Ray Intersections

CS 319

Advanced Topics in
Computer Graphics
John C. Hart

What about the normal?

- Let $\mathbf{n}=\left[\begin{array}{lll}a & b & c\end{array}\right]$ be a tangent plane
- Let $\mathbf{x}=\left[\begin{array}{lll}x y z & 1\end{array}\right]^{T}$ be a point
- Plane-point duality
- Planes are row vectors
- Points are column vectors
- Point \mathbf{x} in plane $\mathbf{n} \Leftrightarrow \mathbf{n} \mathbf{x}=0$
- Need to find \mathbf{n}^{\prime} such that $\mathbf{n}^{\prime} T \mathbf{x}=0$
- Notice $\mathbf{n} T^{-1} T \mathbf{x}=0$
- New normal $\mathbf{n}=\mathbf{n} T^{-1}=\left(T^{-1}\right)^{T} \mathbf{n}^{T}$
- Could also use the adjoint $\mathbf{n}^{\prime}=\mathbf{n} T^{*}$
- n' not necessarily unit length even if \mathbf{n} is

- But we'll need the inverse anyway

Normals and implicit surfaces

- Affine coordinates
- Homogenous coordinates

Matrix Inverse

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{llll}
a & b & c & x \\
d & e & f & y \\
g & h & i & z \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=(S T)^{-1}=\left(\left[\begin{array}{llll}
a & b & c & 0 \\
d & e & f & 0 \\
g & h & i & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right] \stackrel{-1}{\dot{广}} \dot{\vdots}\right. \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{llll}
a & b & c & 0 \\
d & e & f & 0 \\
g & h & i & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -x \\
0 & 1 & 0 & -y \\
0 & 0 & 1 & -z \\
0 & 0 & 0 & 1
\end{array}\right] \frac{1}{|S|}\left[\begin{array}{ccc}
e i-h f & c h-b i & b f-c e \\
f g-d i & a i-c g & c d-a f
\end{array} 0\right. \\
& S^{-1}=[\text { minors of S }]^{T}
\end{aligned}
$$

Don't need $1 /|S|$ if just need direction of transformed normal. Will have to renormalize anyway is S not special unitary.

Scene Graph

- Hierarchical representation of all objects in scene
- Transformation nodes
- Intersect kids by $T^{-1} \mathbf{r}$
- Returned normal $\left(T^{-1}\right)^{T} \mathbf{n}$
- Maintain $T^{-1}(\operatorname{not} T)$

Instancing

- Scene graph is a hierarchy
- Not necessarily a tree
- Directed acyclic graph (DAG)
- Nodes may have multiple parents
- Instance: Appearance of each node's geometry in scene

Fun with Instancing

Torus

- Product of two implicit circles

$$
\begin{gathered}
(x-R)^{2}+z^{2}-r^{2}=0 \\
(x+R)^{2}+z^{2}-r^{2}=0 \\
=\left(x^{2}-2 R x+R^{2}+z^{2}-r^{2}\right)\left(x^{2}+2 R x+R^{2}+z^{2}-r^{2}\right) \\
=x^{4}+2 x^{2} z^{2}+z^{4}-2 x 2 r^{2}-2 z 2 r^{2}+r^{4}-2 x^{2} R^{2}+ \\
2 z^{2} R^{2}-2 r^{2} R^{2}+R^{4} \\
=\left(x^{2}+z^{2}-r^{2}-R^{2}\right)^{2}+4 z^{2} R^{2}-4 r^{2} R^{2}
\end{gathered}
$$

- Surface of rotation: replace x^{2} with $x^{2}+y^{2}$

$$
f(x, y, z)=\left(x^{2}+y^{2}+z^{2}-r^{2}-R^{2}\right)^{2}+4 R^{2}\left(z^{2}-r^{2}\right)
$$

- Quartic!!!
- Up to four ray torus intersections

Ray-Object

Intersection

- Returns intersection in a hit record
- "Next" field enables hit record to hold a list of intersections
- List only non-negative intersection parameters
- Ray always originates outside
- If first $t=0$ then ray originated inside
- Parity classifies ray segments
- Odd segments "in"
- Even segments "out"

Constructive Solid Geometry

- Construct shapes from primitives using boolean set operations
- Union: $\mathrm{A} \cup \mathrm{B}, \mathrm{A}+\mathrm{B}, \mathrm{A}$ or B
- Intersection: $\mathrm{A} \cap \mathrm{B}, \mathrm{A} * \mathrm{~B}, \mathrm{~A}$ and B
- Difference: $\mathrm{A} \backslash \mathrm{B}, \mathrm{A}-\mathrm{B}, \mathrm{A}$ and not B

CSG Intersections

- List of t-values for $\mathrm{A}, \mathrm{B} \mathrm{w} /$ in-out classification

$$
\begin{aligned}
& \text { A.t_list }=\{0.9,3.1\}=\{0.9 \mathrm{in}, 3.1 \text { out }\} \\
& \text { B.t_list }=\{2.5,4.5\}=\{2.5 \mathrm{in}, 4.5 \text { out }\}
\end{aligned}
$$

- Use dot(r.d,n) to determine in,out
- Merge both lists into a single t-ordered list

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { 0.9 Ain Bout, } \\
\text { 2.5 Ain Bin, } \\
\text { 3.1 Aout Bin, } \\
\text { 4.5 Aout Bout }\}
\end{array}, ~=~\right.
\end{aligned}
$$

- Keep track of A and B in/out classification
- Use Roth table to classify t-values

$$
\begin{gathered}
\mathrm{A}+\mathrm{B} \quad=\{0.9 \mathrm{in}, \quad 2.5 \mathrm{in}, \\
3.1 \text { in, } \quad 4.5 \text { out }\}=\{0.9,4.5\} \\
\mathrm{A} * \mathrm{~B}=\{0.9 \text { out, } 2.5 \text { in, 3.1out, } 4.5 \text { out }\}=\{2.5,3.1\} \\
\mathrm{A}-\mathrm{B}=\{0.9 \text { in, } 2.5 \text { out, 3.1out, } 4.5 \text { out }\}=\{0.9,2.5\}
\end{gathered}
$$

Roth Table			
$\underline{\mathrm{Op}}$	A	B	Res
+	in	in	in
		out	in
	out	in	in
	out	out	out
*	in	in	in
	in	out	out
		in	out
	out	out	out
-	in	in	out
	in	out	in
	out	in	out
	out	out	out

Accelerating Ray Intersections

- Q: Why is basic ray tracing so slow?
- A: It intersects every ray with every primitive in every object
- Q: How can we make ray tracing faster?
- A: Coherence

Image coherence - neighboring pixel probably display same object
Spatial coherence - neighboring points probably exhibit same appearance
Temporal coherence - Pixels in neighboring frames probably display same object

Do we need 70K ray-triangle intersections for each ray?

Shadow Caching

- Any interloper between surface point \mathbf{x} and the light source \mathbf{s} will cast a shadow
- Doesn't matter how many
- Doesn't matter which is closest
- Stop ray intersections once any intersection found
- Neighboring shadowed surface points \mathbf{x} and \mathbf{x}^{\prime} probably shadowed by the same object
- Start shadow ray intersection search with object intersected in last shadow search

Bounding Volume

- Ray-bunny intersection takes 70K raytriangle intersections even if ray misses the bunny
- Place a sphere around bunny
- Ray A misses sphere so ray A misses bunny without checking 70 K ray-triangle intersections
- Ray B intersects sphere but still misses bunny after checking 70K intersections
- Ray C intersects sphere and intersects bunny
- Can also use axis-aligned bounding
 box
- Easier to create for triangle mesh

Bounding Volume Hierarchy

- Associate bounding volume with each node of scene graph
- If ray misses a node's bounding volume, then no need to check any node beneath it

- If ray hits a node's BV, then replace it with its children's BV's (or geometry)
- Breadth first search of tree
- Maintain heap ordered by ray-BV intersection t-values
- Explore children of node w/least pos. ray-BV t-value

Grids

- Encase object in a 3-D array of cubic cells
- Each cell contains list of all triangles it contains or intersects
- Rasterize ray to find which cells it intersects
- 3D Bresenham algorithm

- All cells that contain any part of ray
- Working from first ray-cell to last...
- Find least positive intersect of ray with triangles in cell's list
- If no intersection, move on to next cell

Tagging

- Ray-object intersection test valid for ray with entire object
- not just portion of object inside current cell
- Need only intersect object once for each ray
- In cell A - list $=\{\# 1\}$
- Intersect \mathbf{r} with \#1? Yes
- Miss [圈 Tag \#1 with no-intersection
- In cell $B-$ list $=\{\# 2\}$
- Intersect \mathbf{r} with \#2? Yes
- ray \mathbf{r} hits object \#2 but later in cell C
- Tag object \#2 with intersection-at-C
- In cell C - list $=\{\# 1, \# 2\}$
- Intersect \mathbf{r} with \#1? No (no-intersection)
- Intersect \mathbf{r} with \#2? No (intersection-at-D)

- In cell $D-$ list $=\{\# 2\}$
- Intersect \mathbf{r} with \#2? No (intersection-at- D)

Other Partitioning
 Structures

- Octree
- Ray can parse through large empty areas
- Requires less space than grid
- Subdivision takes time
- Binary Space Partition (BSP) Tree
- Planes can divide models nearly in half
- Trees better balanced, shallower
- Added ray-plane intersections

