Image filtering

* Roughly speaking, replace image value at x with some
function of values in its spatial neighborhood N (x):

gx) = T(f(N(x)))

o [y
—»T—»

« Examples: smoothing, sharpening, edge detection, etc.




Image filtering




Recall: Image transformations

* What are different kinds of image transformations?
 Range transformations or point processing
 Image warping
* Image filtering



Image filtering: Outline

Linear filtering and its properties
Gaussian filters and their properties
Nonlinear filtering: Median filtering

Fun filtering application: Hybrid images



Sliding window operations

» Let's slide a fixed-size window
over the image and perform the
same simple computation at each
window location

 Example use case: how do we
reduce image noise?

» Let's take the average of pixel
values in each window

* More generally, we can take a
weighted sum where the weights are
given by a filter kernel
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FIGURE 3.1: To compute the value of N' at some location, you shift a copy of M
(the flipped version of W) to lie over that location in I; you multiply together the
non-zero elements of M and I that lie on top of one another; and you sum the
results.



Applying a linear filter

Input

I 1Y L3 L4 Iis L6
I, I I3 [24 Is I
I3, I3, I33 [34 I35 I36
I41 L4, L43 L44 Iss |m
Is1 Is; Is3 Is4 Iss Is6

Adapted from D. Fouhey and J. Johnson

Filter

Output


https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying a linear filter

Input

Filter Output

I35

O11 = Iyp-

Adapted from D. Fouhey and J. Johnson

fiut L fio+ Lis- fiz+ o+ I35 f33


https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying a linear filter

Input

Filter Output

I35

O1, = Iy

Adapted from D. Fouhey and J. Johnson

fiu+ Lis - fiot Ly fiz+ oo+ T34 f33


https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying a linear filter

Input

Filter Output

O13 = Iy3-

Adapted from D. Fouhey and J. Johnson

fiu+t Ly fio+ Iis- fiz+ o + I35 f33


https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying a linear filter

Input Filter Output

I3 I3 I33 X —
I I4; 43
Is51 Is; Is3 Isq Iss Is6

O = iy f1n+ LIis fiot Lig f1z+ o + I3 f33

Adapted from D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying a linear filter

Input

Filter Output

011 01, 013

I35

Oy1 = Iy

Adapted from D. Fouhey and J. Johnson

fi1 + I fiot g fiz+ oo+ Lug f33



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying a linear filter

Input

Filter Output

I11 I1s L
I L5 1073 011 012 013 O14
I31 I35 I36 sk — 021 ()
llaq Iss Ls6
Is1 Iss Is6
Oy = Iy f11 + s fra+ lpa- friz+ o+ Lage a3

Adapted from D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying a linear filter

Input Filter Output

O3 = Iz f11 + Ipa-f1o+ Ips - f13+ oo + Lus- f33

Adapted from D. Fouhey and J. Johnson

111 I, I16
I I3, I (2%} 012 013 014
I31 I3; I36 k — 021 03, 023



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying a linear filter

Input

I 1Y L3 L4 Iis L6
I I I3 [24 Is I
I3 I3, I33 [34 I35 I36
[41 L4, L43 L44 Iss |m
Is1 Is; Is3 Is4 Iss Is6

Adapted from D. Fouhey and J. Johnson

Filter Output

What filter values should we use to
find the average in a 3x3 window?


https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Convolution

For the moment, think of an image as a two dimensional array of intensities. Write
Z;; for the pixel at position 7, j. We will construct a small array (a mask or kernel)
W, and compute a new image N from the image and the mask, using the rule

Mj — Z Ii—u,j—kuv

which we will write

N=W=xT.

In some sources, you might see W *Z (to emphasize the fact that the image is 2D).
We sum over all © and v that apply to W; for the moment, do not worry about
what happens when an index goes out of the range of Z. This operation 1s known
as convolution, and VW 1s often called the kernel of the convolution. You should



Filtering

look closely at the expression; the “direction” ot the dummy variable uw (resp. v)
has been reversed compared with what you might expect (unless you have a signal

processing background). What you might expect — sometimes called correlation or
filtering — would compute

Mj — Z Ii+u,j+kuv
uv

which we will write

N = filter(Z,W).

This difference 1sn’t particularly significant, but if you forget that it is there, you
compute the wrong answer.



Practical details: Dealing with edges

« To control the size of the output, we need to use padding

Output is smaller Output is same Output is larger
than input size as input than input
f fl U !
f f
I I I
fr—— f f f
. f




Practical details: Dealing with edges

« To control the size of the output, we need to use padding
* What values should we pad the image with?



Practical details: Dealing with edges

« To control the size of the output, we need to use padding
* What values should we pad the image with?

» Zero pad (or clip filter)

 Wrap around ’
« Copy edge ’

» Reflect across edge

Source: S. Marschner



Properties: Linearity

filter(l, f{ + f,) = filter(d, f,) + filter(l, f,)

filter(, ™+ = filter(, ) -
filter(,ﬂ) + filtel‘(,) = + _I -

Adapted from D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Properties: Linearity

filter(l, f{ + f,) = filter(d, f,) + filter(l, f,)

Also:
filter(I; + I, f) = filter(Iy, f) + filter(l,, f)

filter(kl, f) = k filter(I, f)
filter(I, kf) = k filter(I, f)

Adapted from D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Properties: Shift-invariance

filter (shift(1), f) shift(filter(I, f))

filter( filter(/, f)

filter(

Adapted from D. Fouhey
and J. Johnson

filter(shift(I), f)



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

More linear filtering properties

« Commutativity: f g = g *f
* For infinite signals, no difference between filter and signal
« Associativity: f * (g * h) = (f *g) *h

« Convolving several filters one after another is equivalent to
convolving with one combined filter:

(g *fO*f)xfs) =g * (f1 *f2 *f3)
* Identity: for unit impulse e, f « e = f



Note: Filtering vs. “convolution”

* In classical signal processing terminology, convolution is
filtering with a flipped kernel, and filtering with an upright
kernel is known as cross-correlation

* Check convention of filtering function you plan to use!

Filtering or “cross-correlation” “Convolution”
(Kernel in original orientation) (Kernel flipped in x and y)

Adapted from D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Practice with linear filters

Original

Source: D. Lowe



Practice with linear filters

0010
0110
0010
Original One surrounded Filtered
by zeros is the (no change)

identity filter

Source: D. Lowe



Practice with linear filters

Original

Source: D. Lowe



Practice with linear filters

Original Shifted left
By one pixel

Source: D. Lowe



Practice with linear filters

R 2
9
11111

Original

Source: D. Lowe



Practice with linear filters

O+

Original Blur (with a
box filter)

Source: D. Lowe



Practice with linear filters

0l0]0 ERE
020-5111 ?
0l0]0 TEE

Original

Source: D. Lowe



Practice with linear filters

Original

o oo
N

0
0
0

Sharpening filter:
Accentuates differences
with local average

(Note that filter sums to 1)

1
9

Sharpened

Source: D. Lowe



Sharpening

before

Source: D. Lowe



ing

Sharpen

Source:

S. Gupta



Filters are dot products
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FIGURE 3.1: To compute the value of N' at some location, you shift a copy of M
(the flipped version of W) to lie over that location in I; you multiply together the
non-zero elements of M and I that lie on top of one another; and you sum the
results.
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Filters are dot products




Image filtering: Outline

 Linear filtering and its properties
« (Gaussian filters and their properties



Smoothing with box filter revisited

Source: D. Forsyth



Smoothing with box filter revisited

* What's wrong with this picture?

 What's the solution?

* To eliminate edge effects, weight contribution of neighborhood pixels
according to their closeness to the center

“proportional to”

(renormalize values to sum to 1) Gaussian filter
6(x,) ST
X,V) Xexp| —

!

standard deviation

Adapted from D. Fouhey and J. Johnson (determlnes SiZe Of blOb )



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Gaussian vs. box filtering




Applying Gaussian filters

Input image
no filter

Source: D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

lters

lan f

Applying Gauss

Source: D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying Gaussian filters

Source: D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying Gaussian filters

n 2|5
Elll

Source: D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Applying Gaussian filters

o =8 } a

Source: D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Choosing filter size

* Rule of thumb: set filter width to about 60 (captures 99.7% of
the energy)

o =8 o = 8
Width = 21 Width = 43

Too small! A bit small (might be OK)

Adapted from D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Gaussian filters: Properties

« Gaussian is a low-pass filter. it removes high-frequency
components from the image (more on this soon)

* Convolution with self is another Gaussian

* So we can smooth with small-o kernel, repeat, and get same result as
larger-o kernel would have

« Convolving two times with Gaussian kernel with std. dev. ¢ is the
same as convolving once with kernel with std. dev. g+/2
« Gaussian kernel is separable: it factors into product of two 1D
Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Adapted from D. Fouhey and J. Johnson



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Why is separability useful?

« Separability means that a 2D convolution can be reduced to
two 1D convolutions (one along rows and one along columns)

« What is the complexity of filtering an nxn image with an mxm
kernel?

e O(n*m?)
« What if the kernel is separable?
e O(n’*m)



Gaussian noise

« Mathematical model: sum of many independent factors
« Good for small standard deviations
* Assumption: independent, zero-mean noise

Image
Noise
UYL

Source: M. Hebert



L, FIGURE 3.5: The top row shows three realizations of a stationary additive Gaussian
noise process. We have added half the range of brightnesses to these images to show
. both negative and positive values of noise. From left to right, the noise has standard
s deviation 1/256, 4/256, and 16/256 of the full range of brightness, respectively. This
corresponds roughly to bits zero, two, and five of a camera that has an output range
of eight bits per pizel. The lower row shows this noise added to an image. In
each case, values below zero or above the full range have been adjusted to zero or
the mazximum value accordingly.




The effects of smoothing on Gaussian noise

Assume each image pixel is independent identically distributed
(Gaussian noise

| ij ~ N(O, s"2)
Filter(l, F) ?

Mean: O
Variance: sum_uv F_uv*2s?2 --- good choice of F helps!

BUT pixels are no longer independent!
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FIGURE 3.8: The top row shows images of a constant mid-gray level corrupted by
additive Gaussian noise. In this noise model, each pizel has a zero-mean normal
random variable added to it. The range of pizel values is from zero to one, so
that the standard deviation of the noise in the first column is about 1/20 of full
range. The center row shows the effect of smoothing the corresponding image in
the top row with a Gaussian filter of o one pizel. Notice the annoying overloading
of notation here; there is Gaussian noise and Gaussian filters, and both have o’s.
One uses context to keep these two straight, although this is not always as helpful as
it could be, because Gaussian filters are particularly good at suppressing Gaussian
noise. This is because the noise values at each pizel are independent, meaning that
the expected value of their average is going to be the noise mean. The bottom
row shows the effect of smoothing the corresponding image in the top row with a
Gaussian filter of o two pizels.



