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Follow an object from frame to frame

Eadweard Muybridge



Tracking – Why?
Motion capture

• build models of moving people from video

Recognition from motion
• eg cyclists move differently than runners

Surveillance
• who is doing what?

– for security (eg keep people out of sensitive areas in airports)
– for HCI (eg kinect, eyetoy, etc.)



Tracking - What
Establish state of object using time sequence

• state could be: 
– position; position+velocity; position+velocity+acceleration
– or more complex, eg all joint angles for a person

• Biggest problem -- Data Association
– which image pixels are informative, which are not?

Key ideas 
• Tracking by detection

– if we know what an object looks like, that selects the pixels to use
• Tracking through flow

– if we know how an object moves, that selects the pixels to use



Tracking by detection
Assume

• a very reliable detector (e.g. faces; back of heads)
• detections that are well spaced in images (or have distinctive properties)

– e.g. news anchors; heads in public

Link detects across time
• only one – easy
• More – weighted bipartite matching

Im
age i

Im
age i+1



Point tracks reveal public behaviour

Yan+Forsyth, 04



Some detections might fail…
Match measurements to abstract “tracks”
Strategy

• detect in each frame
• link detects to tracks using matching algorithm

– measurements with no track?  create new track
– tracks with no measurement? wait, then reap

• (perhaps) join tracks over time with global considerations

Link detects to tracks?





Issues

What detection and how to detect?
• Interest points
• Detector boxes (but you need to know the category)
• Other kinds of detector report

• Eg full kinematic body configuration
• Semantic search regions
• User delineated regions
• “Salient” regions

Using both detection and motion information
• Many moving objects move in quite predictable ways
• Use motion and detection together to predict state



Tracking by detection for interest points
Find interest points

Know window (say) in image (n)
Want to find corresponding window in (n+1)
Search over nearby windows

• to find one that minimizes SSD error (Sum of Squared Differences)

• where sum is over pixels in rectangle



Matching
Patch is at u, t; moves to u+h, t+1; h is small
Error is sum of squared differences

This is minimized when

substitute

get



Matching, II
We can tell if the match is good by looking at

• which will be poorly conditioned if matching is poor
– eg featureless region
– eg flow region



Matching, III
Previous test compares i and i+1
But the patch should be “well behaved” over long time scales

Compare N’th frame with first by
Compute affine transform M, c that minimizes LSE

Check value of LSE; too big? Reject track



Efros et al, 03



Interest points yield tracker and matcher

Combine:  
Collect multiple frames of person A

Track person B in video
For each box, match to best person A frame
Blend that in



Efros et al, 03



Track by flow (simple form)
Assume

• appearance unknown (but domain, parametric flow model known)
• optic flow assumptions, as before

Initialize
• mark out domain

Track
• choose flow model parameters that align domain in pic n with n+1 best
• push domain through flow model to get new domain



Issues

What detection and how to detect?
• Interest points
• Detector boxes (but you need to know the category)
• Other kinds of detector report

• Eg full kinematic body configuration
• Semantic search regions
• User delineated regions
• “Salient” regions

Using both detection and motion information
• Many moving objects move in quite predictable ways
• Use motion and detection together to predict state

These work like
Interest points

Issues: how do you 
describe a region?  
Region deforms



Using a motion model

Many objects move quite predictably
• Movement is slow wrt frame rate, OR
• Acceleration is small, OR
• Acceleration is fixed (eg movement under gravity)

So we know a lot about where the object is in the next frame
this should help our estimate 

Imagine detector is noisy, and movement is predictable 



A 1-D problem
Drop a measuring device on a cable down a hole 

• where is it?

Setup:
• measurement of depth

• actual distance down the hole

• known                    which will be normal, 

• known                       which will be normal, 

Q:    what is                     ?



A 1D problem, II

(Bayes rule), so that:

And:



A 1D problem, III

Notice that this is a normal distribution!   (check that the log is quadratic in theta)



A 1D problem, IV

Now we can recover parameters for

Write  



Pattern matching
Compare

and



A 1D problem, V

• Important checks
• What happens when the measurement is unreliable?
• What happens when the prior is very diffuse?



Summary, with change of notation



Now a second measurement arrives…
We know that                   is normal

• think of this as the prior

We know that                   is normal
• think of this as the likelihood

So:
• the posterior                                   must be normal
• and we can update as before!

Key points:
Can represent posteriors easily, cause they’re normal
Updates are easy

True in higher 
dimensions,
too, and very 
Important.  We’ll
cover in some
detail.



The 1D Example is too simple…

Notice we had multiple measurements, but the object didn’t 
move

Typical object:
• Start state then iterate

• Move
• Generate measurement

Typical tracking/filtering:
• Start with prior

• Predict new state resulting from movement
• Update prediction using new measurement



Filtering
The moving object has a state

• Position
• Position and velocity
• Position, velocity, acceleration
• Etc.

Every tick of time (eg at each frame)
• State is updated by a known (but possibly noisy) procedure
• Equivalently, the object moves
• There is a measurement of state, possibly noisy

Filtering
• Update some representation of state, using measurement and motion information

The big engine:  the Kalman Filter



Filtering                                           In the world

Object in state X_{i-1}, 
seen measurements Y_0, … Y_{i-1}

Object in state X_i,
seen measurements Y_0, … Y_{i-1}

Object in state X_i, 
seen measurements Y_0, … Y_i

State updates

Generate measurement

Represent P(X_{i-1}|Y_0, … Y_{i-1})

Represent P(X_i|Y_0, … Y_{i-1})

Represent P(X_i|Y_0, … Y_i)



Assumption: Linear dynamics and measurement

• State changes as:

• Measurements are:

This is a normal random variable with zero mean and known covariance

This is a (different!) normal random variable with zero mean and known covariance

Square matrix of full rank

Any matrix whose dimensions are OK



Examples
• Dynamical models
• Drifting points
• new state = old state + gaussian noise
• Points moving with constant velocity
• new position=old position + (dt) old velocity + gaussian noise
• new velocity= old velocity+gaussian noise
• Points moving with constant acceleration
• etc

• Measurement models
• state=position; measurement=position+gaussian noise
• state=position and velocity; measurement=position+gaussian noise
• but we could infer velocity
• state=position and velocity and acceleration; 

measurement=position+gaussian noise



Other notation

Read this as:  x_i  is normally 
distributed. The mean is a linear 
function of x_i-1 and
whose variance is known (and can 
depend on i). 

Read this as:  y_i  is normally 
distributed. The mean is a linear 
function of x_i and
whose variance is known (and can 
depend on i)



Important facts

is normal, by construction

Assume that                                  is normal

Then                                     and                             are normal

But this means that if P(X_0) is normal, all distributions are 
normal (induction!)
Important, because normal distributions are easy to represent



Checking…

• Probability distribution is normal iff it has the form:

• and you can check this for each of the relevant dists.



The steps

Have:

Construct:

Now construct:

Measurement arrives: 

Mean and covariance of posterior 
after i-1’th measurement

Mean and covariance of predictive
distribution just before i’th measurement

Mean and covariance of posterior
distribution just after i’th measurement

Represent P(X_{i-1}|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_i)



The Kalman Filter

• Dynamic Model

• Notation



Prediction

• We have:

This is a normal random variable with zero mean and known covariance



Prediction

• We have:

This is a normal random variable with zero mean and known covariance

Which yields….



Summary, with change of notation

posterior mean is weighted combo
of prior mean and measurement

posterior covar is weighted combo
of prior covar, measurement
matrix and measurement covar



posterior mean is weighted combo
of prior mean and measurement

posterior mean is weighted combo
of prior mean and measurement

posterior covar is weighted combo
of prior covar, measurement
matrix and measurement covar

posterior covar is weighted combo
of prior covar, measurement
matrix and measurement covar



The steps

Have:

Construct:

Now construct:

Measurement arrives: 

Mean and covariance of posterior 
after i-1’th measurement

Mean and covariance of predictive
distribution just before i’th measurement

Mean and covariance of posterior
distribution just after i’th measurement

Represent P(X_{i-1}|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_i)

posterior mean is weighted combo
of prior mean and measurement

posterior covar is weighted combo
of prior covar, measurement
matrix and measurement covar



The steps

Have

Construct:

Now construct:

Measurement arrives: 

Represent P(X_{i-1}|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_i)



Simple example:  tracking a ballistic object

Assumptions:  
Orthographic image, camera oriented so vertical (y) is gravity
Object is falling freely under gravity
Detector measures object position + noise



The object
State:

position, velocity, acceleration
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The object
Prior:

position and velocity could be pretty much anything
acceleration should be very close to gravity vector

Mean:                               Covariance

Where w is big and s is small
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Measurements

At i’th frame, we see:
x and z components of position + noise

So

Choose noise model, and we are done!
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The steps

Have

Construct:

Now construct:

Measurement arrives: 

Represent P(X_{i-1}|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_i)



Questions:

Can we estimate p_2 like this?

Why can we estimate velocity and acceleration?

Why go to all this trouble?



The steps

Have

Construct:

Now construct:

Measurement arrives: 

Represent P(X_{i-1}|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_i)



Example II:

• A simple translating car
• we supply a known demand to the accelerator,
• changing at each time step
• it sees 2 beacons (which are in its coordinate system)
• beacon 1 measured in car x but not y
• beacon 2 measured in car y but not x

• Q:
• recover filtered estimates of:
• position, velocity and acceleration in world coords



In world coordinates, car is at:

In car coordinates, beacon 1 measurement is:

In car coordinates, beacon 2 measurement is:



Dynamical model

• We supply a demand to the accelerator
• acceleration updates as noise (measured to be about the same as demand!)

• velocity by integrating acceleration

• position by integrating velocity



Stack the vectors to get:

Which gives:

Where:



Measurement model

• The acceleration at i should be demand
• +noise

• Beacons are in car coordinate system)
• beacon 1 measured in car x but not y
• beacon 2 measured in car y but not x



In world coordinates, car is at:

In car coordinates, beacon 1 measurement is:

In car coordinates, beacon 2 measurement is:



The acceleration demand

These are known constants Measurements from the beacons



The steps

Have

Construct:

Now construct:

Measurement arrives: 

Represent P(X_{i-1}|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_{i-1})

Represent P(X_i|Y_1, … Y_i)



Questions:

Why can we estimate position and velocity?

Why go to all this trouble?



Multiple slides lifted from L. Leal-Taixe’s slides at ICVSS 2022









Sometimes “causal”













TBD (to date)

Questions:
can we use dynamics to simplify matching? 
how do we represent similarity?



Recall Kalman Filter story

Have:

Construct:

Now construct:

Measurement arrives: 

Mean and covariance of posterior 
after i-1’th measurement

Mean and covariance of predictive
distribution just before i’th measurement

Mean and covariance of posterior
distribution just after i’th measurement

posterior mean is weighted combo
of prior mean and measurement

This predicts where
Boxes might be in
Next frame





Builld this into detectorXXXXXXXXXXXXXXXXXXXXXXX



Improvements

Adjust detector to predict next object location

Learn feature representations of boxes that get the tracks right





















Improvements

Adjust detector to predict next object location

Learn feature representations of boxes that get the tracks right





Simplest version

Train so that
embeddings for correct matches are similar
embeddings for wrong matches are different

More complicated
set up long term matching process (Graph neural network)

































Major problems remain

Long term occlusions present problems













Quick and (very) dirty guide to transformers - I

Mapping a sequence to a sequence is an important problem
eg machine translation

seq. of Latin words -> seq. of English words

but words affect other words, and are mangled as to order



Gallia est omnis divisa in partes tres; quarum unam incolunt Belgae, 

All Gaul is divided into three parts; of which the Belgians inhabit one, the Aquitanians 

aliam Aquitani, tertiam qui ipsorum linguā Celtae, nostrā Galli, 

(inhabit) another (part), (those) who are called Celts in their language, in ours Gauls, 

appellantur. Hi omnes linguā, institutīs, legibus inter se differunt. 

(inhabit) the third (part). All these differ amongst themselves in language, customs, (and) laws. 



Quick and (very) dirty guide to transformers - II

Idea: 
build architecture ensuring rep’n of pred word 

is affected by long range of inputs
*attention* 

word rep’n is weighted average of other word rep’ns
weights depend on “similarity” score

Outcome:
revolutionary improvements in machine translation accuracies



But images aren’t sequences…


























