Illumination by
 Randomized Integration

Figure from Dutre, Bekaert, Bala 03; rendered by Suykens-De Laet

Paths

- Recall we could do LDS*E with eye ray tracing
- we can do LD*E with finite element radiosity methods
- actually, can also do LD*S*E (how?)
- But there are many more paths
- and surfaces might not be only S or D, too
- Model paths explicitly

Path tracing

- Paths start at eye
- At diffuse surface, choose ongoing direction uniformly at random across hemisphere
- Value of path is accumulated values of reflectance along path times Exitance at end
- But
- where does a path stop?
- when albedo is zero (many luminaires)

Issues

- Severe variance problems as described
- or very very slow for nice solutions
- What about surfaces that aren't diffuse?
- and illumination at different wavelengths?

Russian roulette

- Increase probability of absorbtion of low weight paths, and reweight the paths
- notice that ρ helps here a lot -
- we could change the probability of absorbtion

Path tracing

- Path tracing
- Path starts at eye
- At a diffuse surface with albedo ρ, path is
- continued with probability ρ
- absorbed with probability 1- ρ
- Value of path
- $\mathrm{E}(\mathrm{x})$ if it arrives at luminaire
- 0 otherwise
- Direction along which path continues is uniform over exit hemisphere

This is a diffuse surface formulation.

Particle tracing

- Particle starts at source
- At a diffuse surface with albedo ρ, path is
- continued with probability ρ
- absorbed with probability 1- ρ
- In either case, it deposits power in a texel at that point
- particle with power ϕ arriving at texel with area A_{t}
- deposits power $\frac{\phi}{A_{t}}$
- Direction along which path continues is uniform over exit hemisphere

This is a diffuse surface formulation.

Global illumination

- Account for all light transfer
$L(\mathbf{x}, \mathbf{x} \rightarrow \mathbf{y})=L_{e}(\mathbf{x}, \mathbf{x} \rightarrow \mathbf{y})+\int$ radiance due to irradianced ω
- And this gets us
$L(\mathbf{x}, \mathbf{x} \rightarrow \mathbf{y})=L_{e}(\mathbf{x}, \mathbf{x} \rightarrow \mathbf{y})+\int \rho_{b d}(\mathbf{x} \rightarrow \mathbf{y}, \mathbf{u} \rightarrow \mathbf{x}) L(\mathbf{x}, \mathbf{u} \rightarrow \mathbf{x}) \cos \theta d \omega$

Path tracing for general surfaces

- Path tracing
- Path starts at eye
- At a surface, path is
- continued with probability α
- absorbed with probability 1- α
- Value of path
- $L_{e}\left(\mathbf{x}_{n}, \mathbf{x}_{n} \rightarrow \mathbf{x}_{n-1}\right)$ if it arrives at luminaire
- 0 otherwise
- Direction along which path continues
- a draw from $\mathrm{P}(\omega)$
- Weight path segment by

$$
\frac{\rho_{b d}\left(\mathbf{x}_{n-1} \rightarrow \mathbf{x}_{n}, \mathbf{x}_{n} \rightarrow \mathbf{x}_{n+1}\right) \cos \theta}{P(\omega) \alpha}
$$

- and accumulate these weights

Variance problems

- Paths may not find the light often
- this could be fixed by clever choice of P to heavily emphasize directions toward the source
- Caustics will be poorly rendered, because the path to the source is obscure

Bidirectional path tracing

- Start paths at both eye and light and join them
- Notice:
- a pair of eye-light paths generates many possible transfer paths
- we can use each of these, if we compute weights correctly to get integral estimate right

Figure from Dutre, Bekaert, Bala 03; rendered by Suykens-De Laet

Figure 1: The four steps of ray tracing.
Figure from Ward et al, "A Ray-tracing solution for diffuse interreflection", 1988

Irradiance caching

- The indirect term varies slowly over space
- cache and interpolate
- Cache by
- storing irradiance samples in octree with normal
- Interpolate by
- obtaining all samples with error smaller than α
- error is:
- (distance term)+(normal term)
- not enough samples?
- generate new ones and cache them
- forming weighted sum using extrapolated illumination values

Irradiance cache vs path tracing, from Pharr + Humphreys

Cache sample locations from Pharr + Humphreys

Irradiance caching: samples

- Obtaining samples:
- evaluate irradiance at sample point by:
- direct term:
- sample each source directly, as before
- indirect term:
- sample non-source directions with probability $P(\omega)$
- form estimate

$$
\frac{1}{N} \sum_{j} \frac{L_{i}\left(\mathbf{x}, \omega_{j}\right) \cos \theta_{j}}{P\left(\omega_{j}\right)}
$$

- Notice that the incoming radiance might be computed from the cache, if there are samples

Note:
Russian roulette prevents the tree getting out of hand Fairly quickly, the cache fills up

Figure 7: The lines represent rays, and the points represent primary evaluations. The rays that reuse computed values do not propagate.

Figure from Ward et al, "A Ray-tracing solution for diffuse interreflection", 1988

Irradiance caching: reconstruction

- Query octree for possible samples
- Do not want to use:
- samples that are too far away
- this is a function of how samples were obtained
- samples with a bad normal
- samples that lie closer to the eye than current point
- Reconstruct by
- weighted sum of samples
- interpolation process can use:
- distances
- gradients

Figure 4: P_{0} sees few close-by surfaces, so its estimated error at \vec{P} is small. But \vec{P} is shadowed by the surface under \vec{P}_{6}, and the true illuminance is different.

Figure from Ward et al, "A Ray-tracing solution for diffuse interreflection", 1988

Typical sample locations for

Photon maps

- Drop the requirement of an unbiased estimate of illumination
- accept some bias for better variance properties
- Propagate photons from source, cache when they arrive at surfaces
- Interpolate illumination value by averaging over k-nearest neighbours
- Caustic variance
- use two classes of photon: sample specular, refractive directions separately
- How many photons?
- keep trying till it looks good

Photon propagation

- Photons carry Power
- scale photons from source by number emitted
- reflected
- diffuse
- store in map when it arrives, propagate
- prob proportional to cos theta
- power scaled by albedo
- or use russian roulette
- specular
- do not store in map, propagate
- along specular direction
- power scaled by reflectivity
- or use russian roulette
- arbitrary BRDF
- inportance sample outgoing direction

Photon propagation

- When a photon arrives at complex surface, multiple photons could be generated
- eg specular + diffuse
- russian roulette to decide whether
- specular
- reflected/absorbed
- diffuse
- reflected/absorbed
- Photons are stored at diffuse (non-specular!) surfaces only
- Stored as:
- Power, Location, Normal

Photon storage and querying

- Store in k-d tree
- to look up r closest photons
- tree represents free space close to surfaces

Evaluating Radiance

- Reffected radiance is: $\quad L_{r}(\mathbf{x}, \omega)=\int_{\Omega} \rho_{b d}\left(\omega, \omega_{i}\right) L_{i}\left(\mathbf{x}, \omega_{i}\right) \cos \theta d \omega$
- Each photon carries known power, in known direction
- assume the relevant photons all arrive at x
- each contributes radiance (power/dA)
- assume surface is flat around x, build a circle
- photons in this circle contribute
- area is known

$L_{r}(\mathbf{x}, \omega) \frac{1}{\pi r^{2}} \sum \rho_{b d}\left(\omega, \omega_{j}\right) P_{j}\left(\mathbf{x}, \omega_{j}\right)$

Figure from Jensen's book

Figure from Jensen's book

A two pass renderer

- Propagate photons
- two classes
- caustic photons toward specular/glossy, refractive objects
- large numbers
- caustic map
- global illumination photons toward diffuse objects
- small numbers
- Gather
- render using
- direct term by area source sampling
- specular term by ray-tracing
- caustic term by direct query to photon map
- global illumination term by gathering the photon map

