
Radiosity methods



Core ideas: Neumann series

• We have

• Can write:  

• Which gives

B x( ) = E x( ) + ρd x( ) B u( )
cosθ i cosθ s

πr(x,u)2 Vis x,u( )dAu
all other
surfaces

∫

B = E + ρKB

Exitance
Source term

One bounce Two bounces

B = E + (ρK)E + (ρK)(ρK)E + (ρK)3E + ...



Core ideas:  gathering

• Recall definition:

• How to evaluate this integral at a point?

• obtain

• Form:  

• Similar to evaluating illumination from area source

ρKF = ρ(x)
∫

K(x, u)F (u)du

ui ∼ p(u)

1
N

∑
K(x, ui)F (ui)



Core ideas: gathering

• What is a good p(u)?
• p(u) should be big when K(x, u) F(u) is big
• this helps to control variance
• known as importance sampling
• Significant considerations:

• fast variation in F(u)
• fast variation in K

• usually due to visibility

• How many samples?
• fixed number

• may be expensive, ineffective
• by estimate of variance

• this goes down as 1/N, which is very bad news



Core ideas: the final gather

• Notice:  

• Assume that I have a very rough estimate of B
• I could render this using

• This isn’t such a good idea, instead use

• This is a very good idea indeed, because K smooths

B = E + (ρK)B

B = E + (ρK)B̂

B = E + (ρK)E + (ρK)(B̂ − E)



Computing the integrals

• Two terms
• source term

• we expect to need multiple samples, some 
large values, large changes over space

• large variance will be ugly - should 
compute this term carefully at each point 
to render

• indirect term
• this term should change slowly over 

space, and should be smaller in value
• large variance less ugly - we can use 

fewer samples and pool samples

ρ(x)
∫

K(x, u)E(u)du

ρ(x)
∫

K(x, u)(B̂(u)− E(u))du



Obtaining an estimate:  Finite elements

• Divide domain into patches
• Radiosity will be constant on each patch

• patch basis function, or element 

• Now write 
• B_i for radiosity at patch i
• E_i for exitance at patch i

• Equation becomes:

φi(x) =
{

1 if x is on patch i
0 otherwise

}

(
∑

i

Biφi(x)

)
−




∑

j

Ejφj(x)



−



ρ(x)
∫

K(x, u)
∑

j

Bjφj(u)du



 = R(x) = 0



Obtaining an estimate:  Finite elements

• But in what sense is it zero?
• Galerkin method 

• Apply to:

• And get

∫
R(x)φk(x)dx = 0∀k

BkAk = EkAk +
∑

j

(∫

patch k
ρ(x)

∫

patch j
K(x, u)dudx

)
Bj

(
∑

i

Biφi(x)

)
−




∑

j

Ejφj(x)



−



ρ(x)
∫

K(x, u)
∑

j

Bjφj(u)du



 = R(x) = 0



Finite Element Radiosity Equation

• Start with:

• Divide through by A_k, assume constant albedo patches, 
get

• Where geometric effects are concentrated in the form 
factor

BkAk = EkAk +
∑

j

(∫

patch k
ρ(x)

∫

patch j
K(x, u)dudx

)
Bj

Bk = Ek +
∑

k

ρkFjkBj

Fjk =
1

Ak

∫

patch k

∫

patch j
K(x, u)dudx



Form factors

• if patches are all flat, then:

• if i can’t see j at all, then:

• reciprocity:

• interpretation:
• Fjk is percentage of energy leaving k that arrives at j
• this gives: 

Fii = 0

Fij = 0

AkFjk = AjFkj

∑

j

Fjk = 1



Computing Form 
Factors
• Stokes Theorem [Lambert 1760, Goral et al. S84]

• Nusselt analog
Fij = projD(projΩ(Aj))/Area(D)

• Hemicube

• Monte-Carlo Ray Casting 
– Uniformly sample disk

– Fij = # of rays hitting Aj / # of rays

Δ
A

Ai

Aj

(cos θj/r2) Aj

cos θi(cos θj/r2) Aj

1

D

Ω



Matrix Radiosity Ei

Bi



Solving the radiosity system: Gathering

• Neumann series (again!) (I − ρK)B = E

B = E + ρKE + (ρK)2E + ...

B(0) = E

B(n+1) = E + ρKB(n)



Gathering with iterative methods

• Linear system    Ax=b

• Jacobi iteration
• reestimate each x

• Gauss-Seidel
• reuse new estimates

∑

j

aijxj = bi

x(n+1)
j =

1
ajj



bi −
∑

l !=j

ailx
(n)
l





x(n+1)
j =

1
ajj



bi −
∑

l<j

ailx
(n+1)
l −

∑

l>j

ailx
(n)
l
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24 100

From Cohen, SIGGRAPH 88



Southwell iteration:  Progressive radiosity

• Gauss-Seidel, Jacobi, Neumann require us to evaluate 
whole kernel at each iteration
• this is vilely expensive  10^6x 10^6 matrix?
• it’s also irrational  

• in G-S, Jacobi, for one pass through the variables, 
• we gather at each patch, from each patch

• but some patches are not significant sources
• we should like to gather only from bright patches

• or rather, patches should “shoot”

• This is Southwell iteration



Southwell iteration: update x

• Define a residual:

• whose elements are

• now choose the largest r_i
• and adjust the corresponding x component to make it zero

R = (b−Ax)

r(n)
i = bi −

∑

j

aijx
(n)
j

r(n+1)
i = 0

x(n+1)
l =

{
x(n)

l if l != i
1

aii

(
r(n)
i + aiix

(n)
i

)
if l = i

}



Southwell iteration:  update r

• Update the residual by adding old x col, subtracting new

• but this takes an easy form

• Notice we can update variables in order of large residual, 
using only one col of kernel to do so
• this converges (non-trivial) rather fast (non-trivial)
• to get a solution, we need evaluate only a small proportion of the kernel 

(non-trivial)

r(n+1)
l = r(n)

l + ali(x
(n)
i − x(n+1)

i )

r(n+1)
l = r(n)

l − ali

aii
r(n)
i
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Important nuisances

• Light leaks
• Shadow problems
• Mesh complexity

need new
vertex here
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Lischinski et al S93



Lischinski et al S93



Hierachical radiosity

• Radiosity similar to n-body problems
• gathering can be grouped

• Build mesh hierarchy using link oracle
• F-linking
• BF-linking

• Solve by
• iterate

• gather along links
• push to leaves
• pull from leaves

• this (with work) is a Neumann series (again!)



BIF links, from Hanrahan et al, 91



Other ways to get a rough solution

• Randomized integration (again!)
• radiosity at a sample point is 

• a sum of contributions over paths that reach the light
• these paths are fairly easily sampled

• sample points are very highly correlated in space
• radiosity values don’t change much over space

• This viewpoint will allow us to deal with important effects
• Refraction caustics
• Reflection caustics












