Radiosity methods

Core ideas: Neumann series

• We have

$$B(x) = E(x) + \rho_d(x) \int_{\substack{\text{all other}\\ \text{surfaces}}} B(u) \frac{\cos\theta_i \cos\theta_s}{\pi r(x,u)^2} Vis(x,u) dA_u$$

• Can write:

$$B = E + \rho KB$$

• Which gives

 $B = E + (\rho K)E + (\rho K)(\rho K)E + (\rho K)^{3}E + \dots$

Exitance

Source term

One bounce

Two bounces

Core ideas: gathering

• Recall definition:

$$\rho KF = \rho(x) \int K(x, u) F(u) du$$

- How to evaluate this integral at a point?
 - obtain $u_i \sim p(u)$
 - Form:

$$\frac{1}{N}\sum K(x,u_i)F(u_i)$$

• Similar to evaluating illumination from area source

Core ideas: gathering

- What is a good p(u)?
 - p(u) should be big when K(x, u) F(u) is big
 - this helps to control variance
 - known as importance sampling
 - Significant considerations:
 - fast variation in F(u)
 - fast variation in K
 - usually due to visibility
- How many samples?
 - fixed number
 - may be expensive, ineffective
 - by estimate of variance
 - this goes down as 1/N, which is very bad news

Core ideas: the final gather

• Notice:

$$B = E + (\rho K)B$$

- Assume that I have a very rough estimate of B
 - I could render this using

 $B = E + (\rho K)\hat{B}$

• This isn't such a good idea, instead use

 $B = E + (\rho K)E + (\rho K)(\hat{B} - E)$

• This is a very good idea indeed, because K smooths

Computing the integrals

• Two terms

source term

- we expect to need multiple samples, some large values, large changes over space
- large variance will be ugly should compute this term carefully at each point to render
- indirect term
 - this term should change slowly over space, and should be smaller in value
 - large variance less ugly we can use fewer samples and pool samples

 $\rho(x) \int K(x,u)(\hat{B}(u) - E(u))du$

 $\rho(x) \int K(x,u)E(u)du$

Obtaining an estimate: Finite elements

- Divide domain into patches
- Radiosity will be constant on each patch
 - patch basis function, or element

$$\phi_i(x) = \begin{cases} 1 & \text{if } x \text{ is on patch } i \\ 0 & \text{otherwise} \end{cases}$$

- Now write
 - B_i for radiosity at patch i
 - E_i for exitance at patch i
- Equation becomes:

$$\left(\sum_{i} B_{i}\phi_{i}(x)\right) - \left(\sum_{j} E_{j}\phi_{j}(x)\right) - \left(\rho(x)\int K(x,u)\sum_{j} B_{j}\phi_{j}(u)du\right) = R(x) = 0$$

Obtaining an estimate: Finite elements

• But in what sense is it zero?

• Galerkin method

$$\int R(x)\phi_k(x)dx = 0 \forall k$$

• Apply to:

$$\left(\sum_{i} B_{i}\phi_{i}(x)\right) - \left(\sum_{j} E_{j}\phi_{j}(x)\right) - \left(\rho(x)\int K(x,u)\sum_{j} B_{j}\phi_{j}(u)du\right) = R(x) = 0$$
• And get

$$B_k A_k = E_k A_k + \sum_j \left(\int_{\text{patch } k} \rho(x) \int_{\text{patch } j} K(x, u) du dx \right) B_j$$

Finite Element Radiosity Equation

• Start with:

$$B_k A_k = E_k A_k + \sum_j \left(\int_{\text{patch } k} \rho(x) \int_{\text{patch } j} K(x, u) du dx \right)$$

 Divide through by A_k, assume constant albedo patches, get

$$B_k = E_k + \sum_k \rho_k F_j k B_j$$

• Where geometric effects are concentrated in the form factor

$$F_j k = \frac{1}{A_k} \int_{\text{patch } k} \int_{\text{patch } j} K(x, u) du dx$$

Form factors

• if patches are all flat, then:

$$F_{ii} = 0$$

• if i can't see j at all, then:

$$F_{ij} = 0$$

• reciprocity:

$$A_k F_{jk} = A_j F_{kj}$$

- interpretation:
 - Fjk is percentage of energy leaving k that arrives at j
 - this gives:

$$\sum_{j} F_{jk} = 1$$

Computing Form Factors

• Stokes Theorem [Lambert 1760, Goral et al. S84]

$$F_{ij} = \frac{1}{2\pi A_i} \oint_{\partial A_i} \oint_{\partial A_j} \ln r dx_i dx_j + \ln r dy_i dy_j + \ln r dz_i dz_j$$

Δ

• Nusselt analog

 $F_{ij} = \operatorname{proj}_D(\operatorname{proj}_\Omega(A_j)) / \operatorname{Area}(D)$

• Hemicube

$$\Delta F_{dAiAj} = \frac{\cos\phi_i \cos\phi_j}{\pi r^2} \Delta A$$

- Monte-Carlo Ray Casting
 - Uniformly sample disk

$$-F_{ij} = #$$
 of rays hitting $A_j / #$ of rays

Solving the radiosity system: Gathering

• Neumann series (again!) $(I - \rho K)B = E$

 $B = E + \rho K E + (\rho K)^2 E + \dots$

$$B^{(0)} = E$$

 $\overline{B^{(n+1)}} = E + \rho \overline{K} B^{(n)}$

Gathering with iterative methods

• Linear system Ax=b

 $\sum_{j} a_{ij} x_j = b_i$

- Jacobi iteration
 - reestimate each x

$$x_{j}^{(n+1)} = \frac{1}{a_{jj}} \left(b_{i} - \sum_{l \neq j} a_{il} x_{l}^{(n)} \right)$$

- Gauss-Seidel
 - reuse new estimates

$$x_{j}^{(n+1)} = \frac{1}{a_{jj}} \left(b_{i} - \sum_{l < j} a_{il} x_{l}^{(n+1)} - \sum_{l > j} a_{il} x_{l}^{(n)} \right)$$

From Cohen, SIGGRAPH 88

Southwell iteration: Progressive radiosity

- Gauss-Seidel, Jacobi, Neumann require us to evaluate whole kernel at each iteration
 - this is vilely expensive 10⁶ to matrix?
 - it's also irrational
 - in G-S, Jacobi, for one pass through the variables,
 - we gather at each patch, from each patch
 - but some patches are not significant sources
 - we should like to gather only from bright patches
 - or rather, patches should "shoot"
- This is Southwell iteration

Southwell iteration: update x

- Define a residual: R = (b Ax)
 - whose elements are

$$r_i^{(n)} = b_i - \sum_j a_{ij} x_j^{(n)}$$

- now choose the largest r_i
 - and adjust the corresponding x component to make it zero

$$r_i^{(n+1)} = 0$$

$$x_{l}^{(n+1)} = \left\{ \begin{array}{cc} x_{l}^{(n)} & \text{if } l \neq i \\ \frac{1}{a_{ii}} \left(r_{i}^{(n)} + a_{ii} x_{i}^{(n)} \right) & \text{if } l = i \end{array} \right\}$$

Southwell iteration: update r

• Update the residual by adding old x col, subtracting new

$$r_l^{(n+1)} = r_l^{(n)} + a_{li}(x_i^{(n)} - x_i^{(n+1)})$$

• but this takes an easy form

$$r_l^{(n+1)} = r_l^{(n)} - \frac{a_{li}}{a_{ii}} r_i^{(n)}$$

- Notice we can update variables in order of large residual, using only one col of kernel to do so
 - this converges (non-trivial) rather fast (non-trivial)
 - to get a solution, we need evaluate only a small proportion of the kernel (non-trivial)

From Cohen, SIGGRAPH 88

Important nuisances

- Light leaks
- Shadow problems
- Mesh complexity

Cornell Program of Computer Graphics

Lischinski et al S93

Lischinski et al S93

Hierachical radiosity

- Radiosity similar to n-body problems
 - gathering can be grouped
- Build mesh hierarchy using link oracle
 - F-linking
 - BF-linking
- Solve by
 - iterate
 - gather along links
 - push to leaves
 - pull from leaves
 - this (with work) is a Neumann series (again!)

BIF links, from Hanrahan et al, 91

Other ways to get a rough solution

• Randomized integration (again!)

- radiosity at a sample point is
 - a sum of contributions over paths that reach the light
 - these paths are fairly easily sampled
- sample points are very highly correlated in space
 - radiosity values don't change much over space

• This viewpoint will allow us to deal with important effects

- Refraction caustics
- Reflection caustics

