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1. Introduction

Maximum margin structured learning (MMSL) has re-
cently gained recognition within the machine learn-
ing community as a tractable method for large scale
learning. However, most current methods are lim-
ited in terms of scalability, convergence, or memory
requirements. The original Structured SMO method
proposed in (Taskar et al., 2003) is slow to converge,
particularly for Markov networks of even medium tree-
width. Similarly, dual exponentiated gradient tech-
niques suffer from sublinear convergence as well as
often large memory requirements. Recently, (Taskar
et al., 2006) have looked into saddle-point methods for
optimization and have succeeded in efficiently solving
several problems that would have otherwise had in-
tractable memory requirements.

We propose an alternative gradient based approach us-
ing a regularized risk formulation of MMSL derived by
placing the constraints into the objective to create a
convex function in w. This objective is then optimized
by a direct generalization of gradient descent, popular
in convex optimization, called the subgradient method
(Shor, 1985). The abundance of literature on subgra-
dient methods makes this algorithm a decidedly con-
venient choice. In this case, it is well known that the
subgradient method is guaranteed linear convergence
when the stepsize is chosen to be constant. Further-
more, this algorithm becomes the well-studied Greedy
Projection algorithm of (Zinkevich, 2003) in the online
setting. Using tools developed in (Hazan et al., 2006),
we can show that the risk of this online algorithm with
respect to the prediction loss grows only sublinearly in
time. Perhaps more importantly, the implementation
of this algorithm is simple and has intuitive appeal
since an integral part of the computation comes from
running the inference algorithm being trained in the
inner loop.

In what follows, we review the basic formulation of
maximum margin structured learning as a convex pro-

gramming problem before deriving the convex objec-
tive and showing how its subgradients can be com-
puted utilizing the specialized inference algorithm in-
herent to the problem. We finish with theoretical
guarantees and some experimental results in two do-
mains: sequence labeling for optical character recog-
nition; and imitation learning for path planning in
mobile robot navigation. The former problem is well
known to MMSL, but the latter is new to this domain.
Indeed, although there is a tractable polynomial sized
quadratic programming representation for the problem
(Ratliff et al., 2006), solving it directly using one of
the previously proposed methods would be intractable
practically for reasons similar to those that arise in di-
rectly solving the linear programming formulation of
Markov Decision Processes.

2. Maximum margin structured
learning

We present a brief review of maximum margin struc-
tured learning in terms of convex programming. In
this setting, we attempt to predict a structured ob-
ject y € Y(z) from a given input z € X. For our
purposes we assume that the inference problem can
be described in terms of a computationally tractable
max over a score function s, : Y(z) — R such that
y* = argmaxycy(y) Sz(y) and take as our hypothesis
class functions of the form

h(z;w) = arg max w’ f(x,y) (1)

yEY(x)

This class is parameterized by w in a convex param-
eter space W, and f(z,y) are vector valued feature
functions. Given data D = {(z;,y;)}?_, we abbreviate
f(zi,y) as fi(y) and Y(x;) as V.
The margin is chosen to scale with the loss of choosing
class y over the desired y;. We denote this prediction
loss function by L(y;,y) = Li(y), and assume that
Li(y) > 0 for all y € Y;\y;, and £;(y;) = 0. In learn-
ing, our goal is to find a score function that scores y;
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higher than all other y € );\y; by this margin. For-
mally, this gives us the following constraint:

Vi, y € Vi, w' fily) >0 fi(y) + Li(y).  (2)

Maximizing the left hand side over all y € );, and
adding slack variables, we can express this mathemat-
ically as following convex program:

A 1
15172?§||w|\2+ ﬁzi:ﬂicg (3)
sit. Vi w? fily) + ¢G> gl‘é%i( (wai(Z/) + Li(y))

where A > 0 is a hyperparameter that trades off con-
straint violations for margin maximization (i.e. fit for
simplicity), ¢ > 1 defines the penalty norm, and 3; > 0
are constants that scale training examples relative to
each other. (3; can be used to give training examples
equal weight regardless of their differing structure. See
Section 6 for a concrete example of this in the case of
planning.

3. Subgradient methods and MMSL

We propose rewriting Program 3 as a regularized risk
function and taking subgradients of the resulting ob-
jective. This leads to a myriad of possible algorithms,
the simplest of which is the subgradient method for
convex optimization. This method has shown promis-
ing experimental results, and as a direct generalization
of gradient descent for differentiable functions, is easy
to implement and has good theoretical properties in
both batch and online settings.

The regularized risk interpretation can be easily de-
rived by noting that the slack variables ¢; in Equa-
tion 4 are tight and thus equal® to max,ecy, (w” fi(y)+
Li(y)) — w? fi(y;) at the minimum. We can there-
fore move these constraints into the objective function,
simplifying the program into a single cost function:

o) =3 D (matu 0) + £,00) — ") )
+ ()

This objective is convex, but nondifferentiable; we can
optimize it by utilizing the subgradient method (Shor,
1985). A subgradient of a convex function ¢: W — R
at w is defined as a vector g,, for which

V' € W, gL(w' —w) < c(w') — c(w) (5)

Note that subgradients need not be unique, though at
points of differentiability, they necessarily agree with

!The right hand term maximizes over a set that includes
yi, and £;(y;) = 0 by definition.

the gradient. We denote the set of all subgradients of
¢(+) at point w by de(w).

To compute the subgradient of our objective func-
tion, we make use of the following four well known
properties: (1) subgradient operators are linear; (2)
the gradient is the unique subgradient of a differen-
tiable function; (3) if f(z,y) is differentiable in x,
then V,, f(z, y*) is a subgradient of the convex function
¢(z) = max, f(z,y) for any y* € argmax, f(z,y); (4)
an analogous chain rule holds as expected. We are now
equipped to compute a subgradient g,, € d¢(w) of our
objective function (4):

g = S0 (W7 fily") + L") — 0" Fiw) "
=1

where y* = arg maxyey, (w? fi(y)+L;(y)) and AY fF =
fily*)— fi(y;). This latter expression emphasizes that,
intuitively, the subgradient compares the feature val-
ues between the example class y; and the current loss-
augmented prediction y*.

Note that computing the subgradient requires solv-
ing the problem y* = argmaxyecy, (W’ f;(y) + Li(y))
for each example. If we can efficiently solve
arg maXyey, w? fi(y) using a particular specialized al-
gorithm, we can often use the same algorithm to effi-
ciently compute this loss-augmented optimization for
a particular class of loss function and hence efficiently
compute this subgradient. Algorithm 1 details the ap-
plication of the subgradient method to maximum mar-
gin structured learning.

Given g; € dc(wy) and oy, the basic iterative update
is

wir1 = Pw [we — cuge (7)
where Pyy projects w onto a convex set VW formed

by any problem specific convex constraints we may
impose on w.?

3.1. Optimization in the batch setting

In the batch setting, this algorithm is one of a well
studied class of algorithms forming the subgradient
method (Shor, 1985).3 Crucial to this method is
the choice of stepsize sequence {«a;}, and convergence

guarantees vary accordingly. Our results are developed

It is actually sufficient that Py, be an approximate
projection operator for which Pywlw] € W and Vw' €
W, [Pw [w] = w'|| < [lw — .

3The term “subgradient method” is used in lieu of “sub-
gradient descent” because the method is not technically a
descent method. Since the stepsize sequence is chosen in
advance, the objective value per iteration can, and often
does, increase.
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Algorithm 1 Subgradient Method for Maximum
Margin Structured Learning

1: procedure SMMSL({z;, v, fi(*), £:(-)}_;, Reg-
ularization parameter A\ > 0, Stepsize sequence
{a:} (learning rate), Iterations T)

2: t—1
3: w <« 0
4: while ¢t < T do
5: Solve yr = argmaxyey, (w’ fi(y) + Li(y))
for each 1.
6: Compute g € dc(w) as in Equation 6.
7 Update w «— w — aug
8: (Optional): Project w on to any additional
constraints.
9: t—t+1
10: end while
11: return w

12: end procedure

from (Nedic & Bertsekas, 2000) who analyze incremen-
tal subgradient algorithms, of which the subgradient
method is a special case.

Our results require a strong convexity assumption to
hold for the objective function. Given W C RY, a
function f : W — R is n-strongly convex if there exists
g : W — R? such that for all w,w’ € W:

F@') = fw) + gg(w' —w) +nllw’ —w|® (8)
In our case, Equation 4 is %—strongly convex.

Theorem 3.1: Linear convergence of constant
stepsize sequence. Let the stepsize sequence {ay} of
Algorithm (1) be chosen as oy = o < 5. Furthermore,
assume that for a particular region of radius R around
the minimum, Yw,g € dc(w), |lg]] < C. Then the
algorithm converges at a linear rate to a region of the
minimum w* = arg miny, ey c(w) bounded by || Wmin —

w'] <

aC? C
S

Proof: (Sketch) By the strong convexity of ¢,(w) and
Proposition 2.4 of (Nedic & Bertsekas, 2000) we have

aC?
||wt+1 - w*||2 < (1 - a/\)tJrl”wO - W*HQ + Y
aC? C?
T < =
t—oo A T A2
O

This theorem shows that we attain linear convergence
to a small region of the minimum using a constant
stepsize. Alternatively, we can choose a diminishing
stepsize rule of the form oy = 7 for ¢ > 1, where v is
some positive constant that can be thought of as the

learning rate. Under this rule, Algorithm 1 is guaran-
teed to converge to the minimum, but only at a sublin-
ear rate under the above strong convexity assumption
(see (Nedic & Bertsekas, 2000), Proposition 2.8).

3.2. Optimization in an online setting

In contrast with many optimization techniques, the
subgradient method naturally extends from the batch
setting (as presented) to an online setting. In the on-
line setting one imagines seeing several problems on
closely related domains: in particular, one may ob-
serve a domain, be required to predict within it, and
only then observe the “correct” solution (or observe
the corrections to the predicted solution).

At each time step t, we are given ); and f;(-) with
which to select a weight vector w; and make a pre-
diction. Once this prediction is made, we can then
observe the true class y; and update the weight vec-
tor based on the error. Thus, we can define ¢;(w) =
Slwl? + maxyey, (W fily) + Li(y) — 0" fi(ys) =
2lw|[? + 7(w) to be the 3-strongly convex cost func-
tion (see Equation 4) at time ¢, which we can evaluate
given yi, Vi, and fi(-). This is now an online con-
vex programming problem (Zinkevich, 2003), to
which we will apply Greedy Projection with learning
rate 1/(tA).

(Hazan et al., 2006) have shown that with this learning
rate, our online optimization problem has logarithmic
regret with respect to the objective funtion. However,
the loss we truly care about on round t is the pre-
diction loss, L(y;), where y; is the prediction made
during this round. Space doesn’t permit a proof, but
the following may be derived using tools from (Hazan
et al., 2006):

Theorem 3.2: Sublinear regret for subgradient
MMSL. Assume that the features in each state are
bounded in norm by 1, then:

S Lulwi) < 3w+ XT [P+ £ (14 T) (9)
t=1

= t=1

. _ VIfInT )
Choosing \ = o VT then:

T

Y Lilyp) <D re(w) + |w ||/ T(+InT)  (10)

t=1

Thus, if we know our horizon T and the achievable
margin, our loss grows only sublinearly with time.

Observe that Theorem 3.2 is a result about the ad-
ditive loss functions L; specifically. If we attempted
instead to consider, for instance, a setting where we
did not require more margin from higher loss paths
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(e.g. 0/1 loss on paths) our bound would be much
weaker and scale with the size of the domain.

4. Generalization guarantees

Our online algorithm also inherits interesting general-
ization guarantees when applied in the batch setting.
Given independent, identically distributed data, the
expected loss of our algorithm can be bounded, with
probability greater than or equal to 1 —4, by the errors
it makes at each step of the incremental subgradient
method using the techniques of (Cesa-Bianchi et al.,
2004):4

T
BlLr ()] < ;Zm sy pee(3) o

This bound is rather similar in form to previous gen-
eralization bounds given using covering number tech-
niques (Taskar et al., 2003). Importantly, though, this
approach removes the dependence entirely on the num-
ber of bits b being predicted in structured learning;
most existing techniques introduce a logb factor for
the number of predicted bits.

5. Slack-scaling

In principle, we can use these tools to compute sub-
gradients of the slack-scaling formulation detailed in
(Tsochantaridis et al., 2005). Disregarding the regu-
larization, under this formulation Equation 4 becomes

w) == B {ggyfﬁi(y) (w? (fily) = fily)) + 1)}‘1

=1

Multiplying by the loss inside the maximization makes
this expression more restrictive in terms of optimiza-
tion since the specialized inference algorithm cannot
usually be applied directly. However, when the loss
function takes on only a relatively small number of val-
ues L;(y) € {l;}5_, for all y € Y, we can often solve
the inner inference problem for each j individually
with respect to the set y}” ={ye V| Li(y) =1}
Using this we can then compute the subgradient and
utilize the subgradient method as before to optimize
the objective.

6. Experimental results

We present results for two problems: sequence labeling
for optical character recognition (Taskar et al., 2003);
and imitation learning for path planning in mobile
robot navigation (Ratliff et al., 2006).

4To achieve this result we must actually use the average
weight vector w computed during learning, not merely the
last one.

Test Error (10 Fold) ——
Training Eror (10 Folc

Figure 1. Training error (green) and test error (red) for
each iteration of 10 fold cross validation using 5500 training
and 600 validation examples.

6.1. Optical character recognition

We implemented the incremental subgradient method
for the sequence labeling problem originally explored
by (Taskar et al., 2003) who used the Structured SMO
algorithm.® Running our algorithm with 600 training
examples and 5500 test examples using 10 fold cross
validation, as was done in (Taskar et al., 2003), we
attained an average prediction error of 0.20 using a
linear kernel. This result is statistically equivalent to
the previously published result; however, the entire 10
fold cross validation run completed within 17 seconds.
Furthermore, when running the experiment using the
entire data set partitioned into 10 folds of 5500 train-
ing and 600 test examples each, we achieved a sig-
nificantly lower average error of 0.13, again using the
linear kernel. Figure 1 shows the error per iteration
for the larger experiment.

6.2. Path planning

We present briefly a result from our implementation of
the batch learning algorithm for the MMSL approach
to imitation learning. Details and additional results
can be found in (Ratliff et al., 2006). In this setting,
the objective is to learn to predict the correct path
between two points in a world given features over the
underlying MDP. Examples show the sequence of de-
cisions a teacher might make through a number of re-
gions. In order to give approximately equal weight to
each example in the objective function given by equa-
tion 4, we chose ; = |y;|~9, where |y;| denotes the
length the ith example path. We used a variant of
A* as our specialized algorthm to solve the inference
problem represented by Equation 1.

Differing example trajectories, demonstrated in a par-

®This data can be found at http://www.cs.berkeley.

edu/~taskar/ocr/
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Figure 2. Demonstration of learning to plan based on satel-
lite color imagery. For a particular training/holdout region
pair, the top row trains the learner to follow the road while
the bottom row trains the learner to “hide” in the trees.
From left to right, the columns depict the single training
example presented, the learned cost map over the holdout
region, and the corresponding learned behavior over that
region. Cost scales with intensity.

ticular region of a map, lead to significantly different
behavior in a separate holdout region after learning.
Figure 2 shows qualitatively the results of this exper-
iment. The behavior presented in the top row sug-
gests a desire to stay on the road, while the bottom
row portrays a more clandestine behavior. By column
from left to right, the images depict the training exam-
ple presented to the algorithm, the learned cost map
on a holdout region after training, and the resulting
behavior produced by A* over this region.

7. Related and future work

The subgradient optimization presented here makes it
practical to learn in problems for which straightfor-
ward QP techniques are intractable. This is exempli-
fied in case of path planning. In this senario, subgradi-
ent methods for maximum margin structured learning
converge quickly while the explicit quadratic program
would be too large to even represent for a generic QP
solver. Recently, a number of other techniques have
been proposed to solve problems of these kinds, in-
cluding cutting plane (Tsochantaridis et al., 2005) and
extragradient techniques (Taskar et al., 2006). The
latter is applicable where inference may be written as
a linear program and is also able to achieve linear con-
vergence rates. The subgradient method has the ad-
vantage of being applicable to any problems where loss
augmented inference may be quickly solved including
by combinatorial methods. Further, our algorithm ex-
tends naturally to the online case, where sublinear re-
gret bounds are available. It will be interesting to com-

pare these methods on problems where they are both
applicable. In recent work, (Duame et al., 2006) has
considered reinforcement learning based approaches
to structured classification. Subgradient methods for
(unstructured) margin linear classification were con-
sidered in (Zhang, 2004). (LeCun et al., 1998) con-
siders the use of gradient methods for learning using
decoding methods such as Viterbi; our approach (if
applied to sequence labeling) extends such methods to
use notions of structured maximum margin.
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