
Tensor product surfaces

• Natural way to think of a 
surface: curve is swept, and 
(possibly) deformed.  
Examples:  ruled surface (line is 
swept), surface of revolution 
(circle is swept along line, 
grows and shrinks).

• Surface form:

• Usually, domain is rectangular; 
– until further notice, all 

domains are rectangular.
• Classical tensor product 

interpolate is Gouraud shading 
on a rectangle; this gives a 
bilinear interpolate of the 
rectangles vertex values.

• Continuity constraints for 
surfaces are more interesting 
than for curves - see example
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Tensor Product Bezier patches

• Tensor product of Bezier 
curves; write as:

• It follows from the tensor 
product form that:
– interpolates four vertex points
– tangent plane at each vertex is 

given by three points at that 
vertex

– repeated de Casteljau (one 
direction, then the other) gives 
a point on the surface, tangent 
plane to surface
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Subdivision for Bezier curves

• Use De Casteljau (repeated 
linear interpolation) to 
identify points.

• Points as marked in figure 
give two control polygons, 
for two Bezier curves, 
which lie on top of the 
original.

• Repeated subdivision leads 
to a polygon that lies very 
close to the curve

• Limit of subdivision process 
is a curve







Example: bicubic interpolating surface

• Given a rectangular grid in the 
parameter domain, point values 
at each grid point, construct a 
surface that is locally cubic in u 
and in v separately, and 
interpolates.  This means that, 
for fixed v, surface will be a 
piecewise cubic curve in u, and 
ditto.

• surface has form:

mT (u − ui )Am(v − vi)
m(x) :=

1
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Bicubic Interpolate

• Construct surface so that 
surface, first partials, and mixed 
second partials are all 
continuous.

• write Xu=p, Xv=q, Xuv=r
• we can then exploit continuity 

conditions to obtain (here 
subscripts indicate the point at 
which the expression is 
evaluated)
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G(x) =

1 0 0 0
0 1 0 0
1 x x2 x3

0 1 2x 3x 2

 

 

 
 
 
  

 

 

 
 
 
  

Wij = G Δui( )Aij G Δvi( )



Bicubic Interpolate

• Hence to construct surface, 
need only get first partials, 
mixed partials, at each vertex.

• These can not be freely chosen 
- they are constrained by the 
fact that, for fixed u, the surface 
is a cubic spline curve; ditto for 
fixed v.

• Hence, first partials in interior 
are constrained if those on 
boundary are known; ditto, 
mixed second partials.

• Estimate boundary first partial 
derivatives  (e.g. using 
interpolate)

• Interior values for first partials 
follow from the fact that it’s a 
cubic spline - recurrence 
relation on earlier slide.

• Notice that q(u, v*) is a cubic 
spline in u; ditto, p(u*, v) in v

• This means that, with estimates 
of mixed seconds in the 
corners, the mixed seconds at 
each grid point follow too.
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