
Ray Intersections

CS 319
Advanced Topics in
Computer Graphics

John C. Hart

What about the
normal?
• Let n = [a b c d] be a tangent plane
• Let x = [x y z 1]T be a point
• Plane-point duality

– Planes are row vectors
– Points are column vectors

• Point x in plane n ⇔ n x = 0
• Need to find n’ such that n’ T x = 0
• Notice n T-1 T x = 0
• New normal n’ = n T-1 = (T-1)T nT

• Could also use the adjoint n’ = n T*

– n’ not necessarily unit length even if n is
– But we’ll need the inverse anyway

f(x) = 0

f(T-1x)=0

Tx

x
n

n’

T

Normals and implicit surfaces

• Affine coordinates
• Homogenous coordinates

Matrix Inverse

S-1 = [minors of S]T

Don’t need 1/|S| if just need direction
of transformed normal. Will have to
renormalize anyway is S not special unitary.

Scene Graph

• Hierarchical representation of all
objects in scene

• Transformation nodes
– Intersect kids by T-1 r
– Returned normal (T-1)T n
– Maintain T-1 (not T)

Scale 2,2,2
Xlate 2,0,0

Xlate 2,2,0
Scale .5,1,.5

Xlate -2,0,0 Xlate 2,0,0

Instancing

• Scene graph is a hierarchy
• Not necessarily a tree
• Directed acyclic graph (DAG)
• Nodes may have multiple parents
• Instance: Appearance of each node’s

geometry in scene

Scale 2,2,2
Xlate 2,0,0

Xlate -1,0,0 Xlate 1,0,0

Scale .5,1,.5

Xlate 2,2,0

Fun with Instancing

Image
courtesy
John
Amanatides

Torus

• Product of two implicit circles
 (x – R)2 + z2 – r2 = 0
 (x + R)2 + z2 – r2 = 0

 ((x – R)2 + z2 – r2)((x + R)2 + z2 – r2)
= (x2 – 2Rx + R2 + z2 – r2) (x2 + 2Rx + R2 + z2 – r2)

= x4 + 2x2z2 + z4 – 2x2r2 – 2z2r2 + r4 – 2x2R2 +
2z2R2 – 2r2R2 + R4

= (x2 + z2 – r2 – R2)2 + 4z2R2 – 4r2R2

• Surface of rotation: replace x2 with x2 + y2

f(x,y,z) = (x2 + y2 + z2 – r2 – R2)2 + 4R2(z2 – r2)

• Quartic!!!

• Up to four ray torus intersections

R

r
x

z

Ray-Object
Intersection
• Returns intersection in a hit record
• “Next” field enables hit record to hold

a list of intersections
• List only non-negative intersection

parameters
• Ray always originates outside

– If first t = 0 then ray originated
inside

• Parity classifies ray segments
– Odd segments “in”
– Even segments “out”

in

out

in

out

in

out

in

out

Constructive Solid
Geometry
• Construct shapes from primitives using

boolean set operations
• Union: A∪B, A + B, A or B

• Intersection: A∩B, A*B, A and B

• Difference: A\B, A–B, A and not B

A

B

A∪B A∩B A–B

B–A

Roth Table

Op A B Res
+ in in in
 in out in
 out in in
 out out out
* in in in
 in out out
 out in out
 out out out
– in in out
 in out in
 out in out
 out out out

CSG Intersections

• List of t-values for A, B w/in-out classification
A.t_list = {0.9, 3.1} = {0.9in, 3.1out}
B.t_list = {2.5, 4.5} = {2.5in, 4.5out}

– Use dot(r.d,n) to determine in,out
• Merge both lists into a single t-ordered list

 { 0.9 Ain Bout,
 2.5 Ain Bin,
 3.1 Aout Bin,
 4.5 Aout Bout }
– Keep track of A and B in/out classification

• Use Roth table to classify t-values

A+B = {0.9in, 2.5in,
 3.1in, 4.5out} = {0.9, 4.5}

A*B = {0.9out, 2.5in, 3.1out, 4.5out} = {2.5, 3.1}

A-B = {0.9in, 2.5out,3.1out, 4.5out} = {0.9, 2.5}

A B

A.t0 A.t1B.t0 B.t1

0.9 2.5 3.1 4.5

Accelerating Ray
Intersections
• Q: Why is basic ray tracing so slow?
• A: It intersects every ray with every

primitive in every object
• Q: How can we make ray tracing

faster?
• A: Coherence

Image coherence – neighboring pixels
probably display same object

Spatial coherence – neighboring
points probably exhibit same
appearance

Temporal coherence – Pixels in
neighboring frames probably
display same object

Stanford Bunny
~70K triangles

Do we need 70K ray-triangle
intersections for each ray?

Shadow Caching

• Any interloper between surface point x
and the light source s will cast a
shadow
– Doesn’t matter how many
– Doesn’t matter which is closest
– Stop ray intersections once any

intersection found
• Neighboring shadowed surface points

x and x’ probably shadowed by the
same object
– Start shadow ray intersection search

with object intersected in last
shadow search

x x’

A

B

C

s

Bounding Volume

• Ray-bunny intersection takes 70K ray-
triangle intersections even if ray
misses the bunny

• Place a sphere around bunny
– Ray A misses sphere so ray A

misses bunny without checking
70K ray-triangle intersections

– Ray B intersects sphere but still
misses bunny after checking 70K
intersections

– Ray C intersects sphere and
intersects bunny

• Can also use axis-aligned bounding
box
– Easier to create for triangle mesh

A

B
C

Bounding Volume
Hierarchy
• Associate bounding volume with each

node of scene graph
• If ray misses a node’s bounding

volume, then no need to check any
node beneath it

• If ray hits a node’s BV, then replace it
with its children’s BV’s (or geometry)

• Breadth first search of tree
– Maintain heap ordered by ray-BV

intersection t-values
– Explore children of node

w/least pos. ray-BV t-value

A

B
C

Bunny BV

Body BVHead BV

L.EarFace R.EarBV BV BV

Grids

• Encase object in a 3-D array of cubic
cells

• Each cell contains list of all triangles it
contains or intersects

• Rasterize ray to find which cells it
intersects
– 3D Bresenham algorithm
– All cells that contain any part of ray

• Working from first ray-cell to last…
– Find least positive intersect of ray

with triangles in cell’s list
– If no intersection, move on to next

cell

Tagging

#1

#2
A

C

B

• Ray-object intersection test valid for ray with
entire object
– not just portion of object inside current cell

• Need only intersect object once for each ray
• In cell A – list = {#1}

– Intersect r with #1? Yes
• Miss Tag #1 with no-intersection

• In cell B – list = {#2}
– Intersect r with #2? Yes

• ray r hits object #2 but later in cell C
• Tag object #2 with intersection-at-C

• In cell C – list = {#1,#2}
– Intersect r with #1? No (no-intersection)
– Intersect r with #2? No (intersection-at-D)

• In cell D – list = {#2}
– Intersect r with #2? No (intersection-at-D)

r
D

Other Partitioning
Structures
• Octree

– Ray can parse through large empty
areas

– Requires less space than grid
– Subdivision takes time

• Binary Space Partition (BSP) Tree
– Planes can divide models nearly in

half
– Trees better balanced, shallower
– Added ray-plane intersections

