we assume that there is a weight wi for
each pair, so the negative log-likelihood we must minimize is proportional to∑

i

wi (xi −Myi − t)
T
(xi −Myi − t) (12.2)
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(the constant of proportionality is σ2, which doesn’t affect the optimization prob-
lem). The gradient of this cost with respect to t is

−2
∑
i

wi (xi −Myi − t) (12.3)

which vanishes at the solution. In turn, if
∑

i wixi =
∑

i wiMyi, t = 0. One
straightforward way to achieve this is to ensure that both the observations and the
reference points have a center of gravity at the origins. Write

cx =

∑
i wixi∑
i wi

(12.4)

for the center of gravity of the observations (etc.) Now form

ui = xi − cx and vi = yi − cy (12.5)

and if we use U and V, then the translation will be zero. In turn, the translation
from the original reference points to the original observations is cx − cy.

We obtainM by minimizing∑
i

wi (ui −Mvi)
T
(ui −Mvi) . (12.6)

Now write W = diag ([w1, . . . , wN ]), U = [u1, . . . ,uN ] (and so on). You should
check that the objective can be rewritten as

Tr
(
(U −MV)TW(U −MV)

)
. (12.7)

Now the trace is linear; UTU is constant; and Tr (ABC) = Tr (BCA) = Tr (CAB)
(check this by writing it out, and remember it; it’s occasionally useful; more in
Section 35.2). This means the cost is equivalent to

Tr
(
−2MVWUT +MTMVWVT

)
(12.8)

which will be minimized when

MVWVT = VWUT (12.9)

(which you should check). Many readers will recognize a least squares solution here.
The trace isn’t necessary here, but it’s helpful to see an example using the trace,
because it will be important in the next case.

12.2.2 Euclidean Motion and Gaussian Noise

One encounters affine transformations relatively seldom in practice, though they
do occur. Much more interesting is the case where the transformation is Euclidean.
The least squares solution above isn’t good enough, because theM obtained that
way won’t be a rotation matrix. But we can obtain a least squares solution with a
rotation matrix, using a neat trick. We adopt the notation of the previous section,
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and change coordinates from xi to ui as above to remove the need to estimate
translation.

We must choose R to minimize

∑
i

wi(ui −Rvi)
T (ui −Rvi). (12.10)

This can be done in closed form (a fact you should memorize). Equivalently, we
must minimize

∑
i

wi(ui −Rvi)
T (ui −Rvi) = Tr

(
W(U −RV)(U −RV)T

)
= Tr

(
−2UWVTRT

)
+K

(because RTR = I)
= −2Tr

(
RUWVT

)

Now we compute an SVD of UVT to obtain UWVT = ASBT (where A, B are
orthonormal, and S is diagonal – Section 35.2 if you’re not sure). Now BTRA is
orthonormal, and we must maximize Tr

(
BTRAS

)
, meaning BTRA = I (check this

if you’re not certain), and so R = BAT .
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Procedure: 12.1 Weighted Least Squares for Euclidean Transformations

We have N reference points xi whose location is measured in the agent’s
coordinate system. Each corresponds to a point in the world coordinate
system with known coordinates yi, and the change of coordinates is a
Euclidean transformation (rotation R, translation t). For each (xi,yi)
pair, we have a weight wi. We wish to minimize∑

i

wi(xi −Ryi − t)T (xi −Ryi − t) (12.11)

Write

cx =

∑
i wixi∑
i wi

cy =

∑
i wiyi∑
i wi

ui = xi − cx

vi = yi − cy

Then the least squares estimate t̂ of t is

t̂ = cx − cy (12.12)

Write U = [u1,u2, . . . ,uN ] (etc); W = diag(w1, . . . , wN ); and
SVD(USV) = AΣBT . The least squares estimate R̂ is

R̂ = BAT (12.13)

12.2.3 Homographies and Gaussian Noise

We now work with points on the plane, and allow the transformation to be a
homography. Solving for a homography requires solving an optimization problem,
but estimating a homography from data is useful, and relatively easy to do. We
can’t recover the translation component from centers of gravity (exercises TODO:
homography exercise ). Write mij for the i, j’th element of matrix M. In affine
coordinates, a homographyM will map yi = (yi,x, yi,y) to xi = (xi,x, xi,y) where

xi,x =
m11yi,x +m12yi,y +m13

m31yi,x +m32yi,y +m33
and xi,y =

m21yi,x +m22yi,y +m23

m31yi,x +m32yi,y +m33
(12.14)

Write M(y) for the result of applying the homography to y as above. In most
cases of interest, the coordinates of the points are not measured precisely, so we
observe xi = M(yi) + ξi, where ξi is some noise vector drawn from an isotropic
normal distribution with mean 0 and covariance Σ. Again, assume that the noise is
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isotropic, and so that Σ = σ2I. The homography can be estimated by minimizing
the negative log-likelihood of the noise, so we must minimize

∑
i

wiξ
T
i ξi (12.15)

where

ξi =

[
xi,x − m11yi,x+m12yi,y+m13

m31yi,x+m32yi,y+m33

xi,y − m21yi,x+m22yi,y+m23

m31yi,x+m32yi,y+m33

]
(12.16)

using standard methods (Levenberg-Marquardt is favored; Chapter 35.2). This
approach is sometimes known as maximum likelihood . Experience teaches that
this optimization is not well behaved without a strong start point.

There is an easy construction for a good start point. Notice that the equations
for the homography mean that

xi,x(m31yi,x +m32yi,y +m33)−m11yi,x +m12yi,y +m13 = 0 (12.17)

and

xi,y(m31yi,x +m32yi,y +m33)−m21yi,x +m22yi,y +m23 = 0 (12.18)

so each corresponding pair of points xi, yi yields two homogeneous linear equa-
tions in the coefficients of the homography. They are homogeneous because scaling
M doesn’t change what it does to points (check this if you’re uncertain). If we
obtain sufficient points, we can solve the resulting system of homogeneous linear
equations. Four point correspondences yields an unambiguous solution; more than
four – which is better – can be dealt with by least squares (exercises TODO:
fourpoint homography ). The resulting estimate ofM has a good reputation as a
start point for a full optimization.
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Procedure: 12.2 Estimating a Homography from Data

Given N known source points in 2D (write yi = (yi,x, yi,y)) and N
corresponding target points xi with measured locations (xi,x, xi,y) and
where measurement noise has zero mean and covariance Σ = σ2I, esti-
mate the homographyM with i, j’th element mij by minimizing:∑

i

ξTi ξi (12.19)

where

ξ =

[
xi,x − m11yi,x+m12yi,y+m13

m31yi,x+m32yi,y+m33

xi,y − m21yi,x+m22yi,y+m23

m31yi,x+m32yi,y+m33

]
(12.20)

Obtain a start point by as a least-squares solution to the set of homo-
geneous linear equations

xi,x(m31yi,x +m32yi,y +m33)−m11yi,x +m12yi,y +m13 = 0 (12.21)

and

xi,y(m31yi,x +m32yi,y +m33)−m21yi,x +m22yi,y +m23 = 0. (12.22)

12.2.4 Projective Transformations and Gaussian Noise

A projective transformation is the analogue of a homography for higher dimensions.
In affine coordinates, a projective transformation M will map yi = (yi,1, . . . , yi,d)
to xi = (xi,1, . . . , xi,d) where

xi,1 =
m11yi,1 + . . .+m1dyi,d +m1(d+1)

m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1)
(12.23)

and

xi,d =
md1yi,1 + . . .+mddyi,d +md(d+1)

m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1)
(12.24)

Estimating this transformation follows the recipe for a homography, but there are
now more parameters. I have put the result in a box, below.
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Procedure: 12.3 Estimating a Projective Transformation from Data

Given N known source points yi = (yi,1, . . . , yi,d) in affine coordi-
nates and N corresponding target points xi with measured locations
(xi,1, . . . , xi,d) and where measurement noise has zero mean and is
isotropic, the homography M with i, j’th element mij by minimiz-
ing: ∑

i

ξTi Σ
−1ξi (12.25)

where

ξi =

 xi,1 −
m11yi,1+...+m1dyi,d+m1(d+1)

m(d+1)1xi,1+...+m(d+1)dxi,d+m(d+1)(d+1)

. . .

xi,d −
md1yi,1+...+mddyi,d+md(d+1)

m(d+1)1xi,1+...+m(d+1)dxi,d+m(d+1)(d+1)

 (12.26)

Obtain a start point by as a least squares solution to the set of homo-
geneous linear equations

0 = xi,1(m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1))−
m11yi,1 + . . .+m1dyi,d +m1(d+1)

. . .

0 = xi,d(m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1))−
m(d+1)1xi,1 + . . .+m(d+1)dxi,d +m(d+1)(d+1)

12.3 REGISTRATION AT LARGE SCALES

You are on vacation in some famous, but unfamiliar, city. A majestic landmark
presents itself - but what is it called? There might be a plaque at the base, but
there might not. If it’s that majestic, someone else has (a) photographed it and
(b) labelled the photograph, so you could resolve the question by taking a picture
of the landmark, and registering that picture to a collection of labelled pictures.
There are likely a lot of images in that collection – even in one city, you’d expect
lots of different views each of a lot of majestic landmarks. This means that simply
registering to each image in the collection one-by-one would not work.


