Recognition: Past, present, future?




Last time: Overview of recognition

 Brief history of recognition

» Different “dimensions” of recognition
« What type of content?
« What type of output?
 What type of supervision?

 Trends
« Saturation of supervised learning
« Transformers
* Vision-language models
« “Universal” recognition systems
« Text-to-image generation

From vision to action



Simple machinery




Classification, Detection and Regression

0: Why

|: Classification

- Basic classification - features to logistic regression; facts
of life

- variant classification (words from pictures; others)
- lane boundaries
- semantic segmentation; masks?; labelling 3D worlds ala

torr
[I: Detection
- localization + classification FasterRCNN, YOLO

- MaskRCNN
- 3D detection Det?

lll: Regression

- (depth from single images is possible); Boxes and
primitives



Image classification

Image

Some neural stuff;
differentiable wrt
parameters, input

Cat
Dog

Car




Key ideas

Goal:

- Adjust classifier so that it accurately classifies *UNSEEN* data

Procedure:
- Adjust so that it
— classifies training data well
— generalizes
- regularization term, either explicit or implicit

Evaluation:
- Use held out data to check accuracy on *UNSEEN* data



Main Points

Remember this: A classifier predicts a label from a representation.
Classifiers are evaluated by accuracy or error rate, estimated on data not
used in training. The standard recipe splits training data into two com-
ponents (train and test), uses one to train the classifier and the other to

evaluate it. Never evaluate on data that was used in training, because your
estimate will be wrong.




Under the hood

Feature
Construction
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Multiclass logistic regression

Forclasses 1, .., C

Given a feature vector

Form

@.ﬂ

Interpret by

T
e

P(example is of class i) = k T



Multiclass logistic regression - ||

Adjust w_i to maximize log-likelihood on training data
- possibly regularizing by magnitude

But what is x?
- Olden days: by hand
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Multiclass logistic regression
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FIGURE 5.1: On the left, the learning curve for a logistic regression classifier trained
on MNIST data. Note the loss falls off quickly, then declines very slowly. The loss
plotted here is the loss for a particular batch after a step has been taken using the
gradient on that batch. Although the step follows the gradient, it may cause the
loss to rise because it goes too far along the gradient direction — there is no search
for a step length that guarantees descent and there are no second order terms here.
Nonetheless, because the steps are small and approximately in the right direction,
the loss declines. On the right, the error rate for the test set plotted at the end of
each epoch. Notice how this declines, but not monotonically.



“Modernity”
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Making features using layers of functions

Loss
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Another view of multiclass logistic regression

To softmax

el

softmax(u) = s(u) = ( ! e
XwEsw= (s ) |

uc
e(.

Abstract as:

Maps a vector to a vector
Nonlinearity applied to linear map

< Components of x e
Often referred to as a “fully connected layer”



Making features using layers of functions
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Training: gradient descent

The gradient is obtained by a
recursion. This follows from the

chain rule. Various autograds will work

it out for you.
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Multiple feature constructing layers
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Making features using layers of functions

Loss
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What do we need to classify?

FIGURE 6.12: On the left, a selection of digits from the MNIST dataset. Notice how
1mages of the same digit can vary, which makes classifying the image demanding.
It is quite usual that pictures of “the same thing” look quite different. On the right,
digit 1mages from MNIST that have been somewhat rotated and somewhat scaled,

then cropped fit the standard size. Small rotations, small scales, and cropping really
doesn’t affect the identity of the digit.
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FIGURE 6.13: Local patterns in images are quite informative. MNIST images, shown
here, are simple 1mages, so a small set of patterns is quite helpful. The relative
location of patterns is also informative. So, for example, an eight has two loops,
one above the other. All this suggests a key strateqy: construct features that respond
to patterns in small, localized neighborhoods; then other features that look at patterns
of those features; then others that look at patterns of those, and so on. Each pattern
(here line-endings, crossings and loops) has a range of appearances. For example,
a line ending sometimes has a little wiggle as in the three. Loops can be big and
open, or quite squashed. The list of patterns isn’t comprehensive. The “?” shows
patterns that I haven’t named, but which appear to be useful. In turn, this suggests
learning the patterns (and patterns of patterns; and so on) that are most useful for
classification.



Convolution

N = conv(Z,W)

where
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FIGURE 6.1: To compute the value of N at some location, you shift a copy of M to
lie over that location in I; you multiply together the non-zero elements of M and
T that lie on top of one another; and you sum the results.
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FIGURE 6.14: The effects of stride and padding on conv. On the left, conv without
padding accepts an L, places a 3 x 3 M on grid locations determined by the stride,
then reports values for valid windows. When the stride is 1, a 5 x 5 I becomes
a3 x3N. When the stride is 2, a 5 x 5 T becomes a 2 x 2 N'. The hatching
and shading show the window used to compute the corresponding value in N'. On
the right, conv with padding accepts an I, pads it (in this case, by one row top
and bottom, and one column left and right), places a 3 x 3 M on grid locations in
the padded result determined by the stride, then reports values for valid windows.
When the stride is 1, a 5 x 5 T becomes a 5 x 5 N'. When the stride is 2, a 5 x 5
T becomes a 3 x 3 N'. The hatching and shading show the window used to compute
the corresponding value in N .




Convolution

Think of this as a form of dot-product
- between kernel and window

Like dot-products
- largest value when kernel matches window
- smallest when kernel matches window with contrast reversal

-> SIMPLE PATTERN DETECTOR!
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The ReLU

r x>0
0 otherwise

) ={

Issue: contrast reversal in pattern

If we apply a relu to a conv, then
we have a *signed* pattern detector

A
Y



Basic pattern detector

Notice - not very many parameters
detects the same pattern at each location
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Generalizing convolution

Kemel block 2

Feature
map 2

Kemel block 1

FIGURE 6.15: On the left, two kernels (now 3D, as in the text) applied to a set of

feature maps produce one new feature map per kernel, using the procedure of the
text (the bias term isn’t shown). Abstract this as a process that takes an x x y x d

block to an X xY x D block (as on the right ).



Patterns of patterns of patterns....
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Stride and redundancy

The receptive field of a location in a data block (or, equivalently, a unit)
1s the set of image pixels that affect the value of the location. Usually, all that
matters 1s the size of the receptive field. The receptive field of a location in the
first convolutional layer will be given by the kernel of that layer. Determining the
receptive field for later layers requires some bookkeeping (among other things, you
must account for any stride or pooling effects).

If you have several convolutional layers with stride 1, then each block of data
has the same spatial dimensions. This tends to be a problem, because the pixels
that feed a unit in the top layer will tend to have a large overlap with the pixels that
feed the unit next to it. In turn, the values that the umts take will be similar, and
so there will be redundant information in the output block. It is usual to try and
deal with this by making blocks get smaller. One natural strategy is to occasionally
have a layer that has stride 2.



733,

Pooling 2x2s2 Pooling 3x3s2

FIGURE 7.1: In a pooling layer, pooling units compute a summary of their inputs,
then pass it on. The most common case is 2x2, illustrated here on the left. We tile
each feature map with 2x2 windows that do not overlap (so have stride 2). Pooling
units compute a summary of the inputs (usually either the mazx or the average),
then pass that on to the corresponding location in the corresponding feature map of
the output block. As a result, the spatial dimensions of the output block will be about
half those of the input block. On the right, the common alternative of pooling in
overlapping 3x3 windows with stride 2.



32x32x3 Data blocks
32x32x32
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FIGURE 7.3: Three different representations of the simple network used to classify
CIFAR-10 images for this example. Details in the text.



FIGURE 7.7: Visualizing the patterns that the final stage ReLU’s respond to for the
simple CIFAR example. FEach block of images shows the images that get the largest
output for each of 10 ReLU’s (the ReLU’s were chosen at random from the 6}
available in the top ReLU layer). Notice that these ReLU outputs don’t correspond
to class — these outputs go through a fully connected layer before classification — but
each ReLU are clearly responds to a pattern, and different ReLU’s respond more
strongly to different patterns.



Classification variants

Predict more labels with complex semantics

Predict a cost function from the image
- report the minimum

This allows
- Visual question answering
— function accepts question, offered answers and takes min at best
- Writing sentences
— choose sentence that minimizes cost



Situations

SPRAYING v
ROLE | VALUE ROLE VALUE ROLE | VALUE

FIREMAN
SOURCE ICEBERG SOURCE HOSE
OBETACLE WATER SUBSTANCE | WATER
DESTINATION ICEBERG DESTINATION FIRE
PLACE OUTDOOR PLACE OUTSIDE

Yatskar+Zettlemoyer+Farhadi 2016



Visual Question Answering

Q. What is the cat wearing? Q. What is the weatherlike? Q. What surface is this?
A. Hat A. Rainy A. Clay

[ . . - ‘
Q. What is the weather like? Q. What coloris the cat's eyes? Q. What toppings are on the pizza?
A. Sunny A. Green A. Mushrooms

Figure 1.22  Visual question answering systems produce natural language answers to
questions about images. It is difficult for a VQA system to hide ignorance in the way that a
captioning system can. Here the system is producing quite sensible answers to rather difficult
questions about the image (answers are typically chosen from a multiple choice set). Figure
courtesy of Devi Parikh, produced by a system described in “Making the V in VQA Matter:
Elevating the Role of Image Understanding in Visual Question Answering”’ by Goyal, Khot,
Summers-Stay, Batra, and Parikh and published in CVPR 2017.




doesn’t always work...

How many holes are in the pizza?
8 A. Brown

| 8
Q.
A.

Q. What letter is on the racket?
A w

Q. Why is the sign bent?
A. It's not

Figure 1.23  Because it is difficult for a VQA system to hide ignorance in the way that
a captioning system can, the mistakes can be informative and highlight how difficult it is
to produce accurate visual representations. For example, the system is guessing about the
number of holes in a pizza, because it doesn’t understand the conventions about what holes
are worth talking about, and it has real difficulty counting. Similarly, the system is describing
the cat’s leg as brown because it can’t localize the leg properly. Figure courtesy of Devi
Parikh, produced by a system described in “Making the V in VQA Matter: Elevating the
Role of Image Understanding in Visual Question Answering” by Goyal, Khot, Summers-
Stay, Batra, and Parikh and published in CVPR 2017.




Sentence generation

Decode features into sentence (with LSTM, etc)
- essentially classification with funky taxonomy

A baby eating a piece:ffood in A young boy eating a piece of cake
his mouth.

Angja et al, 2018



doesn’t always work...

And scoring system is easily subverted!

A small bird is perched on a branch A small brown bear is sitting

in the grass

Angja et al, 2018



Encoders
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A classifier

Encoder

o




*

Can train encoder *without labels

Encoder yields embedding of the image

Exploit data augmentation

- take image and
— crop+resize; adjust colormap; etc

Strategy: Contrastive learning

- Adjust embedding so that
— A and Augment(A) should be close
— A and B should be far

Then multiclass logistic regression when you have labels



SOA - rough summary

Very high accuracy with 1000’s of classes
- Using
— very deep residual networks
- clever trick to improve training convergence
— alternative feature construction methods

Classification wrt
- Object present

- Scene type
- Etc

Challenges
- tough with little training data (but encoders are somewhat interchangeable)
- change in dataset presents problems



Open questions

Rules of machine learning

- It all works when test data is “like” training data
— |ID samples from the same distribution
- All bets are off otherwise; very little theoretical support

Practice in computer vision

- ltis tough to tell when this condition occurs
- Mostly, itisn’'t imposed
— instead, we say that there was a generalization failure when classifier
doesn’t work

Q: Why don’t we get in trouble when we break the rules?

Q: Tell when datasets A, B are “compatible”
- In a crisp, formal way (rather than try and see)



Exploiting registration and classification

Use a classifier to tell:
- how far to the next intersection? 7 1 3\
- what s it like? A\
- is there a bike lane? A

- etc. Pred = 18.5 m




Road layout maps

Potential cues
- streetview
- openmaps



Partially supervised cues

Open Street Maps (OSM)

|

Map data: OpenStreetMap is an open-source mapping
project covering over 21 million miles of road. Unlike pro-
prietary maps, the underlying road coordinates and metadata
are freely available for download. Accuracy and overlap with
Google Maps is very high, though some inevitable noise is
present as information is contributed by individual volunteers
or automatically extracted from users’ GPS trajectories. For
example, roads in smaller cities may lack detailed annota-
tions (e.g., the number of lanes may be unmarked). These
inconsistencies result in varying-sized subsets of the data
being applicable for different attributes.

Seff+Xiao



Seff+Xiao
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Fig. 3. Intersection detection heatmap. Images are cropped from test set
GSV panoramas in the direction of travel indicated by the black arrow. The
probabilities of “approaching” an intersection output by the trained ConvNet
are overlaid on the road. (The images are from the ground level road, not
the bridge.)



Partially supervised cues

Google street view

Image collection: Google Street View contains panoramic
images of street scenes covering 5 million miles of road
across 3,000 cities. Each panorama has a corresponding
metadata file storing the panorama’s unique “pano_id”, geo-
graphic location, azimuth orientation, and the pano_ids of ad-
jacent panoramas. Beginning from an initial seed panorama,
we collect street view images by running a bread-first
search, downloading each image and its associated metadata
along the way. Thus far, our dataset contains one million
GSV panoramas from the San Francisco Bay Area. GSV
panoramas can be downloaded at several different resolutions
(marked as “zoom levels™). Finding the higher zoom levels

Seff+Xiaaunnecessary for our purposes, we elected to download at a
zoom level of 1, where each panorama has a size of 832x416
pixels.



Labelling - |

Match panoramas to roads
- panorama center location, orientation is known
- (essentially) project to plane
- thresholded nearest neighbor to road center polyline

— thresholding removes panoramas inside buildings,
etc.

- sSome noise
— under bridges, etc.

Annotations
- Intersections
- Drivable heading
- Heading angle
- Bike lane
- Speed limit, wrong way, etc.



Pred =0.1 m Pred =229 m
True=19m True =192 m True=224m

Fig. 4. Distance to intersection estimation. For images within 30 m of true
intersections, our model is trained to estimate the distance from the host car
to the center of the intersection across a variety of road types.

Seff+Xiao



Seff+Xiao

Fig. 5. Intersection topology is one of several attributes our model learns
to infer from an input GSV panorama. The blue circles on the Google
Maps extracts to the left show the locations of the input panoramas. The
pie charts display the probabilities output by the trained ConvNet of each
heading angle being on a driveable path (see Figure 3 for colormap legend).




p(driveable) = 0.002 p(driveable) =0.714 p(driveable) = 0.998

Fig. 6. Driveable headings. A ConvNet is trained to distinguish between
non-drivable headings (left) and drivable headings aligned with the road
(right). The ConvNet weakly classifies the middle example as drivable
because the host car’s heading is facing the alleyway between the buildings.

Seff+Xiao



Pred =-52.7° Pred =-18.3° Pred =31.6°
True = -49.1° True =-20.5° True =32.7°
Seff+Xiao
Fig. 7. Heading angle regression. The network learns to predict the
relative angle between the street and host vehicle heading given a single
image cropped from a GSV panorama. Below each GSV image, the graphic
visualizes the ground truth heading angle.



p(bike lane) = 0.043 p(bike lane) = 0.604 p(bike lane) = 0.988

Fig. 8. The ConvNet learns to detect bike lanes adjacent to the vehicle.
The GSV images are arranged from left to right in increasing order of
probability output by the ConvNet of a bike lane being present (ground
truth labels from left to right are negative, negative, positive). The middle
example contains a taxi lane, resulting in a weak false positive.

Seff+Xiao



Pred = 26.1 mph Pred = 30.0 mph Pred = 54.3 mph
True = 30 mph True = 50 mph True = 50 mph

Fig. 9. Speed limit regression. The network learns to predict speed limits
given a GSV image of road scene. The model significantly underestimates
the speed limit in the middle example as this type of two-way road with a
single lane in each direction would generally not have a speed limit as high
as 50 mph.

Seff+Xiao



p(one-way) = 0.207 p(one-way) = 0.226 p(one-way) = 0.848

Fig. 10. One-way vs. two-way road classification. The probability output
by the ConvNet of each GSV scene being on a one-way road is shown.
From left to right the ground truth labels are two-way, two-way, and one-

way. The image on the left is correctly classified as two-way despite the
absence of the signature double yellow lines.

Seff+Xiao



p(wrong way) =0.555 p(wrong way) =0.042  p(wrong way) =0.729

Fig. 11. Wrong way detection. The probability output by the ConvNet of
each GSV image facing the wrong way on the road is displayed. From left
to right the ground truth labels are wrong way, right way, and right way. For
two-way roads with no lane markings (left), this is an especially difficult
problem as it amounts to estimating the horizontal position of the host car.
The problem can also be quite ill-defined if there are no context clues as is
the case with the rightmost image.

Seff+Xiao



Pred=2 Picd =2 Pred. =3
True =1 True =2 True=2

Fig. 12.  Number of lanes estimation. The predicted and true number
of lanes for three roads are displayed along with the corresponding GSV
images. For streets without clearly visible lane markings (left), this is
especially challenging. Although the ground truth for the rightmost image
1s two lanes, there is a third lane that merges just ahead.

Seff+Xiao



At this point

| can tell from an image whether
- I'm pointing in the right direction
- going the right way
- facing an intersection
- available turns, etc.
- what and where street signs are

Can | build a reliable controller?



BIG GOOD QUESTIONS

Mashup of openmaps and street view
- it could predict drivable directions, steering directions, lanes, signs, etc.

Q: WHY IS THIS NOT DRIVING AROUND NOW?

- A: (pretty obviously) because it doesn’t work

Q: WHY NOT?

- A:interesting



Data Distribution Mismatch!
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Imitation learning

Approaches

- Imitation learning:
— Train a policy that does “the same thing” as an expert

Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

Real Road Image Simulsted Road Image

30x32 Video
Input Retina

“In addition, the network must not solely be shown examples of accurate driving, but also how to recover
(i.e. return to the road center) once a mistake has been made. Partial initial training on a variety of
simulated road images should help eliminate these difficulties and facilitate better performance. “ ALVINN:
An autonomous Land vehicle in a neural Network, Pomerleau 1989



Demonstration Augmentation: NVIDIA 2016

Recorded
steering
wheel angle | Adjust for shift Desired steering command
and rotation

Left camera
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Center camera and rotation CNN -
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“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not
sufficient. The network must learn how to recover from mistakes. ...”,

Fl'ag Egjdéﬁild NB-njng for Self-Driving Cars , Bojarski et al. 2016
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Regression

We must make image-like things from images

Running example:
- depth map from image

A depth map has the depth to closest surface at every pixel

- itis the same size as the image



Recall feature construction

Apply ‘pattern detector” to image
another to the result
- another to the result
- etc

- occasionally reducing the spatial size of the block of data representing patterns to
control redundancy

The resulting block of data is spatially small
- egin the (very simple) CIFAR network,
- 32x32x3-> 4x4x64

T

number of features
y size
X Size



We could now predict an image by..

Take pattern detector results and decode into pattern

“pattern producer”

Apply pattern producer to feature block

another to result
another to result
occasionally upsampling as required

Pattern producer is itself a convolution

a feature location detects a particular pattern
scale that pattern by the strength of the response, and place down

sum at overlap
=> convolution (sometimes called transpose convolution, inverse convolution)



Decoders
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Regression

Encoder Decoder

Sometimes known as a U-net

Skip connections

—
L

—
>

Encoder Decoder




Regression

Train with pairs (image, depth)
- Loss
— Squared error +abs value of error+other terms as required

Very powerful general recipe

- depth from image

- normal from image

- superresolution

- Semantic segmentation (classification-like, regression-like)

Variants
- more sophisticated encoder



Depth SOTA (early 23)

Monocular Depth Estimation on NYU-Depth V2

Leaderboard Dataset

Better

SENet-154

PenseDepth

v Other models  -»- Models with lowest RMSE

Time

https://paperswithcode.com/sota/monocular-depth-estimation-on-nyu-depth-v2



Normal SOTA (early 23)

Surface Normals Estimation on NYU Depth v2

Leaderboard Dataset

Better

Floors are Flat

Other models Models with highest % < 11.25

Time

https://paperswithcode.com/sota/surface-normals-estimation-on-nyu-depth-v2-1



Ghost(s) at the party

5]

D

Depth estimation [

Tremblay et al 20



Ghost(s) at the party

Semantic segmentation [65]

Tremblay et al 20



Further spectral manifestations

Image Crops

e




And a scary movie...
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Classification vs detection

Classification:

- thereis an X in this image
— what

Detection:
- there is an X HERE in this image
— what AND where

Key issues
- how to specify where
- relationship between what and where
— efficiency, etc
- evaluation
— surprisingly fiddly



Two threads

Localize then classify

- find boxes that likely contain objects
- decide what is in the box

YOLO: Localize while classifying
- in parallel, score
— boxes for “goodness of box”
— boxes for “what is in it”
- combine



Start simple

Where = axis aligned box

e Decide on a window shape: this is easy. There are two possibilities: a
box, or something else. Boxes are easy to represent, and are used for almost
all practical detectors. The alternative — some form of mask that cuts the
object out of the image — is hardly ever used, because it is hard to represent.

e Build a classifier for windows: this is easy — we’ve seen multiple construc-
tions for image classifiers.

e Decide which windows to look at: this turns out to be an interesting
problem. Searching all windows isn’t efficient.

e Choose which windows with high classifier scores to report: this is
interesting, too, because windows will overlap, and we don’t want to report
the same object multiple times in slightly different windows.

e Report the precise locations of all faces using these windows: this is
also interesting. It turns out our window is likely not the best available, and
we can improve it after deciding it contains a face.



Which window

Astonishing fact
- Easy to tell whether a region is likely to be an object
— even if you don’t know what object (Endres+Hoiem, 10; Uijlings et al 12)
— if it's an object
- there’s contrast with surroundings in texture, etc
— if not
- often neighbor region is similar



Selective Search

Construct hierarchy of image regions
- using a hierarchical segmenter

Rank regions using a learned score
Make boxes out of high-ranking regions



Selective search pipeline

Ground truth
- o~

Model False Positives Training Examples
Positive examples m’
Train SVM Search for ————  Add to training ’i
—— ey —————G -
(Histogram |n:rsecﬂon false positive: - examples
Difficult negatives Kemei)
—
if overlap with
positive 20-50%
Retrain

Figure 3: The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives
we use examples that have a 20-50% overlap with the positive examples. We iteratively add hard negatives using a retraining phase.

Uijlings et al, 12



You need to search at multiple scales

Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.



Simplest detector

Use selective search to propose boxes
Check boxes with classifier

BUT
- boxes likely overlap - non-maximum suppression

- boxes likely in poor location - bounding box
regression



Selective

FIGURE 18.6: A schematic picture of how R-CNN works. A picture of Inkosi Albert
Luthuli is fed in to selective search, which proposes possible boxes; these are cut
out of the image, and reshaped to fized size; the bores are classified (scores next
to each boz); mon-mazimum suppression finds high scoring bores and suppresses
nearby high scoring boxes (so his face isn’t found twice); and finally bounding box
regression adjusts the corners of the box to get the best fit using the features inside
the bozx.




Non maximum suppression

Deciding which windows to report presents minor but important problems.
Assume you look at 32 x 32 windows with a stride of 1. Then there will be many
windows that overlap the object fairly tightly, and these should have quite similar
scores. Just thresholding the value of the score will mean that we report many
instances of the same object in about the same place, which is unhelpful. If the
stride is large, no window may properly overlap the object and it might be missed.
Instead, most methods adopt variants of a greedy algorithm usually called non-
maximum suppression. First, build a sorted list of all windows whose score is
over threshold. Now repeat until the list is empty: choose the window with highest
score, and accept it as containing an object; now remove all windows with large
enough overlap on the object window.



Bounding box regression

Deciding precisely where the object is also presents minor but important prob-
lems. Assume we have a window that has a high score, and has passed through
non-maximum suppression. The procedure that generated the window does not
do a detailed assessment of all pixels in the window (otherwise we wouldn’t have
needed the classifier), so this window likely does not represent the best localization
of the object. A better estimate can be obtained by predicting a new bounding

box using a feature representation for the pixels in the current box. It’s natural to
use the feature representation computed by the classifier for this bounding box
regression step.



Selective

FIGURE 18.6: A schematic picture of how R-CNN works. A picture of Inkosi Albert
Luthuli is fed in to selective search, which proposes possible boxes; these are cut
out of the image, and reshaped to fized size; the bores are classified (scores next
to each boz); mon-mazimum suppression finds high scoring bores and suppresses
nearby high scoring boxes (so his face isn’t found twice); and finally bounding box
regression adjusts the corners of the box to get the best fit using the features inside
the bozx.




Neural net Cro Neural - i
‘ \ 'rop eural net Non-max Bounding box
Image —3p! feature —> ROIs [ ROT pool 1 Classifier —> Suppression regression —>
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Selective
Search

FIGURE 18.7: Fust R-CNN is much more efficient than R-CNN, because it computes
a single feature map from the image, then uses the boxes proposed by selective search
to cut regions of interest (ROI’s) from it. These are mapped to a standard size by
a ROI pooling layer, then presented to a classifier. The rest should be familiar.



Configuration spaces

You should think of a box as a point in a 4D space
- configuration space of the boxes

Selective search is weird
- networks don’t do lists much

Alternative
- sample the configuration space on some form of grid
— eg three aspect ratios, three scales, grid of locations
— important: many possible sampling schemes

- check each sample with rank score Anchor boxes

a7



Image

FIGURE 18.8: Faster RCNN wuses two networks.
“objectness” scores for a sampling of possible image bozes.
“anchor bozxes”) are each centered at a grid point. At each grid point, there are nine
boxes (three scales, three aspect ratios). The second is a feature stack that computes
a representation of the image suitable for classification.
objectness score are then cut from the feature map, standardized with ROI pooling,
then passed to a classifier. Bounding box regression means that the relatively coarse

Neural net
feature
stack

—> Rrois [

Crop

ROI pool

Neural net
Classifier

;5

Box proposal
network

Box non-max
Suppression

Non-max
Suppression

Bounding box
regression

The boxes with highest

One uses the image to compute
The samples (called

sampling of locations, scales and aspect ratios does not weaken accuracy.




Evaluating detectors

Compare detected boxes w ground truth boxes

Favor
- right number of boxes with right label in right place

Penalize

- awful lot of boxes
- multiple detections of the same thing



Strategy

Strategy:

- Detector makes a ranked list of boxes

- GT is a list of boxes

- Mark detector boxes with relevant/irrelevant
- summarize lists

Marking boxes:

- All are irrelevant, then
- For each GT box:
— Overlap measured as 10U (intersection over union)
— Find highest ranking box with largest overlap
— mark relevant if IOU> threshold



Precision

(number of relevant boxes marked)/(total number of boxes marked

Average precision

Plot curve by computing recall, precision
Obtained by taking top k boxes in list for
Different values of k

Average precision is area under curve

>
»

Recall = (Number of relevant boxes marked)/(Total number of relevant boxes)



Strategy

Strategy:
- Detector makes a ranked list of boxes
- GTis a list of boxes
- Mark detector boxes with relevant/irrelevant
- summarize lists

Summarize lists:

« Sort by box ranking
« Compute AP per class
« Compute average of AP

« MAP atlOU 0.5 has been standard for a while
« Higher IOU’s are harder.



YOLO

YOLO v8 is about as fast and accurate as you can get
link on webpage

key idea

- look at box scores, label values independently



We split the image into a grid
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Each cell predicts boxes and confidences: P(Object)







Each cell predicts boxes and confidences: P(Object)
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Each cell predicts boxes and confidences: P(Object)




redicts boxes and confidences: P(Object)
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Each cell predicts boxes and confidences: P(Object)
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Each cell also predicts a class probability.




Each cell also predicts a class probability.

Bicycle

Dog

EIIII Table.




Conditioned on object: P(Car | Object)

Bicycle

Dog

EIIIII Table




Then we combine the box and class predictions.







This parameterization fixes the output size

Each cell predicts:

- For each bounding box:

4 coordinates (x,y, w, h)
1 confidence value

- Some number of class
probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

7x7x(2x5+20)=7x7x30tensor = 1470 outputs

1st - 5th
Box #1

6th - 10th
Box #2

11th - 30th
Class Probabilities



Thus we can train one neural network to be a whole
detection pipeline

N
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Evaluation, YOLOvVS8

) val Speed Speed
Model size  mAP CPUONNX = A100 TensorrT  Params  FLOPs
(pixels) 50-95 (M) (B)
(ms) (ms)

YOLOvVS8n 640 37.3 80.4 0.99 3.2 8.7
YOLOvS8s 640 44.9 128.4 1.20 11.2 28.6
YOLOvBm = 640 50.2 234.7 1.83 25.9 78.9
YOLOvSI 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8

https://github.com/ultralytics/ultralytics



YOLOvV8 Tuning
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SOA and variants: rough summary

Very accurate detection for hundreds of categories

- with enough training data
- important variations in training data available
— you don’t have to put a box on everything

YOLO allows a tradeoff between speed and accuracy
- and can be very fast

Variants

Localization more accurate than boxes
Incorporate LIDAR, etc.

Boxes in 3D rather than 2D

Variant feature constructions are very important



Ghost(s) at the party

Object detection [ 73]

Tremblay et al 20



