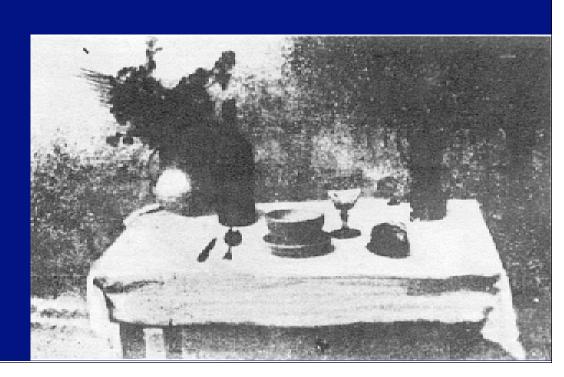
Cameras

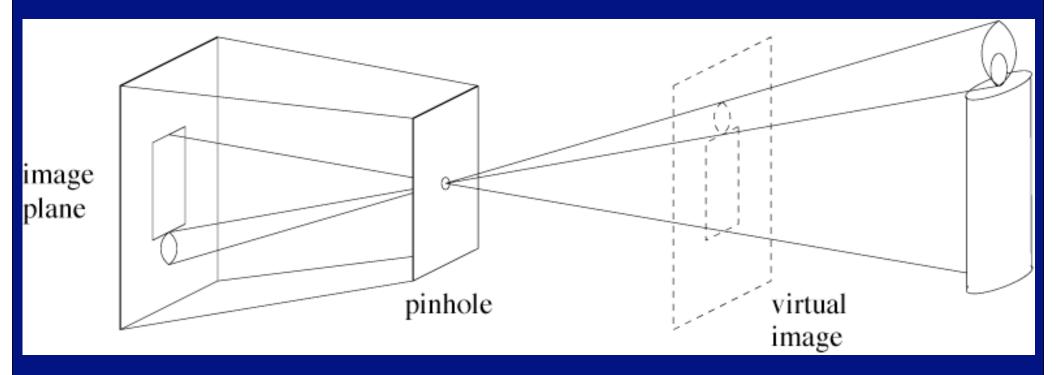
D.A. Forsyth

Cameras

- First photograph due to Niepce
- First on record, 1822
- Key abstraction
 - Pinhole camera



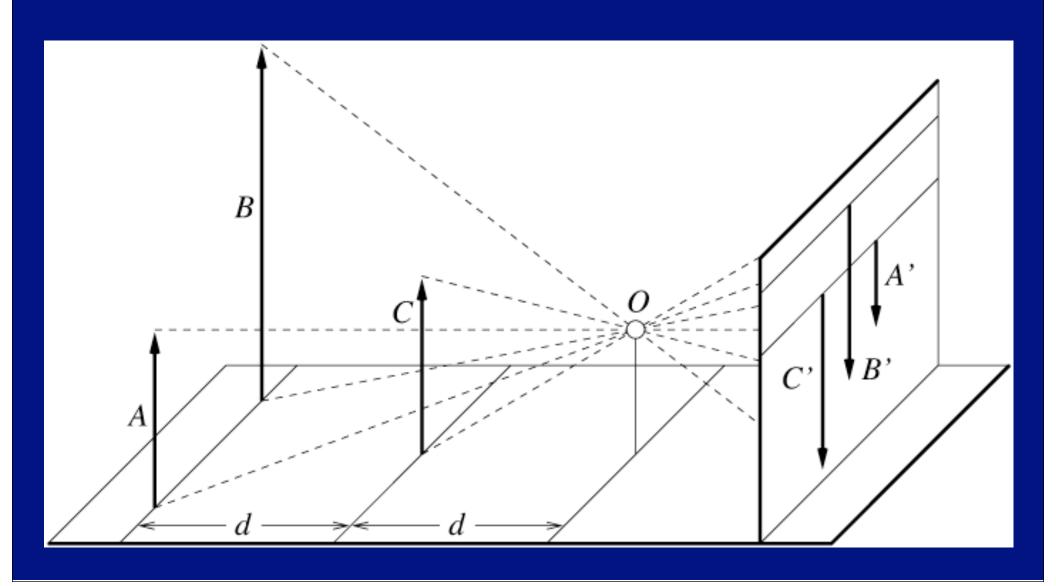
Pinhole camera



Freestanding room-sized <u>camera obscura</u> outside Hanes Art Center at the <u>University of North Carolina at Chapel Hill</u>. Picture taken by <u>User:Seth Ilys</u> on 23 April 2005 and released into the public domain.

A photo of the Camera Obscura in San Francisco. This Camera Obscura is located at the Cliff House on the Pacific ocean. Credit to Jacob Appelbaum of http://www.appelbaum.net.

Distant objects are smaller in a pinhole camera



Vanishing points

- Each set of parallel lines meets at a different point
 - The vanishing point for this direction
- Coplanar sets of parallel lines have a horizon
 - The vanishing points lie on a line
 - Good way to spot faked images

Railroad tracks "vanishing" into the distance

Source

own work

Date

2006-05-23

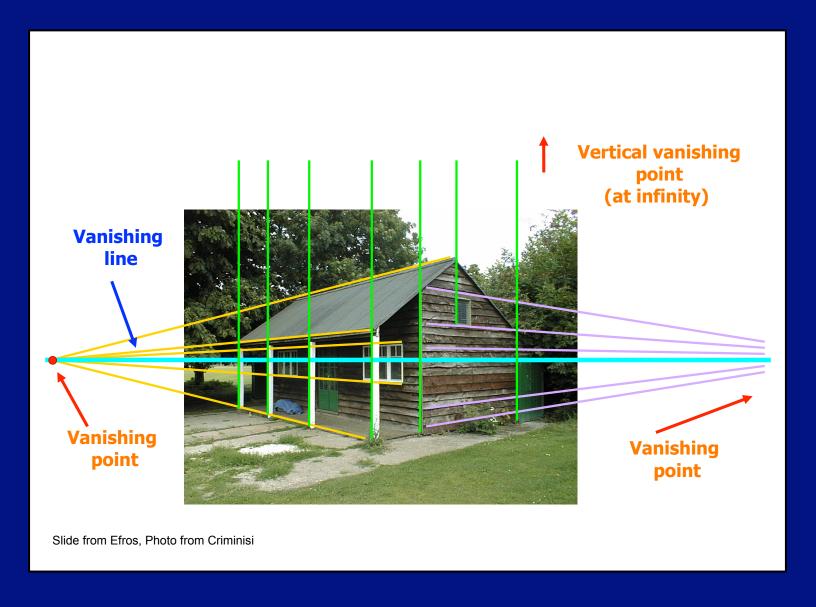
Author

User:MikKBDFJKGeMalak

Parallel lines meet in a pinhole camera



Vanishing points

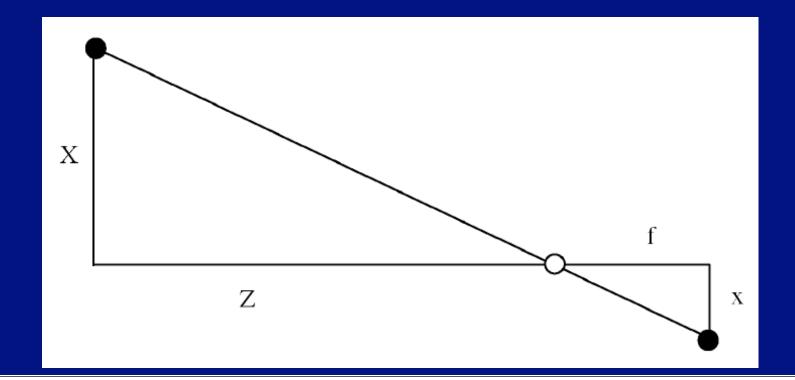


Horizons

Which ball is closer to the viewer?

Projection in Coordinates

- From the drawing, we have X/Z = -x/f
- Generally



Homogeneous coordinates

- Add an extra coordinate and use an equivalence relation
- for 2D
 - three coordinates for point
 - equivalence relation
 k*(X,Y,Z) is the same as (X,Y,Z)
- for 3D
 - four coordinates for point
 - equivalence relation
 k*(X,Y,Z,T) is the same as (X,Y,Z,T)
- Canonical representation
 - by dividing by one coordinate (if it isn't zero).

Homogeneous coordinates

- Why?
 - Possible to represent points "at infinity"
 - Where parallel lines intersect (vanishing points)
 - Where parallel planes intersect (horizons)
 - Possible to write the action of a perspective camera as a matrix

A perspective camera as a matrix

- Turn previous expression into HC's
 - HC's for 3D point are (X,Y,Z,T)
 - HC's for point in image are (U,V,W)

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

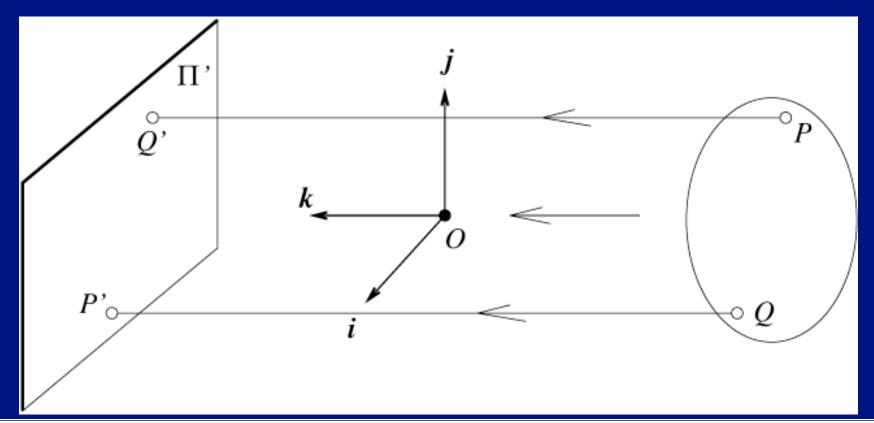
Weak perspective

Issue

- perspective effects, but not over the scale of individual objects
 - For example, texture elements in picture below
- collect points into a group at about the same depth, then divide each point by the depth of its group
- Adv: easy
- Disadv: wrong

Orthographic projection

- Perspective effects are often not significant
 - eg
 - pictures of people
 - all objects at the same distance



Orthographic projection in HC's

• In conventional coordinates, we just drop z

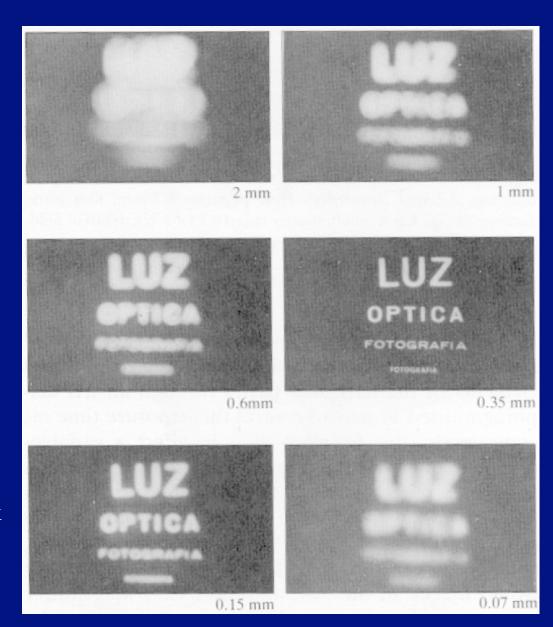
$$\left(egin{array}{c} U \ V \ W \end{array}
ight) = \left(egin{array}{cccc} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight) \left(egin{array}{c} X \ Y \ Z \ T \end{array}
ight)$$

Pinhole Problems

Pinhole too big: brighter, but blurred

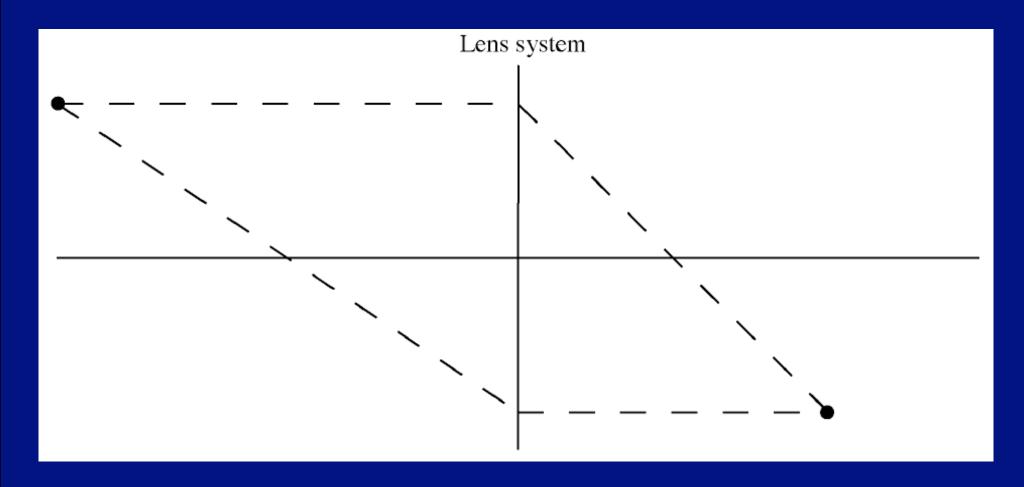
Pinhole right size: crisp, but dark

Pinhole too small: diffraction effects blur, dark

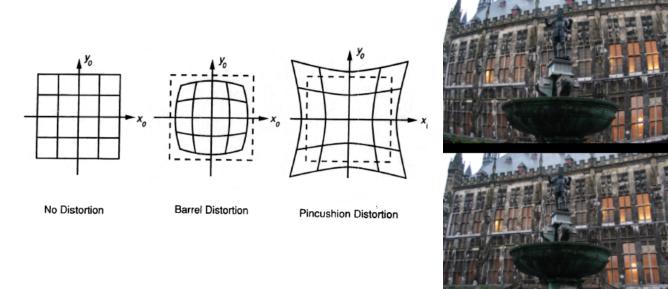


Lens Systems

• Collect light from a large range of directions



Lens distortion



Corrected Barrel Distortion

Image from Martin Habbecke

Crucial points

- Cameras project 3D to 2D
 - distort flat patches
 - distortion can be represented by matrices in homogenous coordinates
 - models:
 - perspective camera
 - orthographic camera
- Lenses
 - make images brighter by focusing light
 - can distort images