Tensor product surfaces

- Natural way to think of a surface: curve is swept, and (possibly) deformed.
Examples: ruled surface (line is swept), surface of revolution (circle is swept along line, grows and shrinks).
- Surface form:

$$
\sum_{i, j} X_{i j} f_{i}(u) g_{j}(v)
$$

- Usually, domain is rectangular;
- until further notice, all domains are rectangular.
- Classical tensor product interpolate is Gouraud shading on a rectangle; this gives a bilinear interpolate of the rectangles vertex values.
- Continuity constraints for surfaces are more interesting than for curves - see example

Tensor Product Bezier patches

- Tensor product of Bezier curves; write as:
$\sum_{i=0}^{n} \sum_{j=0}^{m} b_{i j} B_{i}^{n}(u) B_{j}^{m}(v)$
- It follows from the tensor product form that:
- interpolates four vertex points
- tangent plane at each vertex is given by three points at that vertex
- repeated de Casteljau (one direction, then the other) gives a point on the surface, tangent plane to surface

Fig. 6.3. Bézier surface of degree $(3,3)$ and its Bézier net.

Fig. 6.7b. The de Casteljau algorithm viewed as bilinear interpolation.

Subdivision for Bezier curves

- Use De Casteljau (repeated linear interpolation) to identify points.
- Points as marked in figure give two control polygons, for two Bezier curves, which lie on top of the original.
- Repeated subdivision leads to a polygon that lies very close to the curve
- Limit of subdivision proces is a curve

Fig. 4.5. Decomposition of a Bézier curve into two C^{3} continuous curve segments (cf. Fig. 4.4).

Fig. 6.8. Subdivision of a Bézier surface using the de Casteljau algorithm.

Example: bicubic interpolating surface

- Given a rectangular grid in the parameter domain, point values at each grid point, construct a surface that is locally cubic in u and in v separately, and interpolates. This means that, for fixed v, surface will be a piecewise cubic curve in u, and ditto.

- surface has form:

$$
\underline{m}(x):=\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
x^{3}
\end{array}\right)
$$

$$
\underline{m}^{T}\left(u-u_{i}\right) \underline{\underline{A}} \underline{m}\left(v-v_{i}\right)
$$

Bicubic Interpolate

- Construct surface so that surface, first partials, and mixed second partials are all continuous.
- write $X_{u}=p, X_{v}=q, X_{u v}=r$
- we can then exploit continuity conditions to obtain (here subscripts indicate the point at which the expression is evaluated)

$$
\underline{\underline{W}}_{i j}=\underline{\underline{G}}\left(\Delta u_{i}\right) \underline{A}_{i j} \underline{\underline{G}}\left(\Delta v_{i}\right)
$$

Bicubic Interpolate

- Hence to construct surface, need only get first partials, mixed partials, at each vertex.
- These can not be freely chosen - they are constrained by the fact that, for fixed u, the surface is a cubic spline curve; ditto for fixed v .
- Hence, first partials in interior are constrained if those on boundary are known; ditto, mixed second partials.
- Estimate boundary first partial derivatives (e.g. using interpolate)
- Interior values for first partials follow from the fact that it's a cubic spline - recurrence relation on earlier slide.
- Notice that $\mathrm{q}\left(\mathrm{u}, \mathrm{v}^{*}\right)$ is a cubic spline in u; ditto, $p\left(u^{*}, v\right)$ in v
- This means that, with estimates of mixed seconds in the corners, the mixed seconds at each grid point follow too.

Fig. 6.2. Bicubic spline surface interpolating 5×5 points (circles).

Fig. 6.13a. B-spline surface of order $k=4$ and its de Boor net (nonperiodic basis functions).

Fig. 6.13c. B-spline surface of order $k=3$ with periodic basis functions in both the u - and v-directions.

