

Physically based animation

- General idea
 - take physical models, make assumptions, solve
 - render solution
- Influential areas
 - we've seen
 - particles,
 - collision+ballistic
 - Others
 - fluids (includes gasses)

Example: Suspended particle explosion

• There is hot gas, moving under forces generated by

- burning
- momentum
- changes in pressure
- viscosity
- etc.
- In the gas, there are particles that
 - move
 - heat and cool
- Render by rendering the particles

Feldman, O'Brien, Arikan, 03

Incompressible, inviscid moving fluids

• Important

- compressible, viscous fluids are hard to model
- compressible flow doesn't happen at low mach numbers
- compression is important in explosions, but very hard to model
 - and most undesirable in hollywood style explosions
- "dry water"

Dry water

• Euler equations

- Mass is conserved
- Change of momentum is due to
 - change of pressure
 - external forces

Solving dry water

• Set up a grid

- values of u, P at grid vertices
- Get intermediate velocity field
 - by taking a small time step, ignoring pressure effects
 - we will choose a pressure field to correct this to be an incompressible flow
- Correct the intermediate velocity field

Modified dry water

- For an explosion, we must have some fluid expansion
 - at points of detonation
 - we do not want to allow the fluid to expand everywhere,
 - or couple this to the fluid's dynamics
 - pressure waves
- So the pressure update step changes

Particles in the fluid

• Move

• Heat

Particle fluid interactions

• Drag on particle

- force in opposite direction applied to fluid
- low mass no drag
- Thermal exchange
 - heat transfer to a particle from fluid
 - transfer goes both ways
 - T fluid temperature field

Particle behaviour

- Particles burn
 - Simplified combustion
 - combustion is independent of oxygen
 - independent of temperature
 - products do not depend on temperature
- Model
 - Particle ignites when its temperature exceeds a fixed threshold
 - fixed amount of fuel
 - dies when its mass is zero
- Products
 - Heat
 - Gas

Products of combustion

• Heat

- Gas
- Soot
 - this builds up to a threshold then a soot particle is released.

Further phenomena

• Smoke

- simulate the fluid flow
- smoke is distributed (rather than particles)
- Temperature and density are constant at an element
 - i.e. are advected
- Buoyancy
 - heavy smoke sinks, hot gas rises

Fedkiw, Stam, Jensen 01

Vortices and vorticity confinement

• Smoke tends to produce vortices

- hard to get fine vortices with a coarse grid
- vortices tend to die out too fast with simple integrators
 - this is called damping
- strategy
 - estimate where vortices are being suppressed
 - insert a "paddle wheel" force

Rendering Smoke

- Phenomena
 - in/out scattering
 - extinction
- Strategy
 - photon map
 - march along rays

Examinable material

• Rendering

- ray tracing in all its forms
- sampling and aliasing
- shading models
- including general radiometry
- diffuse interreflections and finite element methods
- random integration
 - for area light sources
 - for final gathering
 - for path tracing
- photon maps
- texture synthesis
- procedural shading
- procedural texturing

Examinable material

- Curves and surfaces
 - Bezier, de Casteljau
 - B-splines, de Boor
 - tensor products
 - subdivision
- Animation
 - particle systems and Forward Euler
 - ballistic motion and collisions
 - ideas, rather than exact formulation of dynamics
 - collision
 - Human motion
 - motion graphs
 - incompressible fluids (without viscosity)