Weather and generation:
some hard open problems

D.A. Forsyth, UIUC




Theme

* There’s an awful lot to do...

* Two interesting, poorly understood problems
* Weather is bad for vision
* We are very good at making images, but don’t understand what we’re doing



Weather

* Weather mangles the performance of all our methods
» detectors, classifiers, interest point finders, stereo, etc. etc.
* Fog reduces contrast, blurs images and changes colors
* Rain is a bit like fog, but adds streaks, puddles, and more

* Computer vision procedures are being used for autonomous vehicles
* And we don’t want them hurting people cause the weather is bad

* Current “solutions” are quite unconvincing
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This sort of thing affects detectors, etc.

® What to do:

® Train detectors on real weather images
® hard - collect and mark them up; rich collection of effects

® mostly, this won’t work out

® Remove weather effects, then apply detector
® Q: Remove how?
® Simple physics
® Regression (next)
® Take training images, synthesize weather on top
® Q:How?
® complicated mixture of physics and advanced regression tricks



Paired data
® Collect data on good days, bad days

® along the same routes, w/ GPS

use dynamic programming, GPS to compute alignment at the image
level

® Now label
® annotator labels bad image round 1

® compares to good image; fixes labelling round 2

Sakaridis et al, 21

(a) Input image [ (b) Stage 1 annotation (draft) (c) Corresponding image I’ (d) Stage 2 annotation (GT) (e) Invalid mask J
Figure 2. [llustration of annotation protocol for ACDC. The color coding of the semantic classes matches Fig. 1. All annotations in (b),
(d) and (e) pertain to the input image I in (a). A white color in (b) and (d) denotes unlabeled pixels.



This sort of thing affects detectors, etc.

® Fairly clear (more later)

® What to do:

® Train detectors on real weather images
® hard - collect and mark them up; rich collection of effects
® mostly, this won’t work out

® Remove weather effects, then apply detector
® Q: Remove how?

® Regression (next)
® Take training images, synthesize weather on top
® Q:How?
® complicated mixture of physics and advanced regression tricks



Removing haze by physical reasoning

Airlight color at p

I(p) = J(p) x T'(p) + A(p) x (1 = T(p))
Image color at p ] ‘

Surface radiance color at p

Absorption term, exponential in depth, at p

® Consequences
® Brightness is a depth cue

® Reasoning about airlight color yields dehazed
image



Airlight yields a depth cue

I(p) = J(p) XI'(p) + A(p) x (1 -T(p))

® Assume that airlight is dominant
® (i.e. most of light arriving at camera is airlight)
® then you can recover depth from a single image

® Disadvantages
® requires significant fog (but not too much) or large scales



Nayar and Narasimhan, 1999

(b)




Model

Airlight color - same at all points

I(p) = J(p) xT(p) + A(p) x (1 -T(p))
Observed ] ‘

Shading x albedo

Independent of shading

® With work, this yields

® nheighboring pixels with same albedo yield

® constraints on shadingand T

assume shading and T independent

® estimate A to yield “most independent” shadingand T
result: J(p)



Figure 1: Dehazing based on a single input image and the corresponding depth estimate.

Fattal, 08 - note depth map AND dehaze; note also slightly odd colors



Improved estimation by cleaner model

Fig. 1. Old Town of Lviv. Input image on the left, our result on the right.

Fattal, 08 - note depth map AND dehaze; note also slightly odd colors



This sort of thing affects detectors, etc.

® Fairly clear (more later)

® What to do:

® Train detectors on real weather images
® hard - collect and mark them up; rich collection of effects
® mostly, this won’t work out

® Remove weather effects, then apply detector

® Q: Remove how?
® Simple physics

® Take training images, synthesize weather on top
® Q:How?
® complicated mixture of physics and advanced regression tricks



lmage regression

® Take an image, predict something “like” an image
® Underlying technology is straightforward, significant tricks

® Cases
® train with real paired data eg (image, foggy version of image)

® train with fake paired data eg (image, simulated foggy version of image)
® train with unpaired data; important, we’ll ignore

® Motivating problems

® image -> depth
® also, image pair -> optic flow; low res image-> high res image
image -> foggy image; image -> rainy image

® Mechanics sketched earlier



Paired datasets

® Obtain pairs (hazy image, clear image)

® Real data:

® Take photos outdoors; introduce fog; repeat
® NH-HAZE
® https://data.vision.ee.ethz.ch/cvl/ntire20/nh-haze/

® Synthesized data:

® Fake fog model on real image
® Foggy cityscapes
® https://people.ee.ethz.ch/~csakarid/SFSU synthetic/
® Render synthetic images fog/no-fog
® RESIDE
® https://arxiv.org/pdf/1712.04143.pdf



https://people.ee.ethz.ch/~csakarid/SFSU_synthetic/
https://arxiv.org/pdf/1712.04143.pdf

Fig. 11. The haze-free images and depth maps restored by DehazeNet

Cai et al 16 (DeHazeNet)



Single image dehazing

- 13.35 15.45 16.37 14.50 19.42

- 16.70 16.76 15.97 14.23 19.86 o0
-
- 15.42 11.28 13.27
(a) HAZY (b) DCP [15] (c) AOD-Net [20] (d) GRID-Net [24] (e) FFA-Net [26] (f) OURS (g) GT

Figure 6. Qualitative comparisons with different state-of-the-art dehazing methods for indoor synthesis hazy images. The top two rows are
from SOTS, the third row is from TestA dataset and the bottom three rows are from MiddleBury dehazing dataset. The numbers below
image are PSNR (dB) value of each image.

Shen et al 19
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Asides

® Defoggers trained with simulated fog work well
® Even if the depth map used to simulate the fog is wrong



Similar physics underwater

® Out scattering causes distant
points to be darker and fuzzier

® Out and in scattering changes
color

® Color changes depend on the
water

(A






Side topic - Adversarial losses

® |ssue:

® we are making pictures that should have a strong structure
® eg-itshould be “like” a true image

® but we don’t know how to write a loss that imposes that structure

® Strategy:

® build a classifier that tries to tell the difference between
® true examples
® examples we made

® use that classifier as a loss



A GAN

D(x)
Generative ?
Adversarial
Network . .
f discriminator
X OR x = (i(z)
A
real-world
image generator
A

7 code vector

Grosse slides



e Let D denote the discriminator’s predicted probability of being data

e Discriminator’s cost function: cross-entropy loss for task of classifying
real vs. fake images

JIp = Exp[—log D(x)] + E;[—log(1 — D(G(2)))]

Notice: we want the discriminator to make a 1 for real data, O for fake data

@ One possible cost function for the generator: the opposite of the
discriminator's

Je =—-JIp
= const + E,[log(1 — D(G(2)))]

@ This is called the minimax formulation, since the generator and
discriminator are playing a zero-sum game against each other:

max min Jp
Solution (if exists, which is uncertain; and if G D
can be found, ditto) is known as a saddle point.
It has strong properties, but not much worth

talking about, as we don’t know if it is there or

whether we have found it. .
Grosse slides



Quote from the original paper on GANs:

"The generative model can be thought of as analogous to a
team of counterfeiters, trying to produce fake currency and
use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit
currency. Competition in this game drives both teams to
improve their methods until the counterfeits are
indistinguishable from the genuine articles."

-Goodfellow et. al., "Generative Adversarial Networks" (2014)

Thakar slides



Important, general issue

® If either generator or discriminator “wins” -> problem

® Discriminator “wins”
® it may not be able to tell the generator how to fix examples
® discriminators classify, rather than supply gradient

® Generator “wins”
® likely the discriminator is too stupid to be useful

® Very little theory to guide on this point



Updating the discriminator:

D(x)

t

f

update the discriminator
weights using backprop
on the classification objective

PN

X

real-world
image

OR

x = Glz)

t

t

| Z | code vector

generator

-

Grosse slides



Updating the generator:

D(x)
backprop the derivatives,
but don't modify the
1 discriminator weights
1 fiip the sign
of the derivatives
x = G(z)

update the generator
1 weights using backprop

h

Grosse slides



One must be careful about losses...

@ We introduced the minimax cost function for the generator:
Je = Ez[log(1 — D(G(2)))]

@ One problem with this is saturation.

@ Recall from our lecture on classification: when the prediction is really
wrong,

o “Logistic + squared error’ gets a weak gradient signal
o “Logistic + cross-entropy” gets a strong gradient signal

e Here, if the generated sample is really bad, the discriminator’s
prediction is close to 0, and the generator's cost is flat.

Grosse slides



One must be careful about losses...

@ Original minimax cost: modified
cost
Jc = E,[log(1 — D(G(2)))]

e Modified generator cost:

minimax
J6 = Ez[—log D(G(2))] cost
o This fixes the saturation problem. $o 02 o4 96 08 10
D(G(z))
(how well it fooled
the discriminator)

Grosse slides



Alternative losses

® Hinge:
® Discriminator makes D(im)

® want

® real images ->-1

® fake->1
® Discriminator loss: Z max((), 1— yiD(Ii))
fakes and real

® wherey i=-1 for real, y_i=1 for fake

® Generator loss: Z
D(1;)
fakes



Output
Check: is it like the original (non foggy) image?
» Check: is it like an image?

Simulated foggy
image

Notice these checks are NOT the same




Input DCP AOD DCPDN GFN EPDN FD-GAN (ours)

Figure 5: Visual comparisons on real-world hazy images. Our model can generate more natural and visual pleasing dehazed
results with less color distortion. Please see the details in red rectangles. Zoom in for best view.

Dong et al 21 - Use an adversarial loss



Raindrop scatter
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Backscatter

® Refraction in drops causes backscatter of headlight light
® makes driving in rain at night harder

® Neat trick
® (Tamburo et al 14)

® Do not illuminate raindrops by
® having headlights that are highly steerable (multiple micro mirrors)
® very fast exposure with usual illumination identifies raindrops
® too fast for driver to resolve
® now direct light between drops



Fig.7. A: Our headlight has unprecedented resolution over space and time so that
beams of light may be sent in between the falling snow. Illustration adapted from [11].
B: Artificial snowflakes brightly illuminated by standard headlight. C: Our system
avoids illuminating snowflakes making them much less visible.

Tamburo et al 14



Rain has multiple interesting effects

Blur from wet air

Puddles

Color shifts Streaks

These are often quite strongly coupled to scene geometry



Rain mangles detection



Original Rain augmented (PBR)
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Fig. 11 Object detection on PBR rain augmentation of KITTI. From left to right, the original image (clear) and three PBR augmentations with
varying rainfall rates. Images are cropped for visualization.

Tremblay et al 20



Simulating rain - issues

® Near field:

® drops are bright, discrete, likely ballistic motion
® how bright?
® where?
® how moving?
® likely air is “wet”
® 5o some fogging, depending on depth

® Far field:
® fog like effects

® So we need to know
® depth, environment map, falling drops, camera movement



Simulating rain

Tremblay et al 20

Camera Particles L
ego motions | imuator (1] —>»> Pfojitlon

lllumination Rain streak War
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Fog-like Rainfall
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=

Clear images
1

Rainy images
1

Depth
estimation —-
[24,25]

Depth maps

Fig. 2 Physics-Based Rendering for rain augmentation. We use par-
ticles simulation together with depth and illumination estimation to
render arbitrarily controlled rainfall on clear images.



Simulating rain

® Trick:
® rain causes color effects, specular effects etc.

® CycleGAN is good at this, but bad at streaks
® Phvsics based simulation is bad at this but good at streaks

[fig. 2]

Clear images CycleGAN Rain translations Rainy images

Fig. 5 GAN+PBR rain-augmentation architecture. In this hybrid
approach, clear images are first translated into rain with CycleGAN [+ 7]
and subsequently augmented with rain streaks with our PBR pipeline

(see fig. 2).

Tremblay et al 20



GAN+PBR
100mm/hr

GAN+PBR

Tremblay et al 20
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Original Rain augmented (GAN+PBR)

Input

Heavy rain Shower rain
(100 mm/hr) (200 mm/hr)

Fig. 15 Object detection on our GAN+PBR augmented nuScenes. From left to right, the original image (clear), the GAN augmented image and
three GAN+PBR images.

Clear weather Moderate rain
(50 mmv/hr)

Tremblay et al 20



Why not just use LIDAR?

® Cause LIDAR suffers from weather problems, too



Fog and Lidar: Lidar

distance d

>

About 800-1000 nm
wavelength (longer than red)

Wikipedia



Raindrop scatter
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Fig. 9: “Rain pillars” as detected by a LiDAR.

Carballo, 20



Fog scattering

FOG

Source

Detector



What the sensor sees...

ﬁ No fog

JL .

Extreme fog

[ N




Fig. 5: Static targets and adverse weather experiments at JARI’s weather chamber: (a) configuration of the different scenarios,
(b) and (c) measurement, (e) to (g) sample adverse weather scenes, (d) setting up ground truth.

Carballo, 20



Fog

Rain

Very
bright
light

(a) VLS-128 (b) HDL-64S2 (c) HDL-32E

Carballo, 20



Radar is unaffected

Bad Weather Depth Estimation
12t —- 6T

- Radar
10 = Lidar -

Camera Image

Estimated depth (m)

4 6 8 10 12
GT depth (m)

Figure 16: Performance comparison of different sensors in the pres-
ence of adverse conditions. The left plot shows the depth estimation
performance of Radar and LiDAR for an object directly in front of the
sensor in the presence of fog. The right figure shows the camera image
for the experiment.

Bansal et al 20



Astonishing fact:

® You can generate images from random vectors

® And they’re very good

® Questions:

® How good are generators?

® Extremely hard gn
® How do you score “good”?

® What do they get right?

® Or wrong?
® What do they “know” about images?
® Can you control them?



Generative strategy

® StyleGAN is a network that

® accepts random vectors

® produces images

Kerras et al 20



A portrait of a human growing colorful flowers from her hair. Hyperrealistic oil painting.
Intricate details.

Kang et al., CVPR 2023



Yu et al. ICCV 2021
Yang et al. NeurlPS 2022



How StyleGAN works (ish)

Mapping
Network  style Codes

A\ ]
z~N(0,1) [ -
I ’

Image

Synthesis Network




® Add offset to StyleGAN latents

®  various effects by choice of offset

® Q: how to get desired result?

® A (ish): search offsets

Layout Category Lighting

Mapping
Network  style Codes

%;’[@I*H:E I
; i f

Vegetation

Lighting  Synthesis Network iage

Directions

Yang et al. IJCV 2020; Epstein et al. ECCV 2022; Shi et al. NeurlIPS 2022



Find directions that fix albedo

Mapping
Network Style Codes

ﬁrtm'*ﬂ];lul f M%‘“"”

Lgh Synthes is Network Imase Relighted Images

Bhattad et al, 23



Relightings are realistic

relighting-1 relighting-2 relighting-3 relighting-4 relighting-5

Brightness of the room is increased in relighting — 4
Brightness of the room is decreased in relighting — 5




Relightings are realistic

direction-1 direction-2 direction-3 direction-4

=

Conference Rooms




If you can relight images

® you must know stuff about
® depth
® hormal
® surface properties

® Q: Does StyleGAN
® Al

® |t should (kind of obvious)
® A2:

® |t can be made to produce this information (astonishing)



... Normal

Generated
Images

StyleGAN
Generated
Normals

Supervised
SOTA
Normals

Kar et al ’22




... Depth

Generated
Images

StyleGAN
Generated
Depth

Supervised
SOTA
Depth

Kar et al ‘22




... Segmentation

Generated
Images

StyleGAN
Generated
Lamp Seg

Supervised
SOTA

Lamp Seg
ang et al '23




StyleGAN Normals behave well

Image + Recent Supervised SOTA  Current Supervised SOTA StyleGAN Generated
Relighting (XTC) (Omnidata v2) (Ours)

Zamir et al CVPR 2020
Kar et al CVPR 2022

Bhattad et al, 23



WHAT DOES STABLE DIFFUSION KNOW ABOUT THE
3D SCENE?

Guangi Zhan', Chuanxia Zheng', Weidi Xie!2, Andrew Zisserman'
Visual Geometry Group, University of Oxford*

Coop. Medianet Innovation Center, Shanghai Jiao Tong University?
{guangi, cxzheng,weidi, az}@robots.ox.ac.uk



Stable diffusion “knows” geometry

Original Image Inpainting Mask Masked Image Inpainted Image

Zhan et al, 23



Methodology: probing features

® Mark up standard dataset with geometric properties
® Q: can denoiser features predict this markup?

Original Image

Zhan et al, 23



Stable diffusion “knows” some geometry

Table 4: Performance of Stable Diffusion feature compared to state-of-the-art self-supervised
features. For each property, we use the best time step, layer and C' found in the grid search in
Table 2 for Stable Diffusion, and the final layer for other self-supervised features. The performance

is the ROC AUC on the test set, and ‘Random’ means a random classifier.

Property Random OpenCLIP DINOv1 DINOv2 Stable Diffusion
Same Plane 50 74.6 79.3 86.0 95.0
Perpendicular Plane 50 55.5 59.8 63.4 83.9
Material 50 60.4 62.1 63.8 79.4
Support Relation 50 84.7 84.3 88.3 94.4
Shadow 50 75.5 84.3 86.8 94.5
Occlusion 50 63.8 60.0 67.9 75.6
Depth 50 95.5 93.7 98.0 99.3

Zhan et al, 23



Generators make fascinating errors

Original Image Inpainting Mask Masked Image Inpainted Image

o

Zhan et al, 23



Iffy projective geometry

https://huggingface.co/spaces/stabilityai/stable-diffusion/discussions/1593



Iffy projective geometry

https://huggingface.co/spaces/stabilityai/stable-diffusion/discussions/1593



Iffy projective geometry

https://huggingface.co/spaces/stabilityai/stable-diffusion/discussions/1593



Iffy lighting geometry




Weird errors in clothing

Zhu et al 23



Weird errors in clothing




Questions:

® Can you find these errors automatically?

® A1: for some of them, yes

® and it’s easy to use them to identify generated images very accurately



For some of them, yes

> Fake/real

v
v

Image Geometric representation

(lines; obj+shadow; etc)

Sarkar et al, 23



Geometric representations

Generated Image Object-Shadow (OS)

Sarkar et al, 23



Geometric representations

T S ——
————

Generated Image Vanishing Point Errors

Sarkar et al, 23



For some of them, yes

Misclassified Test Set

1.0 B Misclassified Test Set Misclassified Test Set
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Sarkar et al, 23



Questions:

® Can you find these errors automatically?

® A1l: for some of them, yes
® andit’s easy to use them to identify generated images very accurately

® A2: but for others, no
® the garment example is fantastically hard, and important

® What causes them?
® A:?

® Can you make them go away?
¢ A?



