Recognition: Past, present, future?

Benozzo Gozzoli, Journey of the Magi, c. 1459

Outline

- Different "dimensions" of recognition
 - What type of content?
 - What type of output?
 - What type of supervision?
- Brief history
- Trends
 - Saturation of supervised learning
 - Transformers
 - Vision-language models
 - "Universal" recognition systems
 - Text-to-image generation
 - From vision to action

Discrimination

Use some procedure to attach a label to

- an image; some images; video; range data; lidar data; etc, etc

"Label" can be very loosely interpreted

- Name of the main object in the image
- Sentence describing the image
- Direction the car should turn

"Procedure" could be

- learned
- hand-tuned
- determined by physics; the problem; etc
- All three

Typical picture of image classification

Key ideas

Goal:

- Adjust classifier so that it accurately classifies *UNSEEN* data
- ie on *unseen* data, the predicted labels have low loss

Loss

- Cost of using predicted labels instead of true
- Eg error rate; quality of sentences; number of accidents

Procedure:

- Adjust so that it
 - classifies training data well
 - generalizes
- regularization term, either explicit or implicit

Evaluation:

- Use held out data to check accuracy on *UNSEEN* data

Recognition: What type of content?

Object instance recognition

Texture recognition

Object category recognition

Scene recognition

• Beyond still images: video, RGBD data, point clouds, multimodal data...

Standard difficulties

Classification vs detection vs segmentation

Classification:

- there is an X in this image
 - what

Detection:

- there is an X HERE in this image
 - what AND where

Semantic segmentation:

- These pixels are sky, these road, these person, etc

Semantic instance segmentation:

- Semantic +
- These pixels are person 1, these person 2, these person 3, etc

Recognition: What type of output?

- Classification: labels
- Regression: continuous values
- Dense prediction: an output at every image location
- Structured prediction: combinatorial structures
- Natural language
- Etc.

Recognition: What type of output?

Semantic segmentation

Object detection

Instance segmentation

• And beyond: depth/3D structure prediction, image description, etc.

Classification vs detection vs segmentation

Key issues

- How to classify
- how to specify where
- relationship between what and where
 - efficiency, etc
 - Predict where first; or what first; or both in parallel?
- evaluation
 - Evaluating detection is surprisingly fiddly

It can be hard to know what to report

It can be hard to find things

You may not know the right label

Our current state

We do wonderful things when labels are available

What we do poorly

- Ambiguous prediction
- Descriptions without labels
- Narrative and models

An extreme example

People do what they do for reasons

- these are sometimes about the physical world
- and sometimes because they have internal goals, etc

What we need to understand this

- U Selection
 - (the cart and people are worth talking about; the buildings are not)
- U Attributes

U

?

?

U=under attack

- try to describe unfamiliar things in familiar terms

Geometric representations that generalize

? - eg carts can rock on axles

Situating objects in space with respect to one another

- contact; potential; etc

Predicting who/what can do what

so we notice when they don't

Some form of narrative structure

- in terms of goals, intentions, etc.
 - associating potential outcomes with objects

RapidABC data

Questions you can't answer

How many RJ11 jacks in the wall near the camera?

Questions you can answer

About feelings

- How is the mother feeling?
- How is the interviewer feeling?
- How is the child feeling?

Because

- it tells you what might happen next

Questions you can answer

About feelings

- How is the mother feeling?
- How is the interviewer feeling?
- How is the child feeling?

Because

- it tells you what might happen next

Questions you can't answer

How many RJ11 jacks in the wall near the camera?

Classification

ILSVRC

			3
mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetal
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian ca
			
grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	tit
beach wagon	gill fungus	ffordshire bullterrier	indr
fire engine	dead-man's-fingers	currant	howler monkey

Figure source

What should recognition say?

Report names of all object categories (?!?)

- but we might not have names
- and some might not be important

Make useful reports about what's going on

- what is going to happen?
- how will it affect me?
- who's important?

Do categories exist?

- allow generalization
 - -future behavior; non-visual properties of activities

Platonism?

A belief space about recognition

Object categories are fixed and known

- Each instance belongs to one category of k

Good training data for categories is available

Object recognition=k-way classification

Detection = lots of classification

A belief space about recognition

Object categories are fixed and known

- Each instance belongs to one category of k

Good training data for categories is available

Object recognition=k-way classification

Detection = lots of classification

Obvious nonsense Obvious nonsense

Obvious nonsense

Platonism?

Are these monkeys?

OMFG MONKEY pider Monkey, Spider Monkey Profile ... NIPS2. 470 x 324 - 29k - jpg 444 x 398 - 40k - jpg animals.nationalgeographic.com www.bestweekever.tv More from More from nimals.nationalgeographic.com]www.bestweekever.tv]

Vampire Monkey 350 x 500 - 32k - jpg paranormal.about.com

... monkey's interests ... my.opera.com www.schwimmerlegal.com

"You will be a monkey. 358 x 480 - 38k - jpg kulxp.blogspot.com

monkey and I am Monkey 353 x 408 - 423k - bmp 342 x 324 - 17k - jpg www.graphicshunt.com www.azcazandco.com

The Monkey Park Monkey cloning follow 400 x 402 - 24k - jpg www.lysator.liu.se

So here's one of my monkeys. 450 x 316 - 17k - jpg 400 x 300 - 13k - jpg blog.bioethics.net www.gamespot.com

monkeys . 400 x 310 - 85k - jpg joaquinvargas.com

MONKEY TEETH 308 x 311 - 18k - jpg repairstemcell.wordpress.com 500 x 500 - 30k - jpg

The Blow Monkey is Spider Monkey Picture, Spider Monkey ... 800 x 600 - 75k - jpg www.uberreview.com animals.nationalgeographic.com www.sodahead.com

MULPEL mammal monkey 525 x 525 - 99k - jpg

up ...

WTF Monkey Monkey Monkey 374 x 300 - 23k - jpg 512 x 768 - 344k - jpg 787 x 1024 - 131k - jpg www.myspace.com www.exzooberance.com runrigging.blogspot.com

What does recognition do?

Lists object names Lists object descriptions

Evokes emotional states

- but what do we do about this?

Exposes possible futures

- What could happen
- Where you could go
- Who could move close to you
- What could be useful for

We should think about potential, rather than just or as well as, actual What is an object like?

Professor Piehead

"Attribute and Simile Classifiers for Face Verification," ICCV 2009. (N. Kumar, A. Berg, P. Belhumeur, S. K. Nayar)

General architecture

A.Farhadi, I. Endres, D. Hoiem, D.A. Forsyth, "Describing objects by their attributes", CVPR 2009

Regression

Date prediction

Vittayakorn et al. (2017)

Image colorization

Zhang et al. (2016)

Location prediction

Depth prediction

Wang et al. (2017)

Dense and structured prediction

Bounding box prediction, dense prediction

Keypoint prediction

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017

Natural language prediction

guitar."

Image captioning

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

air."

"black and white dog jumps over bar."

young girl in pink shirt is swinging on swing."

A. Karpathy, L. Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions. CVPR 2015

Visual question answering

What color are her eyes? What is the mustache made of?

Is this person expecting company? What is just under the tree?

How many slices of pizza are there? Is this a vegetarian pizza?

Does it appear to be rainy? Does this person have 20/20 vision?

S. Antol et al. VQA: Visual guestion answering. ICCV 2015

Outline

- Different "dimensions" of recognition
 - What type of content?
 - What type of output?
 - What type of supervision?
- Brief history
- Trends
 - Saturation of supervised learning
 - Transformers
 - Vision-language models
 - "Universal" recognition systems
 - Text-to-image generation
 - From vision to action

Recall: Origins of computer vision

(b) Differentiated picture

(d) Rotated view.

Pattern Classification and Scene Analysis

Richard O. Duda and Peter E. Hart

(c) Line drawing.

Hough, 1959

Rosenfeld, 1969

Duda & Hart, 1972

Idea: geometric alignment

Imagine you have a set of geometric models

To detect objects in an image:

Repeat:

Find image features (edges, corners, etc)

Hypothesize a correspondence to model features

Compute camera intrinsics

Project model into image and check for validation

History of recognition: Geometric alignment

Ayache & Faugeras (1986)

Huttenlocher & Ullman (1987)

Idea: part hierarchies

Alignment is inefficient

Assume each object is made up of a small number of parts

Use alignment to find parts, then impute object presence by reasoning about relations

History of recognition: Hierarchies of parts

History of recognition: Deformable templates

M. Fischler and R. Elschlager, <u>The representation and matching of pictorial structures</u>, IEEE Trans. on Computers, 1973

History of recognition: Deformable templates

Felzenszwalb & Huttenlocher (2000)

Felzenszwalb et al. (2008)

Idea: templates

Assume object has a characteristic appearance (from any viewpoint)

Build something that finds that appearance

Spectacular successes with face finding

Rowley-Baluja-Kanade face finder (1)

"Rotation invariant neural-network based face detection," H.A. Rowley, S. Baluja and T. Kanade, CVPR 1998

"Rotation invariant neural-network based face detection," H.A. Rowley, S. Baluja and T. Kanade, CVPR 1998

History of recognition: Appearance-based models

M. Turk and A. Pentland, <u>Face recognition using</u> <u>eigenfaces</u>, CVPR 1991 H. Murase and S. Nayar, <u>Visual learning and recognition</u> of 3-d objects from appearance, IJCV 1995

•1

0.0.0

(b)

Idea: more complicated templates

Assume object has a characteristic appearance (from any viewpoint) that might be hard to encode

Build rich encoding of that appearance

History of recognition: Features and classifiers

Statistics of feature responses, probabilistic classifier

Rectangle features, boosting

Idea: probabilistic templates

Assume "parts" that have characteristic appearance (from any viewpoint)

If enough parts are found in about the right relation to one another, the object is there

"About the right relation" - probabilistic

History of recognition: Constellation models

Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

Idea: bags of features

If enough distinctive features are there, the object is present (you can ignore the relations which create complexity) (and you might even be able to use voting to figure out which features are reliable; where the object is; prev lecture)

History of recognition: Bags of keypoints

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)

Spatial pyramids

• Orderless pooling of local features over a coarse grid

Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids

• Caltech101 classification results:

	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ±0.8
3	52.2 ± 0.8	54.0 ± 1.1	60.3 ± 0.9	$64.6\pm\!0.7$

Idea: objects are patterns of patterns of patterns...

And a simple pattern detector is easy to build...

Convolve with template, check against threshold (= simple unit in neural network)

Stack these in layers, and you're there

Convolution kernels? Learn these to get the right behavior

History of recognition: Neural networks

LeCun et al. (1998)

Krizhevsky et al. (2012)

Announcements and reminders

- Quiz 4 will be out soon
- Assignment 5 is due December 6
- Final project reports are due Monday, December 11
- Extra credit project presentations
 - Still working out details!