Illumination by Randomized Integration

Figure from Dutre, Bekaert, Bala 03; rendered by Suykens-De Laet

Paths

• Recall we could do LDS*E with eye ray tracing

- we can do LD*E with finite element radiosity methods
 - actually, can also do LD*S*E (how?)
- But there are many more paths
 - and surfaces might not be only S or D, too
- Model paths explicitly

Path tracing

- Paths start at eye
- At diffuse surface, choose ongoing direction uniformly at random across hemisphere
- Value of path is accumulated values of reflectance along path times Exitance at end

• But

- where does a path stop?
 - when albedo is zero (many luminaires)

Issues

- Severe variance problems as described
 - or very very slow for nice solutions
- What about surfaces that aren't diffuse?
 - and illumination at different wavelengths?

Russian roulette

- Increase probability of absorbtion of low weight paths, and reweight the paths
 - notice that ρ helps here a lot -
 - we could change the probability of absorbtion

Path tracing

• Path tracing

- Path starts at eye
- At a diffuse surface with albedo ρ , path is
 - continued with probability ρ
 - absorbed with probability 1- ρ
- Value of path
 - E(x) if it arrives at luminaire
 - 0 otherwise
- Direction along which path continues is uniform over exit hemisphere

This is a diffuse surface formulation.

Particle tracing

- Particle starts at source
- At a diffuse surface with albedo ρ , path is
 - continued with probability ρ
 - absorbed with probability 1- ρ
- In either case, it deposits power in a texel at that point
 - particle with power ϕ arriving at texel with area A_t
 - deposits power ϕ

$\overline{A_t}$

- •
- Direction along which path continues is uniform over exit hemisphere

This is a diffuse surface formulation.

Global illumination

• Account for all light transfer

 $L(\mathbf{x}, \mathbf{x} \to \mathbf{y}) = L_e(\mathbf{x}, \mathbf{x} \to \mathbf{y}) + \int \text{radiance due to irradiance} d\omega$

• And this gets us

$$L(\mathbf{x}, \mathbf{x} \to \mathbf{y}) = L_e(\mathbf{x}, \mathbf{x} \to \mathbf{y}) + \int \rho_{bd}(\mathbf{x} \to \mathbf{y}, \mathbf{u} \to \mathbf{x}) L(\mathbf{x}, \mathbf{u} \to \mathbf{x}) \cos \theta d\omega$$

Path tracing for general surfaces

• Path tracing

- Path starts at eye
- At a surface, path is
 - continued with probability α
 - absorbed with probability 1- α
- Value of path
 - $L_e(\mathbf{x}_n, \mathbf{x}_n \to \mathbf{x}_{n-1})$ if it arrives at luminaire
 - 0 otherwise
- Direction along which path continues
 - a draw from P(ω)
- Weight path segment by

$$\frac{\rho_{bd}(\mathbf{x}_{n-1} \to \mathbf{x}_n, \mathbf{x}_n \to \mathbf{x}_{n+1})\cos\theta}{P(\omega)\alpha}$$

• and accumulate these weights

This will do anything, but with very serious variance problems

Variance problems

- Paths may not find the light often
 - this could be fixed by clever choice of P to heavily emphasize directions toward the source
- Caustics will be poorly rendered, because the path to the source is obscure

Bidirectional path tracing

- Start paths at both eye and light and join them
- Notice:
 - a pair of eye-light paths generates many possible transfer paths
 - we can use each of these, if we compute weights correctly to get integral estimate right

Figure from Dutre, Bekaert, Bala 03; rendered by Suykens-De Laet

Figure from Ward et al, "A Ray-tracing solution for diffuse interreflection", 1988

Irradiance caching

- The indirect term varies slowly over space
 - cache and interpolate
- Cache by
 - storing irradiance samples in octree with normal

• Interpolate by

- obtaining all samples with error smaller than α
 - error is:
 - (distance term)+(normal term)
 - not enough samples?
 - generate new ones and cache them
- forming weighted sum using extrapolated illumination values

Powerful standard method in almost every modern rendering system

Irradiance cache vs path tracing, from Pharr + Humphreys

Cache sample locations from Pharr + Humphreys

Irradiance caching: samples

• Obtaining samples:

- evaluate irradiance at sample point by:
 - direct term:
 - sample each source directly, as before
 - indirect term:
 - sample non-source directions with probability $P(\omega)$
 - form estimate

$$\frac{1}{N} \sum_{j} \frac{L_i(\mathbf{x}, \omega_j) \cos \theta_j}{P(\omega_j)}$$

• Notice that the incoming radiance might be computed from the cache, if there are samples

Note: Russian roulette prevents the tree getting out of hand Fairly quickly, the cache fills up

Figure 7: The lines represent rays, and the points represent primary evaluations. The rays that reuse computed values do not propagate.

Figure from Ward et al, "A Ray-tracing solution for diffuse interreflection", 1988

Irradiance caching: reconstruction

• Query octree for possible samples

- Do not want to use:
 - samples that are too far away
 - this is a function of how samples were obtained
 - samples with a bad normal
 - samples that lie closer to the eye than current point

• Reconstruct by

- weighted sum of samples
- interpolation process can use:
 - distances
 - gradients

Figure 4: \vec{P}_0 sees few close-by surfaces, so its estimated error at \vec{P} is small. But \vec{P} is shadowed by the surface under \vec{P}_0 , and the true illuminance is different.

Figure from Ward et al, "A Ray-tracing solution for diffuse interreflection", 1988

Typical sample locations for irradiance cache

Photon maps

- Drop the requirement of an unbiased estimate of illumination
 - accept some bias for better variance properties
- Propagate photons from source, cache when they arrive at surfaces
- Interpolate illumination value by averaging over k-nearest neighbours
- Caustic variance
 - use two classes of photon: sample specular, refractive directions separately
- How many photons?
 - keep trying till it looks good

Photon propagation

- Photons carry Power
 - scale photons from source by number emitted
- reflected
 - diffuse
 - store in map when it arrives, propagate
 - prob proportional to cos theta
 - power scaled by albedo
 - or use russian roulette
 - specular
 - do not store in map, propagate
 - along specular direction
 - power scaled by reflectivity
 - or use russian roulette
 - arbitrary BRDF
 - inportance sample outgoing direction

Photon propagation

- When a photon arrives at complex surface, multiple photons could be generated
 - eg specular + diffuse
 - russian roulette to decide whether
 - specular
 - reflected/absorbed
 - diffuse
 - reflected/absorbed
- Photons are stored at diffuse (non-specular!) surfaces only
- Stored as:
 - Power, Location, Normal

Photon storage and querying

• Store in k-d tree

- to look up r closest photons
- tree represents free space close to surfaces

Evaluating Radiance

- Reflected radiance is: $L_r(\mathbf{x}, \omega) = \int_{\Omega} \rho_{bd}(\omega, \omega_i) L_i(\mathbf{x}, \omega_i) \cos \theta d\omega$ Each photon carries known power, in known direction
- - assume the relevant photons all arrive at x
 - each contributes radiance (power/dA)
 - assume surface is flat around x, build a circle
 - photons in this circle contribute
 - area is known

$$L_r(\mathbf{x},\omega) \frac{1}{\pi r^2} \sum \rho_{bd}(\omega,\omega_j) P_j(\mathbf{x},\omega_j)$$

Figure from Jensen's book

Figure from Jensen's book

A two pass renderer

• Propagate photons

- two classes
 - caustic photons toward specular/glossy, refractive objects
 - large numbers
 - caustic map
 - global illumination photons toward diffuse objects
 - small numbers
- Gather
 - render using
 - direct term by area source sampling
 - specular term by ray-tracing
 - caustic term by direct query to photon map
 - global illumination term by gathering the photon map

