Central issues in modelling

- Construct families of curves, surfaces and volumes that
- can represent common objects usefully;
- are easy to interact with; interaction includes:
- manual modelling;
- fitting to measurements;
- support geometric computations
- intersection
- collision
- Main topics:
- curves
- surfaces
- volumes
- deformation
- Simple curves
- Simple surfaces
- Continuity and splines
- Bezier surfaces and spline surfaces
- Volume models
- Animation

Parametric vs Implicit

- A parametric curve is given as a function of parameters Examples:
- circle as $(\cos t, \sin t)$
- twisted cubic as $(\mathrm{t}, \mathrm{t} * \mathrm{t}, \mathrm{t} * \mathrm{t} * \mathrm{t})$
- A parametric surface is given as a function of parameters.
Examples:
- sphere as $(\cos s \cos t, \sin s \cos t, \sin t)$
- Advantage - easy to compute normal, easy to render, easy to put patches together.
- Disadvantage - ray tracing is hard
- An implicit curve is given by the vanishing of some functions
- circle on the plane, $\quad x^{*} x$ $+y * y-r * r=0$
- twisted cubic in space, $x * y-z=0, x * z-y * y=0, x * x-y=0$
- An implicit surface is given by the vanishing of some functions
- sphere in space $x^{*} x+y * y$
$+\mathrm{z}^{*} \mathrm{z}-\mathrm{r} * \mathrm{r}=0$
- plane
$a x+b y+c z+d=0$

Interpolation

- Construct a parametric curve that passes through (interpolates) a set of points.
- Lagrange interpolate:
- give parameter values associated with each point
- use Lagrange polynomials (one at the relevant point, zero at all others) to construct curve
- curve is:

Hermite curves

- Hermite interpolate
- give parameter values and derivatives associated with each point
- curve passes through given point and the given derivative at that parameter value
- curve is:
- use Hermite polynomials to construct curve
- one at some parameter value and zero at others or
- derivative one at some parameter value, and zero at others

Extruded surfaces

- Geometrical model - Pasta machine
- Take curve and "extrude" surface along vector
- Many human artifacts have this form - rolled steel, etc.

$$
(x(s, t), y(s, t), z(s, t))=\left(x_{c}(s), y_{c}(s), z_{c}(s)\right)+t\left(v_{0}, v_{1}, v_{2}\right)
$$

Cones

- From every point on a curve, construct a line segment through a single fixed point in space - the vertex
- Curve can be space or plane curve, but shouldn't pass through the vertex

$$
(x(s, t), y(s, t), z(s, t))=(1-t)\left(x_{c}(s), y_{c}(s), z_{c}(s)\right)+t\left(v_{0}, v_{1}, v_{2}\right)
$$

Surfaces of revolution - 1

- Plane curve + axis

$$
(x(s, t), y(s, t), z(s, t))=
$$

- "spin" plane curve around axis to get surface
$\left(x_{c}(s) \cos (t), x_{c}(s) \sin (t), z_{c}(s)\right)$
- Choice of plane is arbitrary, choice of axis affects surface
- In this case, curve is on $\mathrm{x}-\mathrm{z}$ plane, axis is z axis.

Surfaces of revolution -2

Many artifacts are SOR's, as they're easy to make on a lathe.

Controlling is quite easy concentrate on the cross section.

Axis crossing cross-section leads to ugly geometry.

Ruled surfaces -1

- Popular, because it's easy to build a curved surface out of straight segments - eg pavilions, etc.
- Take two space curves, and join corresponding points - same s with line segment.
- Even if space curves are lines, the

$$
\begin{aligned}
& (x(s, t), y(s, t), z(s, t))= \\
& (1-t)\left(x_{1}(s), y_{1}(s), z_{1}(s)\right)+ \\
& t\left(x_{2}(s), y_{2}(s), z_{2}(s)\right)
\end{aligned}
$$ surface is usually curved.

Ruled Surfaces - 2

Normals

- Recall: normal is cross product of tangent in t direction and s direction.
- Cylinder: normal is cross-product of curve tangent and direction vector
- SOR: take curve normal and spin round axis

Rendering

- Cylinders: small steps along curve, straight segments along t generate polygons; exact normal is known.

Rendering

- Cone: small steps in s generate straight edges, join with vertex to get triangles, normals known exactly except at vertex.

Rendering

- SOR: small steps in s generate strips, small steps in t along the strip generate edges; join up to form triangles. Normals known exactly.

Rendering

- Ruled surface: steps in s generate polygons, join opposite sides to make triangles - otherwise "non planar polygons" result. Normals known exactly.

Bezier curves- 1

- obtained by iterated linear interpolation
- process is known as DeCasteljau's algorithm

Bezier curves - II

- Blending functions are the Bernstein polynomials

$$
\begin{aligned}
& c(t)=\sum_{i=0}^{n} p_{i} B_{i}^{n}(t) \\
& B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{i}
\end{aligned}
$$

- e.g. two points

Bezier curves - III

- Bernstein polynomials have several important properties
- they sum to 1 , hence curve lies within convex hull of control points
- curve interpolates its endpoints
- curve's tangent at start lies along the vector from p0 to p1
- tangent at end lies along vector from pn-1 to pn

Bezier curve tricks - I

- "Pull" a curve toward a control point by doubling the control point

Bezier curve tricks-II

- Close the curve by making last point and first point coincident
- curve has continuous tangent if first segment and last segment are collinear

Subdivision for Bezier curves

- Use De Casteljau (repeated linear interpolation) to identify points.
- Points as marked in figure give two control polygons, for two Bezier curves, which lie on top of the original.
- Repeated subdivision leads to a polygon that lies very close to the curve
- Limit of subdivision proces is a curve

Fig. 4.5. Decomposition of a Bézier curve into two C^{3} continuous curve segments (cf. Fig. 4.4).

de Casteljau Algorithm

- Cascading lerps

$$
\begin{aligned}
& \mathbf{p}_{01}=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1} \\
& \mathbf{p}_{12}=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2} \\
& \mathbf{p}_{23}=(1-t) \mathbf{p}_{2}+t \mathbf{p}_{3} \\
& \mathbf{p}_{012}=(1-t) \mathbf{p}_{01}+t \mathbf{p}_{12} \\
& \mathbf{p}_{123}=(1-t) \mathbf{p}_{12}+t \mathbf{p}_{23} \\
& \mathbf{p}_{0123}=(1-t) \mathbf{p}_{012}+t \mathbf{p}_{123}
\end{aligned}
$$

- Subdivides curve at \mathbf{p}_{0123}
$-\mathbf{p}_{0} \mathbf{p}_{01} \mathbf{p}_{012} \mathbf{p}_{0123}$
$-\mathbf{p}_{0123} \mathbf{p}_{123} \mathbf{p}_{23} \mathbf{p}_{3}$
- Repeated subdivision converges to curve

Degree Elevation

- Used to add more control over a curve
- Start with
$\Sigma \mathbf{p}_{i}\left({ }_{i}^{n}\right) t^{i}(1-t)^{n-i}=\Sigma \mathbf{q}_{i}\left({ }_{i}^{n+1}\right) t^{i}(1-t)^{n+1-i}$
- Now figure out the \mathbf{q}_{i}

$$
\begin{gathered}
\left.\quad(t+(1-t)) \Sigma \mathbf{p}_{i}{ }^{n}{ }_{i}\right) t^{i}(1-t)^{n-i} \\
=\Sigma \mathbf{p}_{i}\binom{n}{i}\left(t^{i}(1-t)^{n+1-i}+t^{i+1}(1-t)^{n-i}\right)
\end{gathered}
$$

- Compare coefficients

$$
\begin{gathered}
\left.\mathbf{q}_{i}{ }^{(n+1}\right)=\mathbf{p}_{i}\left({ }_{n}{ }_{i}\right)+\mathbf{p}_{i-1}\left({ }_{i-1}\right) \\
\mathbf{q}_{i}=(i /(n+1)) \mathbf{p}_{i-1}+(n+1-i /(n+1)) \mathbf{p}_{i}
\end{gathered}
$$

- Repeated elevation converges to curve

Interpolating Splines

Fig 2.16a. Interpolation

- Key idea:
- high degree interpolates are badly behaved->
- construct curves out of low degree segments by a polynomial of degree 4 .

Fig 2.16c. Interpolation by a polynomial of degree 14 .

Interpolating Splines - II

- $\mathrm{n}+1$ points;
- write derivatives X'
- X_{i} is spline for interval between P_{i} and $\mathrm{P}_{\mathrm{i}+1}$

Fig. 3.11. The spline segment \boldsymbol{X}_{i}.

Interpolating Splines - II

- bolt together a series of Hermite curves with equivalent derivatives.
- But where are the derivative values to come from?
- Measurements
- Combination of points
- Continuity considerations
- Cardinal splines
- average points
- t is "tension"
- specify endpoint tangents
- or use difference between first two, last two points

$$
\begin{aligned}
& P_{k}=\left(\frac{1}{2}\right)(1-t)\left(P_{k+1}-P_{k-1}\right) \\
& P_{k+1}=\left(\frac{1}{2}\right)(1-t)\left(P_{k+2}-P_{k}\right)
\end{aligned}
$$

Tension

Interpolating Splines

- Intervals:

$$
a=t_{0}<t_{1}<t_{2}<\cdots<t_{N-1}<t_{N}=b
$$

- t values often called "knots"

$$
\Delta t_{i}:=t_{i+1}-t_{i}
$$

- Spline form:

$$
\begin{array}{r}
\boldsymbol{X}_{i}(t):=\boldsymbol{A}_{i}\left(t-t_{i}\right)^{3}+\boldsymbol{B}_{i}\left(t-t_{i}\right)^{2}+\boldsymbol{C}_{i}\left(t-t_{i}\right)+\boldsymbol{D}_{i} \\
t \in\left[t_{i}, t_{i+1}\right], \quad i=0(1) N-1
\end{array}
$$

Continuity

- Require at endpoints:
- endpoints equal

$$
\begin{equation*}
\boldsymbol{X}_{i}\left(t_{i}\right)=\boldsymbol{X}_{i-1}\left(t_{i}\right) \tag{or}
\end{equation*}
$$

$\boldsymbol{X}_{i}\left(t_{i+1}\right)=\boldsymbol{X}_{i+1}\left(t_{i+1}\right)$,

- 1'st derivatives equal
- 2'nd
$\boldsymbol{X}_{i}^{\prime}\left(t_{i}\right)=\boldsymbol{X}_{i-1}^{\prime}\left(t_{i}\right) \quad$ or
$\boldsymbol{X}_{i}^{\prime}\left(t_{i+1}\right)=\boldsymbol{X}_{i+1}^{\prime}\left(t_{i+1}\right)$,
derivatives
equal
- From endpoint and 1'st derivative:

$$
\begin{array}{ll}
\boldsymbol{X}_{i}\left(t_{i}\right)=\boldsymbol{P}_{i}=\boldsymbol{D}_{i}, & \boldsymbol{X}_{i}\left(t_{i+1}\right)=\boldsymbol{P}_{i+1}=\boldsymbol{A}_{i} \Delta t_{i}^{3}+\boldsymbol{B}_{i} \Delta t_{i}^{2}+\boldsymbol{C}_{i} \Delta t_{i}+\boldsymbol{D}_{i}, \\
\boldsymbol{X}_{i}^{\prime}\left(t_{i}\right)=\boldsymbol{P}_{i}^{\prime}=\boldsymbol{C}_{i}, & \boldsymbol{X}_{i}^{\prime}\left(t_{i+1}\right)=\boldsymbol{P}_{i+1}^{\prime}=3 \boldsymbol{A}_{i} \Delta t_{i}^{2}+2 \boldsymbol{B}_{i} \Delta t_{i}+\boldsymbol{C}_{i},
\end{array}
$$

- So that

$$
\begin{aligned}
& \boldsymbol{A}_{i}=\frac{1}{\left(\Delta t_{i}\right)^{3}}\left[2\left(\boldsymbol{P}_{i}-\boldsymbol{P}_{i+1}\right)+\Delta t_{i}\left(\boldsymbol{P}_{i}^{\prime}+\boldsymbol{P}_{i+1}^{\prime}\right)\right], \\
& \boldsymbol{B}_{i}=\frac{1}{\left(\Delta t_{i}\right)^{2}}\left[3\left(\boldsymbol{P}_{i+1}-\boldsymbol{P}_{i}\right)-\Delta t_{i}\left(2 \boldsymbol{P}_{i}^{\prime}+\boldsymbol{P}_{i+1}^{\prime}\right)\right] .
\end{aligned}
$$

- Yielding:

$$
\begin{aligned}
& \boldsymbol{X}_{i}(t)= \\
& \boldsymbol{P}_{i}\left(2 \frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{3}}-3 \frac{\left(t-t_{i}\right)^{2}}{\left(\Delta t_{i}\right)^{2}}+1\right)+\boldsymbol{P}_{i+1}\left(-2 \frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{3}}+3 \frac{\left(t-t_{i}\right)^{2}}{\left(\Delta t_{i}\right)^{2}}\right) \\
& +\boldsymbol{P}_{i}^{\prime}\left(\frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{2}}-2 \frac{\left(t-t_{i}\right)^{2}}{\Delta t_{i}}+\left(t-t_{i}\right)\right)+\boldsymbol{P}_{i+1}^{\prime}\left(\frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{2}}-\frac{\left(t-t_{i}\right)^{2}}{\Delta t_{i}}\right)
\end{aligned}
$$

- Second Derivative:

$$
\begin{aligned}
\boldsymbol{X}_{i}^{\prime \prime}(t) & =6 \boldsymbol{P}_{i}\left(\frac{2\left(t-t_{i}\right)}{\left(\Delta t_{i}\right)^{3}}-\frac{1}{\left(\Delta t_{i}\right)^{2}}\right)+6 \boldsymbol{P}_{i+1}\left(-2 \frac{\left(t-t_{i}\right)}{\left(\Delta t_{i}\right)^{3}}+\frac{1}{\left(\Delta t_{i}\right)^{2}}\right) \\
& +2 P_{i}^{\prime}\left(3 \frac{\left(t-t_{i}\right)}{\left(\Delta t_{i}\right)^{2}}-\frac{2}{\Delta t_{i}}\right)+2 \boldsymbol{P}_{i+1}^{\prime}\left(\frac{3\left(t-t_{i}\right)}{\left(\Delta t_{i}\right)^{2}}-\frac{1}{\Delta t_{i}}\right)
\end{aligned}
$$

- Want:

$$
\boldsymbol{X}_{i-1}^{\prime \prime}\left(t_{i}\right)=\boldsymbol{X}_{i}^{\prime \prime}\left(t_{i}\right)
$$

$$
\begin{aligned}
\Delta t_{i} \boldsymbol{P}_{i-1}^{\prime}+2 & \left(\Delta t_{i-1}+\Delta t_{i}\right) \boldsymbol{P}_{i}^{\prime}+\Delta t_{i-1} \boldsymbol{P}_{i+1}^{\prime} \\
& =3 \frac{\Delta t_{i-1}}{\Delta t_{i}}\left(\boldsymbol{P}_{i+1}-\boldsymbol{P}_{i}\right)+3 \frac{\Delta t_{i}}{\Delta t_{i-1}}\left(\boldsymbol{P}_{i}-\boldsymbol{P}_{i-1}\right)
\end{aligned}
$$

Missing equations

- Recurrence relations represent $\mathrm{d}(\mathrm{n}-1)$ equations in $\mathrm{d}(\mathrm{n}+1)$ unknowns (d is dimension)
- We need to supply the derivative at the start and at the finish (or two equivalent constraints)
- Options:
- second derivatives vanish at each end (natural spline)
- give slopes at the boundary
- vector from first to second, second last to last
- parabola through first three, last three points
- third derivative is the same at first, last knot

Parametric vs Geometric Continuity

- Parametric continuity:
- The curve and derivatives up to k are continuous as a function of parameter value
- C^{k}
- Useful for (for example) animation
- e.g. the interpolating spline from above
- Geometric continuity
- curve, derivatives up to k'th are the same for equivalent parameter values
- i.e. there exists a reparametrisation that would achieve parametric continuity
- D^{k}
- Useful, because we often don't require parametric continuity,
- e.g. take two Hermite curves, both parametrised by $[0,1]$, identify endpoints and derivatives

More on Geometric Continuity

- Tangent direction is invariant to translation and parametrisation - so we can use this to get G1 continuity.
- G2 - use curvature
- property of a curve that is invariant to rotation and translation, and also reparametrisation
- ($1 /$ radius) for best fitting circle
- the circle whose 2 nd derivative is the same as the curve's
- (equivalent) a circle that intersects the curve in three points arbitrarily close
- Formula
- ($\left.x^{\prime \prime} y^{\prime}-y^{\prime \prime} x^{\prime}\right) /\left(x^{\prime 2}+y^{\prime 2}\right)^{(3 / 2)}$
- $\mathrm{dN} / \mathrm{ds}=\mathrm{kN}$ for N the unit normal

Keep in mind

- Lagrange and Hermite interpolates of the same degree are the same families of curves
- they just have different control structures
- The interpolating cubic spline is equivalent to a bunch of Hermite cubics, with a different control structure
- we got the derivatives from the second derivative constraint
- The line of reasoning for interpolating cubic splines works for higher degrees, too
- but we must either use more derivatives, or supply more information
- Cubic is the most important case, because cubic splines (rather roughly) look like wooden splines
- We chose parameter values for the interpolating curve
- different choices lead to different curves

Spline blending functions

- "Switches" turn blending functions on and off
- E.g. a piecewise cubic spline obtained by attaching two Hermite curves to one another
- In principle, there are 8 blending functions (4 points and 4 derivatives)
- Actually, two points and two derivatives are the same
- 6 blending functions
- these are piecewise cubic, easily sketched
- The properties of the blending functions are what's important
- Now let's consider splines that don't interpolate, by concentrating on the blending functions

B-splines - I

- We obtain a set of blending functions by a recursive definition, with "switches" at the base of the recursion
- Curve:

$$
X(t)=\sum_{k=0}^{n} P_{k} B_{k, d}(t)
$$

- where d (called the "order") is:

$$
2 \leq d \leq n+1
$$

B-Spline Blending Functions

- Knots
- idea: parameter values where curve segments meet, as in Hermite example
$\left(t_{0}, t_{1}, \ldots, t_{n+d}\right)$
where $t_{0} \leq t_{1} \leq \ldots \leq t_{n+d}$
- Blending functions

$$
\begin{aligned}
B_{k, 1}(t) & =\left\{\begin{array}{cc}
1 & t_{k} \leq t \leq t_{k+1} \\
0 & \text { otherwise }
\end{array}\right. \\
B_{k, d}(t) & =\left(\frac{t-t_{k}}{t_{k+d-1}-t_{k}}\right) B_{k, d-1}(t)+ \\
& \left(\frac{t_{k+d}-t}{t_{k+d}-t_{k+1}}\right) B_{k+1, d-1}(t)
\end{aligned}
$$

Fig. 4.22c. The B-splines N_{01}, N_{21}.

These figures show blending functions with a uniform knot vector, knots at $0,1,2$, etc. Note that N is the same as our B

Fig. 4.22d. The B-splines N_{12}, N_{22}.

Closed B-Splines

- Periodically extend the control points and the knots

$$
\begin{aligned}
& P_{n+1}=P_{0} \\
& t_{n+1}=t_{0}
\end{aligned}
$$

- etc

Fig. 4.26a.

Fig. 4.26b.

Fig. 4.26. B-splines with uniform and non-uniform knot vectors for a closed B-spline curve.

Fig. 4.27a. A closed B-spline curve with $k=3, n=3$.

Fig. 4.27b. A closed B-spline curve with $k=4, n=6$.

Fig. 4.27c. A closed B-spline curve with $k=3, n=8$.

A B-spline curve, with knots at $0,1, \ldots$ and order 5

Repeated knots

- Definition works for repeated knots (if we are understanding about 0/0)
- Repeated knot reduces continuity. A B-spline blending function has continuity $\mathrm{C}^{\mathrm{d}-2}$; if the knot is repeated m times, continuity is now $\mathrm{C}^{\mathrm{d}-\mathrm{m}-1}$
- e.g. -> quadratic B-spline (i.e.
 order 3) with a double knot

Fig. 4.22g. A quadratic B-spline with a double knot.

Most useful case

- select the first d and the last d knots to be the same
- we then get the first and last points lying on the curve
- also, the curve is tangent to the first and last se $\quad 1 .{ }^{-1.0}$

Fig. 4.24a. B-splines for an open B-spline curve with uniform knot vector.

Fig. 4.25a. B-spline curve with $k=3, n=5$.

Fig. 4.25b. B-spline curve with $k=4, n=7$.

k is our d - top curve has order 3 , bottom order 4

Fig. 4.24b. B-splines for an open B-spline curve with non-uniform knot vector.

Fig. 4.25c. B-spline curve with $k=3, n=9$ and the Bézier curve of degree 9 with the same control polygon.

Bezier curve is the heavy curve

B-Spline properties

- For a B-spline curve of order d
- if m knots coincide, the curve is $\mathrm{C}^{\mathrm{d}-\mathrm{m}-1}$ at the corresponding point
- if d-1 points of the control polygon are collinear, then the curve is tangent to the polygon
- if d points of the control polygon are collinear, then the curve and the polygon have a common segment
- if d-1 points coincide, then the curve interpolates the common point and the two adjacent sides of the polygon are tangent to the curve
- each segment of the curve lies in the convex hull of the associated d points

