Radiosity methods




Core 1deas: Neumann series

B(x)= B()+ p,(x) [ B} 2o vis(x.)dA,

all other
surfaces

r(x,u)

® (Can write:

B=F+pKB
® Which gives

B=FE+ (pK)E + (pK)(pK)E + (pK)’E + ...
Exitance

Source term

One bounce
Two bounces




Core 1deas: gathering

Recall definition: pKF = p(x) /K(aj‘,u)F(u)du

How to evaluate this integral at a point?

® obtain Uqg p(u)

Similar to evaluating illumination from area source




Core 1deas: gathering

® What i1s a good p(u)?
p(u) should be big when K(x, u) F(u) is big
this helps to control variance
known as importance sampling
Significant considerations:
® fast variation in F(u)
® fast variation in K
® usually due to visibility

® How many samples?
® fixed number
® may be expensive, ineffective
® by estimate of variance
® this goes down as 1/N, which is very bad news




Core 1deas: the final gather

® Notice:

B=FE+ (pK)B

® Assume that I have a very rough estimate of B
® [ could render this using

A

B=FE+ (pK)B

® This isn’t such a good idea, instead use
B=E+ (pK)E + (pK)(B - E)

® This is a very good idea indeed, because K smooths




Computing the integrals

® Two terms p(az)/K(x,u)E(u)du
® source term

® we expect to need multiple samples, some
large values, large changes over space

® Jarge variance will be ugly - should
compute this term carefully at each point
to render

® indirect term

® this term should change slowly over
space, and should be smaller in value

® Jarge variance less ugly - we can use
fewer samples and pool samples

o(2) / K (2, u)(B(u) — E(u))du




Obtaining an estimate: Finite elements

Divide domain into patches

Radiosity will be constant on each patch

® patch basis function, or element

1 if x is on patch ¢

¢i(z) 0 otherwise

Now write
® B_i for radiosity at patch 1
® [E i for exitance at patch i

Equation becomes:

(Z Bi¢i<x>> ) (Z Ej%'(ffﬁ) - (p@) / K (x,u)ZBjabj(u)du) = R(z) =0




Obtaining an estimate: Finite elements

® But in what sense 1s it zero?
® (Galerkin method

/R(:U)(bk(.r)da? = OVk

e Apply to:

(Z Bi?bi(x)) - (Z Ej%(@) - (P(w)/K(ﬂfau)ZBjcbj(u)du) — R(z) =0

® And get

Br A = EpAg + Z / p(az)/ K(z,u)dudzr | B;
: patch £ patch j

J




Finite Element Radiosity Equation

® Start with:

BirAr = E A + / px/ K(z,u)dudx
. : Z(patchk(>patchj (@)

J

® Divide through by A_k, assume constant albedo patches,
get

By =Er+ Y peFjkB;
k

® Where geometric effects are concentrated in the form

factor
1
Fik = —/ / K(x,u)dudz
Ay patch k£ Jpatch j




Form factors

if patches are all flat, then:

if 1 can’t see j at all, then:

Fy; =0

reciprocity:

Aijk — Aijj

interpretation:

® Fjk is percentage of energy leaving k that arrives at j
® this gives:




Computing Form
Factors

[
e Stokes Theorem [Lambert 1760, Goral et al. $84]

ij

1
F, = Z_TcA.ﬁAiﬁA,— Inrdx,dx, +Inrdydy, +Inrdz,dz,

9 (cos 0,/1%) A4;

* Nusselt analog
F; = projp(projq(4;,))/Area(D)

e Hemicube

COS (I)i COS ¢j TR <> cos 0,(cos 6,/r?) 4;

dAidj — 2 A

« Monte-Carlo Ragvaasting

— Uniformly sample disk ‘VA
— F,;=# of rays hitting 4, / # of rays A‘“




Matrix Radiosity
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Solving the radiosity system: Gathering

e Neumann series (again!) (I —pK)B=F
B=FE+pKE+ (pK)°E + ...

BO =F




Gathering with iterative methods

Linear system Ax=b E a;;T; = b;
J

Jacobi iteration
® reestimate each x

mn 1 mn
:1:§ U = — b; — Zailfljl( )
7J I#]

Gauss-Seidel

® reuse new estimates

n 1 n
gl _ = g Zauﬂfz( a0 .

J
a/..
49 1<j




From Cohen, SIGGRAPH 88




Southwell iteration: Progressive radiosity

Gauss-Seidel, Jacobi, Neumann require us to evaluate

whole kernel at each iteration
® this is vilely expensive 1026x 1076 matrix?
® it’s also irrational
® in G-S, Jacobi, for one pass through the variables,
® we gather at each patch, from each patch
® but some patches are not significant sources
® we should like to gather only from bright patches
® or rather, patches should “shoot”

This 1s Southwell iteration




Southwell iteration: update x

® Define a residual: R=(b— Ax)

® whose elements are

J
® now choose the largestr_i
® and adjust the corresponding x component to make it zero

r§n+1) =0




Southwell iteration: update r

® Update the residual by adding old x col, subtracting new

Tl(n+1) — ’I“l(n) + alz—(xf;n) — $§n+1)>

® but this takes an easy form

Pt _ ()

® Notice we can update variables in order of large residual,

using only one col of kernel to do so
® this converges (non-trivial) rather fast (non-trivial)

® (o get a solution, we need evaluate only a small proportion of the kernel
(non-trivial)







Important nuisances

® [ight leaks
® Shadow problems
® Mesh complexity

need new
vertex here




Cornell Program of Computer Graphics
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Hierachical radiosity

® Radiosity similar to n-body problems
® gathering can be grouped

® Build mesh hierarchy using link oracle
® F-linking
® BF-linking
® Solve by
® iferate
® oather along links
® push to leaves
® pull from leaves
® this (with work) is a Neumann series (again!)




91

9

from Hanrahan et al
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Other ways to get a rough solution

® Randomized integration (again!)
® radiosity at a sample point is
® a sum of contributions over paths that reach the light
® these paths are fairly easily sampled
® sample points are very highly correlated in space
® radiosity values don’t change much over space

® This viewpoint will allow us to deal with important effects

® Refraction caustics
® Reflection caustics
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