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C H A P T E R 1

Notation and conventions

A dataset as a collection of d-tuples (a d-tuple is an ordered list of d elements).
Tuples differ from vectors, because we can always add and subtract vectors, but
we cannot necessarily add or subtract tuples. There are always N items in any
dataset. There are always d elements in each tuple in a dataset. The number of
elements will be the same for every tuple in any given tuple. Sometimes we may
not know the value of some elements in some tuples.

We use the same notation for a tuple and for a vector. Most of our data will
be vectors. We write a vector in bold, so x could represent a vector or a tuple (the
context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out of
them; we write the dataset made out of these items as {xi} (the i is to suggest you
are taking a set of items and making a dataset out of them). If we need to refer

to the j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold,

because it is a component not a vector, and the j is in parentheses because it isn’t
a power). Vectors are always column vectors.

When I write {kx}, I mean the dataset created by taking each element of the
dataset {x} and multiplying by k; and when I write {x + c}, I mean the dataset
created by taking each element of the dataset {x} and adding c.
Terms:

• mean ({x}) is the mean of the dataset {x} (definition 13.1, page 241).

• std ({x}) is the standard deviation of the dataset {x} (definition 13.2, page 244).

• var ({x}) is the standard deviation of the dataset {x} (definition 13.3, page 248).

• median ({x}) is the standard deviation of the dataset {x} (definition 13.4,
page 249).

• percentile({x}, k) is the k% percentile of the dataset {x} (definition 13.5,
page 251).

• iqr{x} is the interquartile range of the dataset {x} (definition 13.7, page 252).

• {x̂} is the dataset {x}, transformed to standard coordinates (definition 13.8,
page 256).

• Standard normal data is defined in definition 13.9, (page 257).

• Normal data is defined in definition 13.10, (page 257).

• corr ({(x, y)}) is the correlation between two components x and y of a dataset
(definition 14.1, page 281).
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• ∅ is the empty set.

• Ω is the set of all possible outcomes of an experiment.

• Sets are written as A.

• Ac is the complement of the set A (i.e. Ω−A).

• E is an event (page 345).

• P ({E}) is the probability of event E (page 345).

• P ({E}|{F}) is the probability of event E , conditioned on event F (page 345).

• p(x) is the probability that random variable X will take the value x; also
written P ({X = x}) (page 345).

• p(x, y) is the probability that random variable X will take the value x and
random variable Y will take the value y; also written P ({X = x} ∩ {Y = y})
(page 345).

• argmax
x

f(x) means the value of x that maximises f(x).

• argmin
x

f(x) means the value of x that minimises f(x).

• maxi(f(xi)) means the largest value that f takes on the different elements of
the dataset {xi}.

• θ̂ is an estimated value of a parameter θ.

1.0.1 Background Information

Cards: A standard deck of playing cards contains 52 cards. These cards are divided
into four suits. The suits are: spades and clubs (which are black); and hearts and
diamonds (which are red). Each suit contains 13 cards: Ace, 2, 3, 4, 5, 6, 7, 8, 9,
10, Jack (sometimes called Knave), Queen and King. It is common to call Jack,
Queen and King court cards.

Dice: If you look hard enough, you can obtain dice with many different num-
bers of sides (though I’ve never seen a three sided die). We adopt the convention
that the sides of an N sided die are labeled with the numbers 1 . . .N , and that no
number is used twice. Most dice are like this.

Fairness: Each face of a fair coin or die has the same probability of landing
upmost in a flip or roll.

Roulette: A roulette wheel has a collection of slots. There are 36 slots num-
bered with the digits 1 . . . 36, and then one, two or even three slots numbered with
zero. There are no other slots. A ball is thrown at the wheel when it is spinning,
and it bounces around and eventually falls into a slot. If the wheel is properly
balanced, the ball has the same probability of falling into each slot. The number of
the slot the ball falls into is said to “come up”. There are a variety of bets available.



Section 1.1 Some Useful Mathematical Facts 9

1.1 SOME USEFUL MATHEMATICAL FACTS

The gamma function Γ(x) is defined by a series of steps. First, we have that for n
an integer,

Γ(n) = (n− 1)!

and then for z a complex number with positive real part (which includes positive
real numbers), we have

Γ(z) =

∫ ∞

0

tz
e−t

t
dt.

By doing this, we get a function on positive real numbers that is a smooth inter-
polate of the factorial function. We won’t do any real work with this function, so
won’t expand on this definition. In practice, we’ll either look up a value in tables
or require a software environment to produce it.

1.2 ACKNOWLEDGEMENTS

Typos spotted by: Han Chen (numerous!), Henry Lin (numerous!), Eric Huber,
Brian Lunt, Yusuf Sobh, Scott Walters, — Your Name Here — TA’s for this course
have helped improve the notes. Thanks to Zicheng Liao, Michael Sittig, Nikita
Spirin, Saurabh Singh, Daphne Tsatsoulis, Henry Lin, Karthik Ramaswamy.



C H A P T E R 2

Some Preliminaries

2.1 NOTATION AND CONVENTIONS

A dataset as a collection of d-tuples (a d-tuple is an ordered list of d elements).
Tuples differ from vectors, because we can always add and subtract vectors, but
we cannot necessarily add or subtract tuples. There are always N items in any
dataset. There are always d elements in each tuple in a dataset. The number of
elements will be the same for every tuple in any given tuple. Sometimes we may
not know the value of some elements in some tuples.

We use the same notation for a tuple and for a vector. Most of our data will
be vectors. We write a vector in bold, so x could represent a vector or a tuple (the
context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out of
them; we write the dataset made out of these items as {xi} (the i is to suggest you
are taking a set of items and making a dataset out of them). If we need to refer

to the j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold,

because it is a component not a vector, and the j is in parentheses because it isn’t
a power). Vectors are always column vectors.

When I write {kx}, I mean the dataset created by taking each element of the
dataset {x} and multiplying by k; and when I write {x + c}, I mean the dataset
created by taking each element of the dataset {x} and adding c.
Terms:

• mean ({x}) is the mean of the dataset {x} (definition 13.1, page 241).

• std ({x}) is the standard deviation of the dataset {x} (definition 13.2, page 244).

• var ({x}) is the variance of the dataset {x} (definition 13.3, page 248).

• median ({x}) is the standard deviation of the dataset {x} (definition 13.4,
page 249).

• percentile({x}, k) is the k% percentile of the dataset {x} (definition 13.5,
page 251).

• iqr{x} is the interquartile range of the dataset {x} (definition 13.7, page 252).

• {x̂} is the dataset {x}, transformed to standard coordinates (definition 13.8,
page 256).

• Standard normal data is defined in definition 13.9, (page 257).

• Normal data is defined in definition 13.10, (page 257).

10
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• corr ({(x, y)}) is the correlation between two components x and y of a dataset
(definition 14.1, page 281).

• ∅ is the empty set.

• Ω is the set of all possible outcomes of an experiment.

• Sets are written as A.

• Ac is the complement of the set A (i.e. Ω−A).

• E is an event (page 345).

• P ({E}) is the probability of event E (page 345).

• P ({E}|{F}) is the probability of event E , conditioned on event F (page 345).

• p(x) is the probability that random variable X will take the value x; also
written P ({X = x}) (page 345).

• p(x, y) is the probability that random variable X will take the value x and
random variable Y will take the value y; also written P ({X = x} ∩ {Y = y})
(page 345).

• argmax
x

f(x) means the value of x that maximises f(x).

• argmin
x

f(x) means the value of x that minimises f(x).

• maxi(f(xi)) means the largest value that f takes on the different elements of
the dataset {xi}.

• θ̂ is an estimated value of a parameter θ.

2.1.1 Background Information

Cards: A standard deck of playing cards contains 52 cards. These cards are divided
into four suits. The suits are: spades and clubs (which are black); and hearts and
diamonds (which are red). Each suit contains 13 cards: Ace, 2, 3, 4, 5, 6, 7, 8, 9,
10, Jack (sometimes called Knave), Queen and King. It is common to call Jack,
Queen and King court cards.

Dice: If you look hard enough, you can obtain dice with many different num-
bers of sides (though I’ve never seen a three sided die). We adopt the convention
that the sides of an N sided die are labeled with the numbers 1 . . .N , and that no
number is used twice. Most dice are like this.

Fairness: Each face of a fair coin or die has the same probability of landing
upmost in a flip or roll.

Roulette: A roulette wheel has a collection of slots. There are 36 slots num-
bered with the digits 1 . . . 36, and then one, two or even three slots numbered with
zero. There are no other slots. A ball is thrown at the wheel when it is spinning,
and it bounces around and eventually falls into a slot. If the wheel is properly
balanced, the ball has the same probability of falling into each slot. The number of
the slot the ball falls into is said to “come up”. There are a variety of bets available.
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2.2 SOME USEFUL MATHEMATICAL FACTS

The gamma function Γ(x) is defined by a series of steps. First, we have that for n
an integer,

Γ(n) = (n− 1)!

and then for z a complex number with positive real part (which includes positive
real numbers), we have

Γ(z) =

∫ ∞

0

tz
e−t

t
dt.

By doing this, we get a function on positive real numbers that is a smooth inter-
polate of the factorial function. We won’t do any real work with this function, so
won’t expand on this definition. In practice, we’ll either look up a value in tables
or require a software environment to produce it.

2.3 ACKNOWLEDGEMENTS

Typos spotted by: Han Chen (numerous!), Henry Lin (numerous!), Paris Smaragdis
(numerous!), Johnny Chang, Eric Huber, Brian Lunt, Yusuf Sobh, Scott Walters,
— Your Name Here — TA’s for this course have helped improve the notes. Thanks
to Zicheng Liao, Michael Sittig, Nikita Spirin, Saurabh Singh, Daphne Tsatsoulis,
Henry Lin, Karthik Ramaswamy.

2.4 THE CURSE OF DIMENSION

High dimensional models display uninituitive behavior (or, rather, it can take years
to make your intuition see the true behavior of high-dimensional models as natural).
In these models, most data lies in places you don’t expect. We will do several simple
calculations with an easy high-dimensional distribution to build some intuition.

2.4.1 The Curse: Data isn’t Where You Think it is

Assume our data lies within a cube, with edge length two, centered on the origin.
This means that each component of xi lies in the range [−1, 1]. One simple model
for such data is to assume that each dimension has uniform probability density in
this range. In turn, this means that P (x) = 1

2d . The mean of this model is at the
origin, which we write as 0.

The first surprising fact about high dimensional data is that most of the data
can lie quite far away from the mean. For example, we can divide our dataset into
two pieces. A(ǫ) consists of all data items where every component of the data has
a value in the range [−(1− ǫ), (1 − ǫ)]. B(ǫ) consists of all the rest of the data. If
you think of the data set as forming a cubical orange, then B(ǫ) is the rind (which
has thickness ǫ) and A(ǫ) is the fruit.

Your intuition will tell you that there is more fruit than rind. This is true,
for three dimensional oranges, but not true in high dimensions. The fact that the
orange is cubical just simplifies the calculations, but has nothing to do with the
real problem.

We can compute P ({x ∈ A(ǫ)}) and P ({x ∈ A(ǫ)}). These probabilities tell
us the probability a data item lies in the fruit (resp. rind). P ({x ∈ A(ǫ)}) is easy
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to compute as

P ({x ∈ A(ǫ)}) = (2(1− ǫ)))
d

(

1

2d

)

= (1− ǫ)d

and
P ({x ∈ B(ǫ)}) = 1− P ({x ∈ A(ǫ)}) = 1− (1− ǫ)d.

But notice that, as d → ∞,

P ({x ∈ A(ǫ)}) → 0.

This means that, for large d, we expect most of the data to be in B(ǫ). Equivalently,
for large d, we expect that at least one component of each data item is close to
either 1 or −1.

This suggests (correctly) that much data is quite far from the origin. It is
easy to compute the average of the squared distance of data from the origin. We
want

E
[

xTx
]

=

∫

box

(

∑

i

x2
i

)

P (x)dx

but we can rearrange, so that

E
[

xTx
]

=
∑

i

E
[

x2
i

]

=
∑

i

∫

box
x2
iP (x)dx.

Now each component of x is independent, so that P (x) = P (x1)P (x2) . . . P (xd).
Now we substitute, to get

E
[

xTx
]

=
∑

i

E
[

x2
i

]

=
∑

i

∫ 1

−1

x2
iP (xi)dxi =

∑

i

1

2

∫ 1

−1

x2
i dxi =

d

3
,

so as d gets bigger, most data points will be further and further from the origin.
Worse, as d gets bigger, data points tend to get further and further from one
another. We can see this by computing the average of the squared distance of data
points from one another. Write u for one data point and v; we can compute

E
[

d(u,v)2
]

=

∫

box

∫

box

∑

i

(ui − vi)
2dudv = E

[

uTu
]

+ E
[

vTv
]

− E
[

uTv
]

but since u and v are independent, we have E
[

uTv
]

= E[u]
T
E[v] = 0. This yields

E
[

d(u,v)2
]

= 2
d

3
.

This means that, for large d, we expect our data points to be quite far apart.
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2.4.2 Minor Banes of Dimension

High dimensional data presents a variety of important practical nuisances which
follow from the curse of dimension. It is hard to estimate covariance matrices, and
it is hard to build histograms.

Covariance matrices are hard to work with for two reasons. The number of
entries in the matrix grows as the square of the dimension, so the matrix can get
big and so difficult to store. More important, the amount of data we need to get an
accurate estimate of all the entries in the matrix grows fast. As we are estimating
more numbers, we need more data to be confident that our estimates are reasonable.
There are a variety of straightforward work-arounds for this effect. In some cases,
we have so much data there is no need to worry. In other cases, we assume that
the covariance matrix has a particular form, and just estimate those parameters.
There are two strategies that are usual. In one, we assume that the covariance
matrix is diagonal, and estimate only the diagonal entries. In the other, we assume
that the covariance matrix is a scaled version of the identity, and just estimate this
scale. You should see these strategies as acts of desperation, to be used only when
computing the full covariance matrix seems to produce more problems than using
these approaches.

It is difficult to build histogram representations for high dimensional data.
The strategy of dividing the domain into boxes, then counting data into them, fails
miserably because there are too many boxes. In the case of our cube, imagine we
wish to divide each dimension in half (i.e. between [−1, 0] and between [0, 1]). Then
we must have 2d boxes. This presents two problems. First, we will have difficulty
representing this number of boxes. Second, unless we are exceptionally lucky, most
boxes must be empty because we will not have 2d data items.

However, one representation is extremely effective. We can represent data as
a collection of clusters — coherent blobs of similar datapoints that could, under
appropriate circumstances, be regarded as the same. We could then represent the
dataset by, for example, the center of each cluster and the number of data items
in each cluster. Since each cluster is a blob, we could also report the covariance of
each cluster, if we can compute it.
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Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class
label for them. There could be two, or many, classes. Classifiers are immensely
useful, and find wide application, because many problems are naturally classification
problems. For example, if you wish to determine whether to place an advert on a
web-page or not, you would use a classifier (i.e. look at the page, and say yes or
no according to some rule). As another example, if you have a program that you
found for free on the web, you would use a classifier to decide whether it was safe
to run it (i.e. look at the program, and say yes or no according to some rule). As
yet another example, credit card companies must decide whether a transaction is
good or fraudulent.

All these examples are two class classifiers, but in many cases it is natural
to have more classes. You can think of sorting laundry as applying a multi-class
classifier. You can think of doctors as complex multi-class classifiers. In this (crude)
model, the doctor accepts a set of features, which might be your complaints, answers
to questions, and so on, and then produces a response which we can describe as a
class. The grading procedure for any class is a multi-class classifier: it accepts a
set of features — performance in tests, homeworks, and so on — and produces a
class label (the letter grade).

Classifiers are built by taking a set of labeled examples and using them to
come up with a procedure that assigns a label to any new example. In the general
problem, we have a training dataset (xi, yi); each of the feature vectors xi consists
of measurements of the properties of different types of object, and the yi are labels
giving the type of the object that generated the example. We will then use the
training dataset to find a procedure that will predict an accurate label (y) for any
new object (x).

Definition: 3.1 Classifier

A classifier is a procedure that accepts a feature vector and produces a
label.

3.1 CLASSIFICATION, ERROR, AND LOSS

You should think of a classifier as a procedure — we pass in a feature vector, and
get a class label in return. We want to use the training data to find the procedure
that is “best” when used on the test data. This problem has two tricky features.

15
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First, we need to be clear on what a good procedure is. Second, we really want the
procedure to be good on test data, which we haven’t seen and won’t see; we only
get to see the training data. These two considerations shape much of what we do.

3.1.1 Loss and the Cost of Misclassification

The choice of procedure must depend on the cost of making a mistake. This cost
can be represented with a loss function, which specifies the cost of making each
type of mistake. I will write L(j → k) for the loss incurred when classifying an
example of class j as having class k.

A two-class classifier can make two kinds of mistake. Because two-class clas-
sifiers are so common, there is a special name for each kind of mistake. A false

positive occurs when a negative example is classified positive (which we can write
L(− → +) and avoid having to remember which index refers to which class); a
false negative occurs when a positive example is classified negative (similarly
L(+ → −)). By convention, the loss of getting the right answer is zero, and the
loss for any wrong answer is non-negative.

The choice of procedure should depend quite strongly on the cost of each
mistake. For example, pretend there is only one disease; then doctors would be
classifiers, deciding whether a patient had it or not. If this disease is dangerous, but
is safely and easily treated, false negatives are expensive errors, but false positives
are cheap. In this case, procedures that tend to make more false positives than false
negatives are better. Similarly, if the disease is not dangerous, but the treatment is
difficult and unpleasant, then false positives are expensive errors and false negatives
are cheap, and so we prefer false negatives to false positives.

You might argue that the best choice of classifier makes no mistake. But for
most practical cases, the best choice of classifier is guaranteed to make mistakes.
As an example, consider an alien who tries to classify humans into male and female,
using only height as a feature. However the alien’s classifier uses that feature, it
will make mistakes. This is because the classifier must choose, for each value of
height, whether to label the humans with that height male or female. But for the
vast majority of heights, there are some males and some females with that height,
and so the alien’s classifier must make some mistakes whatever gender it chooses
for that height.

For many practical problems, it is difficult to know what loss function to use.
There is seldom an obvious choice. One common choice is to assume that all errors
are equally bad. This gives the 0-1 loss — every error has loss 1, and all right
answers have loss zero.

3.1.2 Building a Classifier from Probabilities

Assume that we have a reliable model of p(y|x). This case occurs less often than you
might think for practical data, because building such a model is often very difficult.
However, when we do have a model and a loss function, it is easy to determine the
best classifier. We should choose the rule that gives minimum expected loss.

We start with a two-class classifier. At x, the expected loss of saying −
is L(+ → −)p(+|x) (remember, L(− → −) = 0); similarly, the expected loss
of saying + is L(− → +)p(−|x). At most points, one of L(− → +)p(−|x) and
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L(+ → −)p(+|x) is larger than the other, and so the choice is clear. The remaining
set of points (where L(− → +)p(−|x) = L(+ → −)p(+|x)) is “small” (formally, it
has zero measure) for most models and problems, and so it doesn’t matter what we
choose at these points. This means that the rule

say







+ if L(+ → −)p(+|x) > L(− → +)p(−|x)
− if L(+ → −)p(+|x) < L(− → +)p(−|x)
random choice otherwise

is the best available. Because it doesn’t matter what we do when L(+ → −)p(+|x) =
L(− → +)p(−|x), it is fine to use

say

{

+ if L(+ → −)p(+|x) > L(− → +)p(−|x)
− otherwise

The same reasoning applies in the multi-class case. We choose the class where the
expected loss from that choice is smallest. In the case of 0-1 loss, this boils down
to:

choose k such that p(k|x) is largest.

3.1.3 Building a Classifier using Decision Boundaries

Building a classifier out of posterior probabilities is less common than you might
think, for two reasons. First, it’s often very difficult to get a good posterior proba-
bility model. Second, most of the model doesn’t matter to the choice of classifier.
What is important is knowing which class has the lowest expected loss, not the
exact values of the expected losses, so we should be able to get away without an
exact posterior model.

Look at the rules in section 3.1.2. Each of them carves up the domain of x into
pieces, and then attaches a class – the one with the lowest expected loss – to each
piece. There isn’t necessarily one piece per class, (though there’s always one class
per piece). The important factor here is the boundaries between the pieces, which
are known as decision boundaries. A powerful strategy for building classifiers
is to choose some way of building decision boundaries, then adjust it to perform
well on the data one has. This involves modelling considerably less detail than
modelling the whole posterior.

For example, in the two-class case, we will spend some time discussing the
decision boundary given by

choose

{

− if xTa+ b < 0
+ otherwise

often written as signxTa+ b (section 16.5). In this case we choose a and b to obtain
low loss.

3.1.4 What will happen on Test Data?

What we really want from a classifier is to have small loss on test data. But this
is difficult to measure or achieve directly. For example, think about the case of
classifying credit-card transactions as “good” or “bad”. We could certainly obtain
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a set of examples that have been labelled for training, because the card owner often
complains some time after a fraudulent use of their card. But what is important
here is to see a new transaction and label it without holding it up for a few months
to see what the card owner says. The classifier may never know if the label is right
or not.

Generally, we will assume that the training data is “like” the test data, and
so we will try to make the classifier perform well on the training data. Classifiers
that have small training error might not have small test error. One example of
this problem is the (silly) classifier that takes any data point and, if it is the same
as a point in the training set, emits the class of that point and otherwise chooses
randomly between the classes. This classifier has been learned from data, and has
a zero error rate on the training dataset; it is likely to be unhelpful on any other
dataset, however.

Test error is usually worse than training error, because of an effect that is
sometimes called overfitting, so called because the classification procedure fits
the training data better than it fits the test data. Other names include selection

bias, because the training data has been selected and so isn’t exactly like the
test data, and generalizing badly, because the classifier fails to generalize. The
effect occurs because the classifier has been trained to perform well on the training
dataset, and the training dataset is not the same as the test dataset. First, it is
quite likely smaller. Second, it might be biased through a variety of accidents. This
means that small training error may have to do with quirks of the training dataset
that don’t occur in other sets of examples. One consequence of overfitting is that
classifiers should always be evaluated on data that was not used in training.

Remember this: Classifiers should always be evaluated on data that
was not used in training.

Now assume that we are using the 0-1 loss, so that the loss of using a classifier
is the same as the error rate, that is, the percentage of classification attempts on
a test set that result in the wrong answer. We could also use the accuracy, which
is the percentage of classification attempts that result in the right answer. We
cannot estimate the error rate of the classifier using training data, because the
classifier has been trained to do well on that data, which will mean our error rate
estimate will be too low. An alternative is to separate out some training data to
form a validation set (confusingly, this is often called a test set), then train the
classifier on the rest of the data, and evaluate on the validation set. This has the
difficulty that the classifier will not be the best estimate possible, because we have
left out some training data when we trained it. This issue can become a significant
nuisance when we are trying to tell which of a set of classifiers to use—did the
classifier perform poorly on validation data because it is not suited to the problem
representation or because it was trained on too little data?

We can resolve this problem with cross-validation, which involves repeat-
edly: splitting data into training and validation sets uniformly and at random,
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training a classifier on the training set, evaluating it on the validation set, and
then averaging the error over all splits. This allows an estimate of the likely fu-
ture performance of a classifier, at the expense of substantial computation. You
should notice that cross-validation, in some sense, looks at the sensitivity of the
classifier to a change in the training set. The most usual form of this algorithm
involves omitting single items from the dataset and is known as leave-one-out

cross-validation.
You should usually compare the error rate of a classifier to two important

references. The first is the error rate if you assign classes to examples uniformly at
random, which for a two class classifier is 50%. A two class classifier should never
have an error rate higher than 50%. If you have one that does, all you need to do
is swap its class assignment, and the resulting error rate would be lower than 50%.
The second is the error rate if you assign all data to the most common class. If one
class is uncommon and the other is common, this error rate can be hard to beat.
Data where some classes occur very seldom requires careful, and quite specialized,
handling.

3.1.5 The Class Confusion Matrix

Evaluating a multi-class classifier is more complex than evaluating a binary clas-
sifier. The error rate if you assign classes to examples uniformly at random can
be rather high. If each class has about the same frequency, then this error rate is
(1 − 100/number of classes)%. A multi-class classifier can make many more kinds
of mistake than a binary classifier can. It is useful to know the total error rate of
the classifier (percentage of classification attempts that produce the wrong answer)
or the accuracy, (the percentage of classification attempts that produce the right
answer). If the error rate is low enough, or the accuracy is high enough, there’s not
much to worry about. But if it’s not, you can look at the class confusion matrix

to see what’s going on.

Predict Predict Predict Predict Predict Class
0 1 2 3 4 error

True 0 151 7 2 3 1 7.9%
True 1 32 5 9 9 0 91%
True 2 10 9 7 9 1 81%
True 3 6 13 9 5 2 86%
True 4 2 3 2 6 0 100%

TABLE 3.1: The class confusion matrix for a multiclass classifier. Further details
about the dataset and this example appear in worked example 3.3.

Table 3.1 gives an example. This is a class confusion matrix from a classifier
built on a dataset where one tries to predict the degree of heart disease from a col-
lection of physiological and physical measurements. There are five classes (0 . . . 4).
The i, j’th cell of the table shows the number of data points of true class i that
were classified to have class j. As I find it hard to recall whether rows or columns
represent true or predicted classes, I have marked this on the table. For each row,
there is a class error rate, which is the percentage of data points of that class that
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were misclassified. The first thing to look at in a table like this is the diagonal; if
the largest values appear there, then the classifier is working well. This clearly isn’t
what is happening for table 3.1. Instead, you can see that the method is very good
at telling whether a data point is in class 0 or not (the class error rate is rather
small), but cannot distinguish between the other classes. This is a strong hint that
the data can’t be used to draw the distinctions that we want. It might be a lot
better to work with a different set of classes.

3.1.6 Statistical Learning Theory and Generalization

What is required in a classifier is an ability to predict—we should like to be confident
that the classifier chosen on a particular data set has a low risk on future data items.
The family of decision boundaries from which a classifier is chosen is an important
component of the problem. Some decision boundaries are more flexible than others
(in a sense we don’t intend to make precise). This has nothing to do with the
number of parameters in the decision boundary. For example, if we were to use
a point to separate points on the line, there are very small sets of points that
are not linearly separable (the smallest set has three points in it). This means
that relatively few sets of points on the line are linearly separable, so that if our
dataset is sufficiently large and linearly separable, the resulting classifier is likely
to behave well in future. However, using the sign of sinλx to separate points on
the line produces a completely different qualitative phenomenon; for any labeling
of distinct points on the line into two classes, we can choose a value of λ to achieve
this labeling. This flexibility means that the classifier is wholly unreliable—it can
be made to fit any set of examples, meaning the fact that it fits the examples is
uninformative.

There is a body of theory that treats this question, which rests on two impor-
tant points.

• A large enough dataset yields a good representation of the source

of the data: this means that if the dataset used to train the classifier is very
large, there is a reasonable prospect that the performance on the training set
will represent the future performance. However, for this to be helpful, we
need the data set to be large with respect to the “flexibility” of the family

• The “flexibility” of a family of decision boundaries can be formal-

ized: yielding the Vapnik-Chervonenkis dimension (or V-C dimen-

sion) of the family. This dimension is independent of the number of param-
eters of the family. Families with finite V-C dimension can yield classifiers
whose future performance can be bounded using the number of training ele-
ments; families with infinite V-C dimension (like the sinλx example above)
cannot be used to produce reliable classifiers.

The essence of the theory is as follows: if one chooses a decision boundary from an
inflexible family, and the resulting classifier performs well on a large data set, there
is strong reason to believe that it will perform well on future items drawn from the
same source. This statement can be expressed precisely in terms of bounds on total
risk to be expected for particular classifiers as a function of the size of the data
set used to train the classifier. These bounds hold in probability. These bounds
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tend not to be used in practice, because they appear to be extremely pessimistic.
Space doesn’t admit an exposition of this theory—which is somewhat technical—
but interested readers can look it up in (?, ?, ?).

3.2 CLASSIFYING WITH NAIVE BAYES

One reason it is difficult to build a posterior probability model is the dependencies
between features. However, if we assume that features are conditionally indepen-
dent conditioned on the class of the data item, we can get a simple expression for
the posterior. This assumption is hardly ever true in practice. Remarkably, this
doesn’t matter very much, and the classifier we build from the assumption often
works extremely well. It is the classifier of choice for very high dimensional data.

Recall bayes’ rule. If we have p(x|y) (often called either a likelihood or class
conditional probability), and p(y) (often called a prior) then we can form

p(y|x) = p(x|y)p(y)
p(x)

(the posterior). We write xj for the j’th component of x. Our assumption is

p(x|y) =
∏

i

p(xi|y)

(again, this isn’t usually the case; it just turns out to be fruitful to assume that it
is true). This assumption means that

p(y|x) =
p(x|y)p(y)

p(x)

=

∏

i p(xi|y)p(y)
p(x)

∝
∏

i

p(xi|y)p(y).

Now because we need only to know the posterior values up to scale at x to make
a decision (check the rules above if you’re unsure), we don’t need to estimate p(x).
In the case of 0-1 loss, this yields the rule

choose y such that
∏

i p(xi|y)p(y) is largest.

Naive bayes is particularly good when there are a large number of features, but there
are some things to be careful about. You can’t actually multiply a large number
of probabilities and expect to get an answer that a floating point system thinks is
different from zero. Instead, you should add the log probabilities. A model with
many different features is likely to have many strongly negative log probabilities,
so you should not just add up all the log probabilities then exponentiate, or else
you will find that each class has a posterior probability of zero. Instead, subtract
the largest log from all the others, then exponentiate; you will obtain a vector
proportional to the class probabilities, where the largest element has the value 1.
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We still need models for p(xi|y) for each xi. It turns out that simple paramet-
ric models work really well here. For example, one could fit a normal distribution
to each xi in turn, for each possible value of y, using the training data. The logic
of the measurements might suggest other distributions, too. If one of the xi’s was
a count, we might fit a Poisson distribution. If it was a 0-1 variable, we might fit a
Bernoulli distribution. If it was a numeric variable that took one of several values,
then we might use either a multinomial model.

Many effects cause missing values: measuring equipment might fail; a record
could be damaged; it might be too hard to get information in some cases; survey
respondents might not want to answer a question; and so on. As a result, miss-
ing values are quite common in practical datasets. A nice feature of naive bayes
classifiers is that they can handle missing values for particular features rather well.

Dealing with missing data during learning is easy. For example, assume for
some i, we wish to fit p(xi|y) with a normal distribution. We need to estimate
the mean and standard deviation of that normal distribution (which we do with
maximum likelihood, as one should). If not every example has a known value of xi,
this really doesn’t matter; we simply omit the unknown number from the estimate.
Write xi,j for the value of xi for the j’th example. To estimate the mean, we form

∑

j∈cases with known values xi,j

number of cases with known values

and so on.
Dealing with missing data during classification is easy, too. We need to look

for the y that produces the largest value of
∑

i log p(xi|y). We can’t evaluate p(xi|y)
if the value of that feature is missing - but it is missing for each class. We can just
leave that term out of the sum, and proceed. This procedure is fine if data is
missing as a result of “noise” (meaning that the missing terms are independent of
class). If the missing terms depend on the class, there is much more we could do
— for example, we might build a model of the class-conditional density of missing
terms.

Notice that if some values of a discrete feature xi don’t appear for some class,
you could end up with a model of p(xi|y) that had zeros for some values. This
almost inevitably leads to serious trouble, because it means your model states you
cannot ever observe that value for a data item of that class. This isn’t a safe
property: it is hardly ever the case that not observing something means you cannot
observe it. A simple, but useful, fix is to add one to all small counts.

The usual way to find a model of p(y) is to count the number of training
examples in each class, then divide by the number of classes. If there are some
classes with very little data, then the classifier is likely to work poorly, because you
will have trouble getting reasonable estimates of the parameters for the p(xi|y).
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Worked example 3.1 Classifying breast tissue samples

The “breast tissue” dataset at https://archive.ics.uci.edu/ml/datasets/
Breast+Tissue contains measurements of a variety of properties of six differ-
ent classes of breast tissue. Build and evaluate a naive bayes classifier to
distinguish between the classes automatically from the measurements.

Solution: The main difficulty here is finding appropriate packages, under-
standing their documentation, and checking they’re right, unless you want to
write the source yourself (which really isn’t all that hard). I used the R package
caret to do train-test splits, cross-validation, etc. on the naive bayes classifier
in the R package klaR. I separated out a test set randomly (approx 20% of the
cases for each class, chosen at random), then trained with cross-validation on
the remainder. The class-confusion matrix on the test set was:
Prediction adi car con fad gla mas

adi 2 0 0 0 0 0
car 0 3 0 0 0 1
con 2 0 2 0 0 0
fad 0 0 0 0 1 0
gla 0 0 0 0 2 1
mas 0 1 0 3 0 1

which is fairly good. The accuracy is 52%. In the training data, the classes
are nearly balanced and there are six classes, meaning that chance is about
16%. The κ is 4.34. These numbers, and the class-confusion matrix, will vary
with test-train split. I have not averaged over splits, which would be the next
thing.

https://archive.ics.uci.edu/ml/datasets/Breast+Tissue
https://archive.ics.uci.edu/ml/datasets/Breast+Tissue
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Worked example 3.2 Classifying mouse protein expression

Build a naive bayes classifier to classify the “mouse protein” dataset from the
UC Irvine machine learning repository. The dataset is at http://archive.ics.uci.
edu/ml/datasets/Mice+Protein+Expression.

Solution: There’s only one significant difficulty here; many of the data items
are incomplete. I dropped all incomplete data items, which is about half of the
dataset. One can do somewhat more sophisticated things, but we don’t have the
tools yet. I used the R package caret to do train-test splits, cross-validation,
etc. on the naive bayes classifier in the R package klaR. I separated out a test
set, then trained with cross-validation on the remainder. The class-confusion
matrix on the test set was:
Pred’n c-CS-m c-CS-s c-SC-m c-SC-s t-CS-m t-CS-s t-SC-m t-SC-s
c-CS-m 9 0 0 0 0 0 0 0
c-CS-s 0 15 0 0 0 0 0 0
c-SC-m 0 0 12 0 0 0 0 0
c-SC-s 0 0 0 15 0 0 0 0
t-CS-m 0 0 0 0 18 0 0 0
t-CS-s 0 0 0 0 0 15 0 0
t-SC-m 0 0 0 0 0 0 12 0
t-SC-s 0 0 0 0 0 0 0 14

which is as accurate as you can get. Again, I have not averaged over splits,
which would be the next thing.

Naive bayes with normal class-conditional distributions takes an interesting
and suggestive form. Assume we have two classes. Recall our decision rule is

say

{

+ if L(+ → −)p(+|x) > L(− → +)p(−|x)
− otherwise

Now as p gets larger, so does log p (logarithm is a monotonically increasing func-
tion), and the rule isn’t affected by adding the same constant to both sides, so we
can rewrite as:

say

{

+ if logL(+ → −) + log p(x|+) + log p(+) > logL(− → +) log p(x|−) + log p(−)
− otherwise

Write µ+
j , σ

+
j respectively for the mean and standard deviation for the class-

conditional density for the j’th component of x for class + (and so on); the com-

parison becomes logL(+ → −)−∑j

(xj−µ+
j
)2

2(σ+
j
)2

−∑j log σ
+
j + log p(+) > logL(− →

+) −∑j

(xj−µ−
j
)2

2(σ−
j
)2

−∑j log σ
−
j + log p(−) Now we can expand and collect terms

really aggressively to get




∑

j

cjx
2
j − djxj



− e > 0

http://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression
http://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression
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(where cj , dj , e are functions of the means and standard deviations and losses and
priors). Rather than forming these by estimating the means, etc., we could directly
search for good values of cj, dj and e.

3.3 THE SUPPORT VECTOR MACHINE

Assume we have a set of N example points xi that belong to two classes, which we
indicate by 1 and −1. These points come with their class labels, which we write as
yi; thus, our dataset can be written as

{(x1, y1), . . . , (xN , yN)} .

We wish to predict the sign of y for any point x. We will use a linear classifier, so
that for a new data item x, we will predict

sign ((a · x+ b))

and the particular classifier we use is given by our choice of a and b.
You should think of a and b as representing a hyperplane, given by the points

where a · x+ b = 0. This hyperplane separates the positive data from the negative
data, and is known as the decision boundary. Notice that the magnitude of
a · x+ b grows as the point x moves further away from the hyperplane.

Example: 3.1 A linear model with a single feature

Assume we use a linear model with one feature. Then the model has
the form y

(p)
i = sign(axi + b). For any particular example which has

the feature value x∗, this means we will test whether x∗ is larger than,
or smaller than, −b/a.

Example: 3.2 A linear model with two features

Assume we use a linear model with two features. Then the model
has the form y

(p)
i = sign(aTxi + b). The sign changes along the line

aTx + b = 0. You should check that this is, indeed, a line. On one
side of this line, the model makes positive predictions; on the other,
negative. Which side is which can be swapped by multiplying a and b
by −1.

This family of classifiers may look bad to you, and it is easy to come up with
examples that it misclassifies badly. In fact, the family is extremely strong. First,
it is easy to estimate the best choice of rule for very large datasets. Second, linear



Section 3.3 The Support Vector Machine 26

classifiers have a long history of working very well in practice on real data. Third,
linear classifiers are fast to evaluate.

In fact, examples that are classified badly by the linear rule usually are clas-
sified badly because there are two few features. Remember the case of the alien
who classified humans into male and female by looking at their heights; if that alien
had looked at their chromosomes as well, the error rate would be extremely small.
In practical examples, experience shows that the error rate of a poorly performing
linear classifier can usually be improved by adding features to the vector x.

Recall that using naive bayes with a normal model for the class conditional

distributions boiled down to testing
(

∑

j cjx
2
j − djxj

)

− e > 0 for some values of

cj , dj , and e. This may not look to you like a linear classifier, but it is. Imagine
that, for an example ui, you form the feature vector

x =
(

u2
i,1, ui,1, u

2
i,2, ui,2, . . . , ui,d

)T
.

Then we can interpret testing aTx+ b > 0 as testing a1u
2
i,1 − (−a2)ui,1 + a3u

2
i,2 −

(−a4)ui,2 + ...− (−b) > 0, and pattern matching to the expression for naive bayes
suggests that the two cases are equivalent (i.e. for any choice of a, b, there is a
corresponding naive bayes case and vice versa; exercises).

3.3.1 Choosing a Classifier with the Hinge Loss

We will choose a and b by choosing values that minimize a cost function. We will
adopt a cost function of the form:

Training error cost + penalty term.

For the moment, we will ignore the penalty term and focus on the training error
cost. Write

γi = aTxi + b

for the value that the linear function takes on example i. Write C(γi, yi) for a
function that compares γi with yi. The training error cost will be of the form

(1/N)

N
∑

i=1

C(γi, yi).

A good choice of C should have some important properties. If γi and yi have
different signs, then C should be large, because the classifier will make the wrong
prediction for this training example. Furthermore, if γi and yi have different signs
and γi has large magnitude, then the classifier will very likely make the wrong
prediction for test examples that are close to xi. This is because the magnitude of
(a · x + b) grows as x gets further from the decision boundary. So C should get
larger as the magnitude of γi gets larger in this case.

If γi and yi have the same signs, but γi has small magnitude, then the classifier
will classify xi correctly, but might not classify points that are nearby correctly.
This is because a small magnitude of γi means that xi is close to the decision
boundary. So C should not be zero in this case. Finally, if γi and yi have the same
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FIGURE 3.1: The hinge loss, plotted for the case yi = 1. The horizontal variable is
the γi = a · xi + b of the text. Notice that giving a strong negative response to this
positive example causes a loss that grows linearly as the magnitude of the response
grows. Notice also that giving an insufficiently positive response also causes a loss.
Giving a strongly positive response is free.

signs and γi has large magnitude, then C can be zero because xi is on the right
side of the decision boundary and so are all the points near to xi.

The choice
C(yi, γi) = max(0, 1− yiγi)

has these properties. If yiγi > 1 (so the classifier predicts the sign correctly and
xi is far from the boundary) there is no cost. But in any other case, there is a
cost. The cost rises if xi moves toward the decision boundary from the correct side,
and grows linearly as xi moves further away from the boundary on the wrong side
(Figure 3.1). This means that minimizing the loss will encourage the classifier to (a)
make strong positive (or negative) predictions for positive (or negative) examples
and (b) for examples it gets wrong, make the most positive (negative) prediction
that it can. This choice is known as the hinge loss.

Now we think about future examples. We don’t know what their feature
values will be, and we don’t know their labels. But we do know that an example



Section 3.3 The Support Vector Machine 28

with feature vector x will be classified with the rule sign (()a · x+ b). If we classify
this example wrongly, we should like |a · x+ b | to be small. Achieving this would
mean that at least some nearby examples will have the right sign. The way to
achieve this is to ensure that ||a || is small. By this argument, we would like to
achieve a small value of the hinge loss using a small value of ||a ||. Thus, we add a
penalty term to the loss so that pairs (a, b) that have small values of the hinge loss
and large values of ||a || are expensive. We minimize

S(a, b;λ) =

[

(1/N)

N
∑

i=1

max(0, 1− yi (a · xi + b))

]

+
λ

2
aTa

(hinge loss) (penalty)

where λ is some weight that balances the importance of a small hinge loss against
the importance of a small ||a ||. There are now two problems to solve. First, assume
we know λ; we will need to find a and b that minimize S(a, b;λ). Second, we will
need to estimate λ.

3.3.2 Finding a Minimum: General Points

I will first summarize general recipes for finding a minimum. Write u = [a, b] for the
vector obtained by stacking the vector a together with b. We have a function g(u),
and we wish to obtain a value of u that achieves the minimum for that function.
Sometimes we can solve this problem in closed form by constructing the gradient
and finding a value of u the makes the gradient zero. This happens mainly for
specially chosen problems that occur in textbooks. For practical problems, we tend
to need a numerical method.

Typical methods take a point u(i), update it to u(i+1), then check to see
whether the result is a minimum. This process is started from a start point. The
choice of start point may or may not matter for general problems, but for our
problem it won’t matter. The update is usually obtained by computing a direction
p(i) such that for small values of h, g(u(i) + hp(i)) is smaller than g(u(i)). Such a
direction is known as a descent direction. We must then determine how far to
go along the descent direction, a process known as line search.

One method to choose a descent direction is gradient descent, which uses
the negative gradient of the function. Recall our notation that

u =









u1

u2

. . .
ud









and that

∇g =











∂g
∂u1
∂g
∂u2

. . .
∂g
∂ud











.
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We can write a Taylor series expansion for the function g(u(i) + hp(i)). We have
that

g(u(i) + hp(i)) = g(u(i)) + h(∇g)Tp(i) +O(h2)

This means that we can expect that if

p(i) = −∇g(u(i)),

we expect that, at least for small values of h, g(u(i)+hp(i)) will be less than g(u(i)).
This works (as long as g is differentiable, and quite often when it isn’t) because g
must go down for at least small steps in this direction.

3.3.3 Finding a Minimum: Stochastic Gradient Descent

Assume we wish to minimize some function g(u) = g0(u) + (1/N)
∑N

i=1 gi(u), as a
function of u. Gradient descent would require us to form

−∇g(u) = −
(

∇g0(u) + (1/N)

N
∑

i=1

∇gi(u)

)

and then take a small step in this direction. But if N is large, this is unattractive,
as we might have to sum a lot of terms. This happens a lot in building classifiers,
where you might quite reasonably expect to deal with millions of examples. For
some cases, there might be trillions of examples. Touching each example at each
step really is impractical.

Instead, assume that, at each step, we choose a number k in the range 1 . . .N
uniformly and at random, and form

pk = − (∇g0(u) +∇gk(u))

and then take a small step along pk. Our new point becomes

a(i+1) = a(i) + ηp
(i)
k ,

where η is called the steplength (even though it very often isn’t the length of the
step we take!). It is easy to show that

E[pk] = ∇g(u)

(where the expectation is over the random choice of k). This implies that if we take
many small steps along pk, they should average out to a step backwards along the
gradient. This approach is known as stochastic gradient descent (because we’re
not going along the gradient, but along a random vector which is the gradient only
in expectation). It isn’t obvious that stochastic gradient descent is a good idea.
Although each step is easy to take, we may need to take more steps. The question
is then whether we gain in the increased speed of the step what we lose by having
to take more steps. Not much is known theoretically, but in practice the approach
is hugely successful for training classifiers.

Choosing a steplength η takes some work. We can’t search for the step that
gives us the best value of g, because we don’t want to evaluate the function g (doing
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so involves looking at each of the gi terms). Instead, we use a steplength that is
large at the start — so that the method can explore large changes in the values of
the classifier parameters — and small steps later — so that it settles down. One
useful strategy is to divide training into epochs. Each epoch is a block of a fixed
number of iterations. Each iteration is one of the steps given above, with fixed
steplength. However, the steplength changes from epoch to epoch. In particular,
in the r’th epoch, the steplength is

η(r) =
a

r + b

where a and b are constants chosen by experiment with small subsets of the dataset.
One cannot really test whether stochastic gradient descent has converged to

the right answer. A better approach is to plot the error as a function of epoch on
a validation set. This should vary randomly, but generally go down as the epochs
proceed. I have summarized this discussion in box 3.1. You should be aware that
the recipe there admits many useful variations, though.

Procedure: 3.1 Stochastic Gradient Descent

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label, either 1 or −1.
Choose a set of possible values of the regularization weight λ. We
wish to train a model that minimizes a cost function of the form
g(u) = λ

2u
Tu+( 1

N )
∑N

i=1 gi(u). Separate the data into three sets: test,
training and validation. For each value of the regularization weight,
train a model, and evaluate the model on validation data. Keep the
model that produces the lowest error rate on the validation data, and
report its performance on the test data.
Train a model by choosing a fixed number of epochs Ne, and the num-
ber of steps per epoch Ns. Choose a random start point, u0 = [a, b].
For each epoch, first compute the steplength. In the e’th epoch, the
steplength is typically η = 1

ae+b for constants a and b chosen by small-
scale experiments (you try training a model with different values and
see what happens). For the e’th epoch, choose a subset of the training
set for validation for that epoch. Now repeat until the model has been
updated Ns times:

• Take k steps. Each step is taken by selecting a single data item
uniformly and at random. Assume we select the i’th data item.
We then compute p = −∇gi(u) − λu, and update the model by
computing

un+1 = un + ηp

• Evaluate the current model by computing the accuracy on the
validation set for that epoch. Plot the accuracy as a function of
step number.
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3.3.4 Example: Training an SVM with Stochastic Gradient Descent

I have summarized stochastic gradient descent in algorithm 3.1, but here is an
example in more detail. We need to choose a and b to minimize

C(a, b) = (1/N)
N
∑

i=1

max(0, 1− yi (a · xi + b)) +
λ

2
aTa.

This is a support vector machine, because it uses hinge loss. For a support vector
machine, stochastic gradient descent is particularly easy. We have estimates a(n)

and b(n) of the classifier parameters, and we want to improve the estimates. We
pick the k’th example at random. We must now compute

∇
(

max(0, 1− yk (a · xk + b)) +
λ

2
aTa

)

.

Assume that yk (a · xk + b) > 1. In this case, the classifier predicts a score with
the right sign, and a magnitude that is greater than one. Then the first term is
zero, and the gradient of the second term is easy. Now if yk (a · xk + b) < 1, we can
ignore the max, and the first term is 1− yk (a · xk + b); the gradient is again easy.
But what if yk (a · xk + b) = 1? there are two distinct values we could choose for
the gradient, because the max term isn’t differentiable. It turns out not to matter
which term we choose (Figure ??), so we can write the gradient as

pk =























[

λa
0

]

if yk (a · xk + b) ≥ 1

[

λa− ykx
−yk

]

otherwise

We choose a steplength η, and update our estimates using this gradient. This yields:

a(n+1) = a(n) − η

{

λa if yk (a · xk + b) ≥ 1
λa− ykx otherwise

and

b(n+1) = b(n) − η

{

0 if yk (a · xk + b) ≥ 1
−yk otherwise

.

To construct figures, I downloaded the dataset at http://archive.ics.uci.edu/
ml/datasets/Adult. This dataset apparently contains 48, 842 data items, but I
worked with only the first 32, 000. Each consists of a set of numeric and categorical
features describing a person, together with whether their annual income is larger
than or smaller than 50K$. I ignored the categorical features to prepare these
figures. This isn’t wise if you want a good classifier, but it’s fine for an example.
I used these features to predict whether income is over or under 50K$. I split the
data into 5, 000 test examples, and 27,000 training examples. It’s important to
do so at random. There are 6 numerical features. I subtracted the mean (which
doesn’t usually make much difference) and rescaled each so that the variance was
1 (which is often very important). I used two different training regimes.

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult
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FIGURE 3.2: On the left, the magnitude of the weight vector a at the end of each
epoch for the first training regime described in the text. On the right, the accu-
racy on held out data at the end of each epoch. Notice how different choices of
regularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

In the first training regime, there were 100 epochs. In each epoch, I applied
426 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees
a total of 42, 600 data items. This means that there is a high probability it has
touched each data item once (27, 000 isn’t enough, because we are sampling with
replacement, so some items get seen more than once). I chose 5 different values
for the regularization parameter and trained with a steplength of 1/(0.01 ∗ e+50),
where e is the epoch. At the end of each epoch, I computed aTa and the accuracy
(fraction of examples correctly classified) of the current classifier on the held out
test examples. Figure 3.2 shows the results. You should notice that the accuracy
changes slightly each epoch; that for larger regularizer values aTa is smaller; and
that the accuracy settles down to about 0.8 very quickly.

In the second training regime, there were 100 epochs. In each epoch, I applied
50 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees
a total of 5,000 data items, and about 3, 216 unique data items — it hasn’t seen
the whole training set. I chose 5 different values for the regularization parameter
and trained with a steplength of 1/(0.01 ∗ e+50), where e is the epoch. At the end
of each epoch, I computed aTa and the accuracy (fraction of examples correctly
classified) of the current classifier on the held out test examples. Figure 3.3 shows
the results. You should notice that the accuracy changes slightly each epoch; that
for larger regularizer values aTa is smaller; and that the accuracy settles down
to about 0.8 very quickly; and that there isn’t much difference between the two
training regimes. All of these points are relatively typical of stochastic gradient
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FIGURE 3.3: On the left, the magnitude of the weight vector a at the end of each
epoch for the second training regime described in the text. On the right, the ac-
curacy on held out data at the end of each epoch. Notice how different choices of
regularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

descent with very large datasets.

Remember this: Linear SVM’s are a go-to classifier. When you have
a binary classification problem, the first step should be to try a linear SVM.
There is an immense quantity of good software available.

3.3.5 Multi-Class Classifiers

I have shown how one trains a linear SVM to make a binary prediction (i.e. predict
one of two outcomes). But what if there are three, or more, labels? In principle,
you could write a binary code for each label, then use a different SVM to predict
each bit of the code. It turns out that this doesn’t work terribly well, because an
error by one of the SVM’s is usually catastrophic.

There are two methods that are widely used. In the all-vs-all approach, we
train a binary classifier for each pair of classes. To classify an example, we present it
to each of these classifiers. Each classifier decides which of two classes the example
belongs to, then records a vote for that class. The example gets the class label with
the most votes. This approach is simple, but scales very badly with the number of
classes (you have to build O(N2) different SVM’s for N classes).

In the one-vs-all approach, we build a binary classifier for each class. This
classifier must distinguish its class from all the other classes. We then take the class
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with the largest classifier score. One can think up quite good reasons this approach
shouldn’t work. For one thing, the classifier isn’t told that you intend to use the
score to tell similarity between classes. In practice, the approach works rather well
and is quite widely used. This approach scales a bit better with the number of
classes (O(N)).

Remember this: It is straightforward to build a multi-class classifier
out of binary classifiers. Any decent SVM package will do this for you.

3.4 CLASSIFYING WITH RANDOM FORESTS

I described a classifier as a rule that takes a feature, and produces a class. One way
to build such a rule is with a sequence of simple tests, where each test is allowed
to use the results of all previous tests. This class of rule can be drawn as a tree
(Figure ??), where each node represents a test, and the edges represent the possible
outcomes of the test. To classify a test item with such a tree, you present it to
the first node; the outcome of the test determines which node it goes to next; and
so on, until the example arrives at a leaf. When it does arrive at a leaf, we label
the test item with the most common label in the leaf. This object is known as a
decision tree. Notice one attractive feature of this decision tree: it deals with
multiple class labels quite easily, because you just label the test item with the most
common label in the leaf that it arrives at when you pass it down the tree.

Figure 3.5 shows a simple 2D dataset with four classes, next to a decision
tree that will correctly classify at least the training data. Actually classifying data
with a tree like this is straightforward. We take the data item, and pass it down
the tree. Notice it can’t go both left and right, because of the way the tests work.
This means each data item arrives at a single leaf. We take the most common
label at the leaf, and give that to the test item. In turn, this means we can build
a geometric structure on the feature space that corresponds to the decision tree.
I have illustrated that structure in figure 3.5, where the first decision splits the
feature space in half (which is why the term split is used so often), and then the
next decisions split each of those halves into two.

The important question is how to get the tree from data. It turns out that
the best approach for building a tree incorporates a great deal of randomness. As
a result, we will get a different tree each time we train a tree on a dataset. None of
the individual trees will be particularly good (they are often referred to as “weak
learners”). The natural thing to do is to produce many such trees (a decision

forest), and allow each to vote; the class that gets the most votes, wins. This
strategy is extremely effective.

3.4.1 Building a Decision Tree

There are many algorithms for building decision trees. We will use an approach
chosen for simplicity and effectiveness; be aware there are others. We will always
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FIGURE 3.4: This — the household robot’s guide to obstacles — is a typical decision
tree. I have labelled only one of the outgoing branches, because the other is the
negation. So if the obstacle moves, bites, but isn’t furry, then it’s a toddler. In
general, an item is passed down the tree until it hits a leaf. It is then labelled with
the leaf ’s label.

use a binary tree, because it’s easier to describe and because that’s usual (it doesn’t
change anything important, though). Each node has a decision function, which
takes data items and returns either 1 or -1.

We train the tree by thinking about its effect on the training data. We pass
the whole pool of training data into the root. Any node splits its incoming data
into two pools, left (all the data that the decision function labels 1) and right (ditto,
-1). Finally, each leaf contains a pool of data, which it can’t split because it is a
leaf.

Training the tree uses a straightforward algorithm. First, we choose a class of
decision functions to use at each node. It turns out that a very effective algorithm
is to choose a single feature at random, then test whether its value is larger than, or
smaller than a threshold. For this approach to work, one needs to be quite careful
about the choice of threshold, which is what we describe in the next section. Some
minor adjustments, described below, are required if the feature chosen isn’t ordinal.
Surprisingly, being clever about the choice of feature doesn’t seem add a great deal
of value. We won’t spend more time on other kinds of decision function, though
there are lots.

Now assume we use a decision function as described, and we know how to
choose a threshold. We start with the root node, then recursively either split the
pool of data at that node, passing the left pool left and the right pool right, or stop
splitting and return. Splitting involves choosing a decision function from the class
to give the “best” split for a leaf. The main questions are how to choose the best
split (next section), and when to stop.

Stopping is relatively straightforward. Quite simple strategies for stopping
are very good. It is hard to choose a decision function with very little data, so we
must stop splitting when there is too little data at a node. We can tell this is the
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FIGURE 3.5: A straightforward decision tree, illustrated in two ways. On the left,
I have given the rules at each split; on the right, I have shown the data points in
two dimensions, and the structure that the tree produces in the feature space.

case by testing the amount of data against a threshold, chosen by experiment. If all
the data at a node belongs to a single class, there is no point in splitting. Finally,
constructing a tree that is too deep tends to result in generalization problems, so
we usually allow no more than a fixed depth D of splits. Choosing the best splitting
threshold is more complicated.

Figure 3.6 shows two possible splits of a pool of training data. One is quite
obviously a lot better than the other. In the good case, the split separates the pool
into positives and negatives. In the bad case, each side of the split has the same
number of positives and negatives. We cannot usually produce splits as good as
the good case here. What we are looking for is a split that will make the proper
label more certain.

Figure 3.7 shows a more subtle case to illustrate this. The splits in this figure
are obtained by testing the horizontal feature against a threshold. In one case,
the left and the right pools contain about the same fraction of positive (’x’) and
negative (’o’) examples. In the other, the left pool is all positive, and the right pool
is mostly negative. This is the better choice of threshold. If we were to label any
item on the left side positive and any item on the right side negative, the error rate
would be fairly small. If you count, the best error rate for the informative split is
20% on the training data, and for the uninformative split it is 40% on the training
data.

But we need some way to score the splits, so we can tell which threshold is
best. Notice that, in the uninformative case, knowing that a data item is on the
left (or the right) does not tell me much more about the data than I already knew.
We have that p(1|left pool, uninformative) = 2/3 ≈ 3/5 = p(1|parent pool) and
p(1|right pool, uninformative) = 1/2 ≈ 3/5 = p(1|parent pool). For the informa-
tive pool, knowing a data item is on the left classifies it completely, and knowing
that it is on the right allows us to classify it an error rate of 1/3. The informative
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FIGURE 3.6: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’x’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’o’s, and all the points on the
right are ’x’s. This is an excellent choice of split — once we have arrived in a leaf,
everything has the same label. Compare this with the less informative split. We
started with a node that was half ’x’ and half ’o’, and now have two nodes each of
which is half ’x’ and half ’o’ — this isn’t an improvement, because we do not know
more about the label as a result of the split.

split means that my uncertainty about what class the data item belongs to is signif-
icantly reduced if I know whether it goes left or right. To choose a good threshold,
we need to keep track of how informative the split is.

3.4.2 Entropy and Information Gain

It turns out to be straightforward to keep track of information, in simple cases. We
will start with an example. Assume I have 4 classes. There are 8 examples in class
1, 4 in class 2, 2 in class 3, and 2 in class 4. How much information on average will
you need to send me to tell me the class of a given example? Clearly, this depends
on how you communicate the information. You could send me the complete works
of Edward Gibbon to communicate class 1; the Encyclopaedia for class 2; and so
on. But this would be redundant. The question is how little can you send me.
Keeping track of the amount of information is easier if we encode it with bits (i.e.
you can send me sequences of ’0’s and ’1’s).

Imagine the following scheme. If an example is in class 1, you send me a ’1’.
If it is in class 2, you send me ’01’; if it is in class 3, you send me ’001’; and in class
4, you send me ’101’. Then the expected number of bits you will send me is

p(class = 1)1 + p(2)2 + p(3)3 + p(4)3 =
1

2
1 +

1

4
2 +

1

8
3 +

1

8
3

which is 1.75 bits. This number doesn’t have to be an integer, because it’s an
expectation.

Notice that for the i’th class, you have sent me − log2 p(i) bits. We can write
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FIGURE 3.7: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’x’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’x’s, and two-thirds of the points
on the right are ’o’s. This means that knowing which side of the split a point lies
would give us a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are ’x’s and about half on the right are ’x’s
— knowing which side of the split a point lies is much less useful in deciding what
the label is.

the expected number of bits you need to send me as

−
∑

i

p(i) log2 p(i).

This expression handles other simple cases correctly, too. You should notice that it
isn’t really important how many objects appear in each class. Instead, the fraction
of all examples that appear in the class is what matters. This fraction is the prior
probability that an item will belong to the class. You should try what happens if
you have two classes, with an even number of examples in each; 256 classes, with
an even number of examples in each; and 5 classes, with p(1) = 1/2, p(2) = 1/4,
p(3) = 1/8, p(4) = 1/16 and p(5) = 1/16. If you try other examples, you may find
it hard to construct a scheme where you can send as few bits on average as this
expression predicts. It turns out that, in general, the smallest number of bits you
will need to send me is given by the expression

−
∑

i

p(i) log2 p(i)

under all conditions, though it may be hard or impossible to determine what rep-
resentation is required to achieve this number.

The entropy of a probability distribution is a number that scores how many
bits, on average, would need to be known to identify an item sampled from that
probability distribution. For a discrete probability distribution, the entropy is
computed as

−
∑

i

p(i) log2 p(i)
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where i ranges over all the numbers where p(i) is not zero. For example, if we
have two classes and p(1) = 0.99, then the entropy is 0.0808, meaning you need
very little information to tell which class an object belongs to. This makes sense,
because there is a very high probability it belongs to class 1; you need very little
information to tell you when it is in class 2. If you are worried by the prospect of
having to send 0.0808 bits, remember this is an average, so you can interpret the
number as meaning that, if you want to tell which class each of 104 independent
objects belong to, you could do so in principle with only 808 bits.

Generally, the entropy is larger if the class of an item is more uncertain.
Imagine we have two classes and p(1) = 0.5, then the entropy is 1, and this is the
largest possible value for a probability distribution on two classes. You can always
tell which of two classes an object belongs to with just one bit (though you might
be able to tell with even less than one bit).

3.4.3 Entropy and Splits

Now we return to the splits. Write P for the set of all data at the node. Write Pl

for the left pool, and Pr for the right pool. The entropy of a pool C that scores
how many bits would be required to represent the class of an item in that pool, on
average. Write n(i; C) for the number of items of class i in the pool, and N(C) for
the number of items in the pool. Then the entropy is H(C) of the pool C is

−
∑

i

n(i; C)
N(C) log2

n(i; C)
N(C .

It is straightforward that H(P) bits are required to classify an item in the parent
pool P . For an item in the left pool, we need H(Pl) bits; for an item in the right
pool, we need H(Pr) bits. If we split the parent pool, we expect to encounter items
in the left pool with probability

N(Pl)

N(P)

and items in the right pool with probability

N(Pr)

N(P)
.

This means that, on average, we must supply

N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

bits to classify data items if we split the parent pool. Now a good split is one that
results in left and right pools that are informative. In turn, we should need fewer
bits to classify once we have split than we need before the split. You can see the
difference

I(Pl,Pr;P) = H(P)−
(

N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

)

as the information gain caused by the split. This is the average number of bits
that you don’t have to supply if you know which side of the split an example lies.
Better splits have larger information gain.
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FIGURE 3.8: We search for a good splitting threshold by looking at values of the
chosen component that yield different splits. On the left, I show a small dataset
and its projection onto the chosen splitting component (the horizontal axis). For the
8 data points here, there are only 7 threshold values that produce interesting splits,
and these are shown as ’t’s on the axis. On the right, I show a larger dataset; in
this case, I have projected only a subset of the data, which results in a small set of
thresholds to search.

3.4.4 Choosing a Split with Information Gain

Recall that our decision function is to choose a feature at random, then test its
value against a threshold. Any data point where the value is larger goes to the left
pool; where the value is smaller goes to the right. This may sound much too simple
to work, but it is actually effective and popular. Assume that we are at a node,
which we will label k. We have the pool of training examples that have reached
that node. The i’th example has a feature vector xi, and each of these feature
vectors is a d dimensional vector.

We choose an integer j in the range 1 . . . d uniformly and at random. We will

split on this feature, and we store j in the node. Recall we write x
(j)
i for the value

of the j’th component of the i’th feature vector. We will choose a threshold tk,

and split by testing the sign of x
(j)
i − tk. Choosing the value of tk is easy. Assume

there are Nk examples in the pool. Then there are Nk − 1 possible values of tk
that lead to different splits. To see this, sort the Nk examples by x(j), then choose
values of tk halfway between example values (Figure 3.8). For each of these values,
we compute the information gain of the split. We then keep the threshold with the
best information gain.

We can elaborate this procedure in a useful way, by choosing m features at
random, finding the best split for each, then keeping the feature and threshold
value that is best. It is important that m is a lot smaller than the total number of
features — a usual root of thumb is that m is about the square root of the total
number of features. It is usual to choose a single m, and choose that for all the
splits.

Now assume we happen to have chosen to work with a feature that isn’t
ordinal, and so can’t be tested against a threshold. A natural, and effective, strategy
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is as follows. We can split such a feature into two pools by flipping an unbiased
coin for each value — if the coin comes up H , any data point with that value goes
left, and if it comes up T , any data point with that value goes right. We chose this
split at random, so it might not be any good. We can come up with a good split by
repeating this procedure F times, computing the information gain for each split,
then keeping the one that has the best information gain. We choose F in advance,
and it usually depends on the number of values the categorical variable can take.

We now have a relatively straightforward blueprint for an algorithm, which I
have put in a box. It’s a blueprint, because there are a variety of ways in which it
can be revised and changed.

Procedure: 3.2 Building a decision tree

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Call this dataset
a pool. Now recursively apply the following procedure:

• If the pool is too small, or if all items in the pool have the same
label, or if the depth of the recursion has reached a limit, stop.

• Otherwise, search the features for a good split that divides the
pool into two, then apply this procedure to each child.

We search for a good split by the following procedure:

• Choose a subset of the feature components at random. Typically,
one uses a subset whose size is about the square root of the feature
dimension.

• For each component of this subset, search for the best splitting
threshold. Do so by selecting a set of possible values for the
threshold, then for each value splitting the dataset (every data
item with a value of the component below the threshold goes left,
others go right), and computing the information gain for the split.
Keep the threshold that has the largest information gain.

A good set of possible values for the threshold will contain values that
separate the data “reasonably”. If the pool of data is small, you can
project the data onto the feature component (i.e. look at the values of
that component alone), then choose the N − 1 distinct values that lie
between two data points. If it is big, you can randomly select a subset
of the data, then project that subset on the feature component and
choose from the values between data points.
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3.4.5 Forests

A single decision tree tends to yield poor classifications. One reason is because the
tree is not chosen to give the best classification of its training data. We used a
random selection of splitting variables at each node, so the tree can’t be the “best
possible”. Obtaining the best possible tree presents significant technical difficulties.
It turns out that the tree that gives the best possible results on the training data
can perform rather poorly on test data. The training data is a small subset of
possible examples, and so must differ from the test data. The best possible tree on
the training data might have a large number of small leaves, built using carefully
chosen splits. But the choices that are best for training data might not be best for
test data.

Rather than build the best possible tree, we have built a tree efficiently, but
with number of random choices. If we were to rebuild the tree, we would obtain
a different result. This suggests the following extremely effective strategy: build
many trees, and classify by merging their results.

3.4.6 Building and Evaluating a Decision Forest

There are two important strategies for building and evaluating decision forests. I
am not aware of evidence strongly favoring one over the other, but different software
packages use different strategies, and you should be aware of the options. In one
strategy, we separate labelled data into a training and a test set. We then build
multiple decision trees, training each using the whole training set. Finally, we
evaluate the forest on the test set. In this approach, the forest has not seen some
fraction of the available labelled data, because we used it to test. However, each
tree has seen every training data item.

Procedure: 3.3 Building a decision forest

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Separate the dataset
into a test set and a training set. Train multiple distinct decision trees
on the training set, recalling that the use of a random set of components
to find a good split means you will obtain a distinct tree each time.

In the other strategy, sometimes called bagging, each time we train a tree we
randomly subsample the labelled data with replacement, to yield a training set the
same size as the original set of labelled data. Notice that there will be duplicates
in this training set, which is like a bootstrap replicate. This training set is often
called a bag. We keep a record of the examples that do not appear in the bag (the
“out of bag” examples). Now to evaluate the forest, we evaluate each tree on its
out of bag examples, and average these error terms. In this approach, the entire
forest has seen all labelled data, and we also get an estimate of error, but no tree
has seen all the training data.
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Procedure: 3.4 Building a decision forest using bagging

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Now build k boot-
strap replicates of the training data set. Train one decision tree on each
replicate.

3.4.7 Classifying Data Items with a Decision Forest

Once we have a forest, we must classify test data items. There are two major
strategies. The simplest is to classify the item with each tree in the forest, then
take the class with the most votes. This is effective, but discounts some evidence
that might be important. For example, imagine one of the trees in the forest has a
leaf with many data items with the same class label; another tree has a leaf with
exactly one data item in it. One might not want each leaf to have the same vote.

Procedure: 3.5 Classification with a decision forest

Given a test example x, pass it down each tree of the forest. Now choose
one of the following strategies.

• Each time the example arrives at a leaf, record one vote for the
label that occurs most often at the leaf. Now choose the label
with the most votes.

• Each time the example arrives at a leaf, recordNl votes for each of
the labels that occur at the leaf, where Nl is the number of times
the label appears in the training data at the leaf. Now choose the
label with the most votes.

An alternative strategy that takes this observation into account is to pass the
test data item down each tree. When it arrives at a leaf, we record one vote for each
of the training data items in that leaf. The vote goes to the class of the training
data item. Finally, we take the class with the most votes. This approach allows
big, accurate leaves to dominate the voting process. Both strategies are in use, and
I am not aware of compelling evidence that one is always better than the other.
This may be because the randomness in the training process makes big, accurate
leaves uncommon in practice.
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Worked example 3.3 Classifying heart disease data

Build a random forest classifier to classify the “heart” dataset from the UC
Irvine machine learning repository. The dataset is at http://archive.ics.uci.edu/
ml/datasets/Heart+Disease. There are several versions. You should look at the
processed Cleveland data, which is in the file “processed.cleveland.data.txt”.

Solution: I used the R random forest package. This uses a bagging strategy.
There is sample code in listing ??. This package makes it quite simple to fit
a random forest, as you can see. In this dataset, variable 14 (V14) takes the
value 0, 1, 2, 3 or 4 depending on the severity of the narrowing of the arteries.
Other variables are physiological and physical measurements pertaining to the
patient (read the details on the website). I tried to predict all five levels of
variable 14, using the random forest as a multivariate classifier. This works
rather poorly, as the out-of-bag class confusion matrix below shows. The total
out-of-bag error rate was 45%.

Predict Predict Predict Predict Predict Class
0 1 2 3 4 error

True 0 151 7 2 3 1 7.9%
True 1 32 5 9 9 0 91%
True 2 10 9 7 9 1 81%
True 3 6 13 9 5 2 86%
True 4 2 3 2 6 0 100%

This is the example of a class confusion matrix from table 3.1. Fairly clearly,
one can predict narrowing or no narrowing from the features, but not the
degree of narrowing (at least, not with a random forest). So it is natural to
quantize variable 14 to two levels, 0 (meaning no narrowing), and 1 (meaning
any narrowing, so the original value could have been 1, 2, or 3). I then built
a random forest to predict this from the other variables. The total out-of-bag
error rate was 19%, and I obtained the following out-of-bag class confusion
matrix

Predict Predict Class
0 1 error

True 0 138 26 16%
True 1 31 108 22%

Notice that the false positive rate (16%, from 26/164) is rather better than the
false negative rate (22%). Looking at these class confusion matrices, you might
wonder whether it is better to predict 0, . . . , 4, then quantize. But this is not a
particularly good idea. While the false positive rate is 7.9%, the false negative
rate is much higher (36%, from 50/139). In this application, a false negative is
likely more of a problem than a false positive, so the tradeoff is unattractive.

http://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://archive.ics.uci.edu/ml/datasets/Heart+Disease
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Listing 3.1: R code used for the random forests of worked example 3.3

setwd ( ’/us e r s/daf/Current/ cou r s e s/Probcourse/Trees/RCode ’ ) ;
i ns ta l l .packages ( ’ randomForest ’ )
l ibrary ( randomForest )
heart<−read . csv ( ’ proces s ed . c l ev e l and . data . txt ’ , header=FALSE)
heart$levels<−as . factor ( heart$V14)
h e a r t f o r e s t . a l l v a l s<−

randomForest ( formula=levels ˜V1+V2+V3+V4+V5+V6
+V7+V8+V9+V10+V11+V12+V13 ,
data=heart , type=’ c l a s s i f i c a t i o n ’ , mtry=5)

# th i s f i t s to a l l l e v e l s
# I got the CCM by typ ing
h e a r t f o r e s t . a l l v a l s
heart$yesno<−cut ( heart$V14 , c(− Inf , 0 . 1 , In f ) )
h e a r t f o r e s t<−

randomForest ( formula=yesno˜V1+V2+V3+V4+V5+V6
+V7+V8+V9+V10+V11+V12+V13 ,
data=heart , type=’ c l a s s i f i c a t i o n ’ , mtry=5)

# th i s f i t s to the quant i zed case
# I got the CCM by typ ing
h e a r t f o r e s t

Remember this: Random forests are straightforward to build, and very
effective. They can predict any kind of label. Good software implementa-
tions are easily available.

3.5 CLASSIFYING WITH NEAREST NEIGHBORS

Generally we expect that, if two points xi and xj are close, then their labels will be
the same most of the time. If we were unlucky, the two points could lie on either
side of a decision boundary, but most pairs of nearby points will have the same
labels.

This observation suggests the extremely useful and general strategy of exploit-
ing a data item’s neighbors. If you want to classify a data item, find the closest
example, and report the class of that example. Alternatively, you could find the
closest k examples, and vote. Imagine we have a data point x that we wish to
classify (a query point). Our strategy will be to find the closest training example,
and report its class.

How well can we expect this strategy to work? Remember that any classifier
will slice up the space of examples into cells (which might be quite complicated)
where every point in a cell has the same label. The boundaries between cells are
decision boundaries — when a point passes over the decision boundary, the label
changes. Now assume we have a large number of labelled training examples, and
we know the best possible set of decision boundaries. If there are many training
examples, there should be at least one training example that is close to the query
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point. If there are enough training examples, then the closest point should be inside
the same cell as the query point.

You may be worried that, if the query point is close to a decision boundary,
the closest point might be on the other side of that boundary. But if it were,
we could improve things by simply having more training points. All this suggests
that, with enough training points, our classifier should work about as well as the
best possible classifier. This intuition turns out to be correct, though the number
of training points required is wholly impractical, particularly for high-dimensional
feature vectors.

One important generalization is to find the k nearest neighbors, then choose
a label from those. A (k, l) nearest neighbor classifier finds the k example points
closest to the point being considered, and classifies this point with the class that has
the highest number of votes, as long as this class has more than l votes (otherwise,
the point is classified as unknown). A (k, 0)-nearest neighbor classifier is usually
known as a k-nearest neighbor classifier, and a (1, 0)-nearest neighbor classifier
is usually known as a nearest neighbor classifier. In practice, one seldom uses
more than three nearest neighbors. Finding the k nearest points for a particular
query can be difficult, and Section ?? reviews this point.

There are three practical difficulties in building nearest neighbor classifiers.
You need a lot of labelled examples. You need to be able to find the nearest
neighbors for your query point. And you need to use a sensible choice of distance.
For features that are obviously of the same type, such as lengths, the usual metric
may be good enough. But what if one feature is a length, one is a color, and one is
an angle? One possibility is to whiten the features (section 4.1). This may be hard
if the dimension is so large that the covariance matrix is hard to estimate. It is
almost always a good idea to scale each feature independently so that the variance
of each feature is the same, or at least consistent; this prevents features with very
large scales dominating those with very small scales. Notice that nearest neighbors
(fairly obviously) doesn’t like categorical data. If you can’t give a clear account
of how far apart two things are, you shouldn’t be doing nearest neighbors. It is
possible to fudge this point a little, by (say) putting together a distance between
the levels of each factor, but it’s probably unwise.

Nearest neighbors is wonderfully flexible about the labels the classifier pre-
dicts. Nothing changes when you go from a two-class classifier to a multi-class
classifier.
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Worked example 3.4 Classifying using nearest neighbors

Build a nearest neighbor classifier to classify the digit data originally con-
structed by Yann Lecun. You can find it at several places. The original dataset
is at http://yann.lecun.com/exdb/mnist/. The version I used was used for a
Kaggle competition (so I didn’t have to decompress Lecun’s original format).
I found it at http://www.kaggle.com/c/digit-recognizer.

Solution: As you’d expect, R has nearest neighbor code that seems quite
good (I haven’t had any real problems with it, at least). There isn’t really all
that much to say about the code. I used the R FNN package. This uses a
bagging strategy. There is sample code in listing ??. I trained on 1000 of the
42000 examples, so you could see how in the code. I tested on the next 200
examples. For this (rather small) case, I found the following class confusion
matrix

P
0 1 2 3 4 5 6 7 8 9

0 12 0 0 0 0 0 0 0 0 0
1 0 20 4 1 0 1 0 2 2 1
2 0 0 20 1 0 0 0 0 0 0
3 0 0 0 12 0 0 0 0 4 0
4 0 0 0 0 18 0 0 0 1 1
5 0 0 0 0 0 19 0 0 1 0
6 1 0 0 0 0 0 18 0 0 0
7 0 0 1 0 0 0 0 19 0 2
8 0 0 1 0 0 0 0 0 16 0
9 0 0 0 2 3 1 0 1 1 14

There are no class error rates here, because I was in a rush and couldn’t recall
the magic line of R to get them. However, you can see the classifier works
rather well for this case.

Remember this: Nearest neighbor classifiers are often very effective.
They can predict any kind of label. You do need to be careful to have enough
data, and to have a meaningful distance function.

http://yann.lecun.com/exdb/mnist/
http://www.kaggle.com/c/digit-recognizer
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3.6 YOU SHOULD

3.6.1 be able to:

• construct a naive bayes classifier for continuous and discrete features

• train a linear SVM with stochastic gradient descent and evaluate the resulting
classifier

• train a random forest using a package and evaluate the resulting classifier

• train and evaluate a nearest neighbors classifier

3.6.2 remember:

New term: classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
New term: feature vectors . . . . . . . . . . . . . . . . . . . . . . . . 15
Definition: Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
New term: decision boundaries . . . . . . . . . . . . . . . . . . . . . 17
New term: overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . 18
New term: selection bias . . . . . . . . . . . . . . . . . . . . . . . . . 18
New term: generalizing badly . . . . . . . . . . . . . . . . . . . . . . 18
Do not evaluate a classifier on training data. . . . . . . . . . . . . . . 18
New term: validation set . . . . . . . . . . . . . . . . . . . . . . . . . 18
New term: test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
New term: class confusion matrix . . . . . . . . . . . . . . . . . . . . 19
New term: Vapnik-Chervonenkis dimension . . . . . . . . . . . . . . 20
New term: V-C dimension . . . . . . . . . . . . . . . . . . . . . . . . 20
New term: likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
New term: class conditional probability . . . . . . . . . . . . . . . . 21
New term: prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
New term: posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
New term: decision boundary . . . . . . . . . . . . . . . . . . . . . . 25
New term: descent direction . . . . . . . . . . . . . . . . . . . . . . . 28
New term: line search . . . . . . . . . . . . . . . . . . . . . . . . . . 28
New term: gradient descent . . . . . . . . . . . . . . . . . . . . . . . 28
New term: steplength . . . . . . . . . . . . . . . . . . . . . . . . . . 29
New term: stochastic gradient descent . . . . . . . . . . . . . . . . . 29
Linear SVM’s are a go-to classifier. . . . . . . . . . . . . . . . . . . . 33
Any SVM package should build a multi-class classifier for you. . . . 34
New term: decision tree . . . . . . . . . . . . . . . . . . . . . . . . . 34
New term: decision forest . . . . . . . . . . . . . . . . . . . . . . . . 34
New term: decision function . . . . . . . . . . . . . . . . . . . . . . . 35
New term: entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
New term: entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
New term: information gain . . . . . . . . . . . . . . . . . . . . . . . 39
New term: bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
New term: bag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Random forests are good and easy. . . . . . . . . . . . . . . . . . . . 45
Nearest neighbors are good and easy. . . . . . . . . . . . . . . . . . . 47
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PROBLEMS

PROGRAMMING EXERCISES

3.1. The UC Irvine machine learning data repository hosts a famous collection of
data on whether a patient has diabetes (the Pima Indians dataset), originally
owned by the National Institute of Diabetes and Digestive and Kidney Diseases
and donated by Vincent Sigillito. This can be found at http://archive.ics.uci.
edu/ml/datasets/Pima+Indians+Diabetes. This data has a set of attributes of
patients, and a categorical variable telling whether the patient is diabetic or
not. For several attributes in this data set, a value of 0 may indicate a missing
value of the variable.
(a) Build a simple naive Bayes classifier to classify this data set. You should

hold out 20% of the data for evaluation, and use the other 80% for training.
You should use a normal distribution to model each of the class-conditional
distributions. You should write this classifier yourself (it’s quite straight-
forward), but you may find the function createDataPartition in the R
package caret helpful to get the random partition.

(b) Now adjust your code so that, for attribute 3 (Diastolic blood pressure),
attribute 4 (Triceps skin fold thickness), attribute 6 (Body mass index),
and attribute 8 (Age), it regards a value of 0 as a missing value when
estimating the class-conditional distributions, and the posterior. R uses
a special number NA to flag a missing value. Most functions handle this
number in special, but sensible, ways; but you’ll need to do a bit of looking
at manuals to check. Does this affect the accuracy of your classifier?

(c) Now use the caret and klaR packages to build a naive bayes classifier
for this data, assuming that no attribute has a missing value. The caret

package does cross-validation (look at train) and can be used to hold out
data. The klaR package can estimate class-conditional densities using a
density estimation procedure that I will describe much later in the course.
Use the cross-validation mechanisms in caret to estimate the accuracy of
your classifier. I have not been able to persuade the combination of caret
and klaR to handle missing values the way I’d like them to, but that may
be ignorance (look at the na.action argument).

(d) Now install SVMLight, which you can find at http://svmlight.joachims.
org, via the interface in klaR (look for svmlight in the manual) to train
and evaluate an SVM to classify this data. You don’t need to understand
much about SVM’s to do this — we’ll do that in following exercises. You
should hold out 20% of the data for evaluation, and use the other 80% for
training. You should NOT substitute NA values for zeros for attributes 3,
4, 6, and 8.

3.2. The UC Irvine machine learning data repository hosts a collection of data
on student performance in Portugal, donated by Paulo Cortez, University of
Minho, in Portugal. You can find this data at https://archive.ics.uci.edu/ml/
datasets/Student+Performance. It is described in P. Cortez and A. Silva. Using
Data Mining to Predict Secondary School Student Performance. In A. Brito
and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology Con-
ference (FUBUTEC 2008) pp. 5-12, Porto, Portugal, April, 2008, EUROSIS,
ISBN 978-9077381-39-7.
There are two datasets (for grades in mathematics and for grades in Por-
tugese). There are 30 attributes each for 649 students, and 3 values that can

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://svmlight.joachims.org
http://svmlight.joachims.org
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance
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be predicted (G1, G2 and G3). Of these, ignore G1 and G2.
(a) Use the mathematics dataset. Take the G3 attribute, and quantize this

into two classes, G3 > 12 and G3 ≤ 12. Build and evaluate a naive
bayes classifier that predicts G3 from all attributes except G1 and G2.
You should build this classifier from scratch (i.e. DON’T use the pack-
ages described in the code snippets). For binary attributes, you should
use a binomial model. For the attributes described as “numeric”, which
take a small set of values, you should use a multinomial model. For the
attributes described as “nominal”, which take a small set of values, you
should again use a multinomial model. Ignore the “absence” attribute.
Estimate accuracy by cross-validation. You should use at least 10 folds,
excluding 15% of the data at random to serve as test data, and average
the accuracy over those folds. Report the mean and standard deviation
of the accuracy over the folds.

(b) Now revise your classifier of the previous part so that, for the attributes
described as “numeric”, which take a small set of values, you use a multi-
nomial model. For the attributes described as “nominal”, which take a
small set of values, you should still use a multinomial model. Ignore the
“absence” attribute. Estimate accuracy by cross-validation. You should
use at least 10 folds, excluding 15% of the data at random to serve as test
data, and average the accuracy over those folds. Report the mean and
standard deviation of the accuracy over the folds.

(c) Which classifier do you believe is more accurate and why?
3.3. The UC Irvine machine learning data repository hosts a collection of data on

heart disease. The data was collected and supplied by Andras Janosi, M.D., of
the Hungarian Institute of Cardiology, Budapest; William Steinbrunn, M.D.,
of the University Hospital, Zurich, Switzerland; Matthias Pfisterer, M.D., of
the University Hospital, Basel, Switzerland; and Robert Detrano, M.D., Ph.D.,
of the V.A. Medical Center, Long Beach and Cleveland Clinic Foundation. You
can find this data at https://archive.ics.uci.edu/ml/datasets/Heart+Disease.
Use the processed Cleveland dataset, where there are a total of 303 instances
with 14 attributes each. The irrelevant attributes described in the text have
been removed in these. The 14’th attribute is the disease diagnosis. There are
records with missing attributes, and you should drop these.
(a) Take the disease attribute, and quantize this into two classes, num = 0

and num > 0. Build and evaluate a naive bayes classifier that predicts
the class from all other attributes Estimate accuracy by cross-validation.
You should use at least 10 folds, excluding 15% of the data at random to
serve as test data, and average the accuracy over those folds. Report the
mean and standard deviation of the accuracy over the folds.

(b) Now revise your classifier to predict each of the possible values of the
disease attribute (0-4 as I recall). Estimate accuracy by cross-validation.
You should use at least 10 folds, excluding 15% of the data at random to
serve as test data, and average the accuracy over those folds. Report the
mean and standard deviation of the accuracy over the folds.

3.4. The UC Irvine machine learning data repository hosts a collection of data
on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and
William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an
id number, 10 continuous variables, and a class (benign or malignant). There
are 569 examples. Separate this dataset randomly into 100 validation, 100

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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test, and 369 training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you
don’t really need one), but your own code. You should ignore the id number,
and use the continuous variables as a feature vector. You should search for
an appropriate value of the regularization constant, trying at least the values
λ = [1e− 3, 1e− 2, 1e− 1, 1]. Use the validation set for this search
You should use at least 50 epochs of at least 100 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 10 steps. You should produce:
(a) A plot of the accuracy every 10 steps, for each value of the regularization

constant.
(b) Your estimate of the best value of the regularization constant, together

with a brief description of why you believe that is a good value.
(c) Your estimate of the accuracy of the best classifier on held out data

3.5. The UC Irvine machine learning data repository hosts a collection of data on
adult income, donated by Ronny Kohavi and Barry Becker. You can find this
data at https://archive.ics.uci.edu/ml/datasets/Adult For each record, there is
a set of continuous attributes, and a class (¿=50K or ¡50K). There are 48842
examples. You should use only the continous attributes (see the description on
the web page) and drop examples where there are missing values of the contin-
uous attributes. Separate the resulting dataset randomly into 10% validation,
10% test, and 80% training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you
don’t really need one), but your own code. You should ignore the id number,
and use the continuous variables as a feature vector. You should search for
an appropriate value of the regularization constant, trying at least the values
λ = [1e− 3, 1e− 2, 1e− 1, 1]. Use the validation set for this search
You should use at least 50 epochs of at least 300 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 30 steps. You should produce:
(a) A plot of the accuracy every 30 steps, for each value of the regularization

constant.
(b) Your estimate of the best value of the regularization constant, together

with a brief description of why you believe that is a good value.
(c) Your estimate of the accuracy of the best classifier on held out data

3.6. The UC Irvine machine learning data repository hosts a collection of data on
the whether p53 expression is active or inactive.
You can find out what this means, and more information about the dataset,
by reading: Danziger, S.A., Baronio, R., Ho, L., Hall, L., Salmon, K., Hat-
field, G.W., Kaiser, P., and Lathrop, R.H. (2009) Predicting Positive p53
Cancer Rescue Regions Using Most Informative Positive (MIP) Active Learn-
ing, PLOS Computational Biology, 5(9); Danziger, S.A., Zeng, J., Wang, Y.,
Brachmann, R.K. and Lathrop, R.H. (2007) Choosing where to look next in
a mutation sequence space: Active Learning of informative p53 cancer res-
cue mutants, Bioinformatics, 23(13), 104-114; and Danziger, S.A., Swamidass,
S.J., Zeng, J., Dearth, L.R., Lu, Q., Chen, J.H., Cheng, J., Hoang, V.P., Saigo,
H., Luo, R., Baldi, P., Brachmann, R.K. and Lathrop, R.H. (2006) Functional

https://archive.ics.uci.edu/ml/datasets/Adult 
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census of mutation sequence spaces: the example of p53 cancer rescue mu-
tants, IEEE/ACM transactions on computational biology and bioinformatics
/ IEEE, ACM, 3, 114-125.
You can find this data at https://archive.ics.uci.edu/ml/datasets/p53+Mutants.
There are a total of 16772 instances, with 5409 attributes per instance. At-
tribute 5409 is the class attribute, which is either active or inactive. There are
several versions of this dataset. You should use the version K8.data.
(a) Train an SVM to classify this data, using stochastic gradient descent. You

will need to drop data items with missing values. You should estimate
a regularization constant using cross-validation, trying at least 3 values.
Your training method should touch at least 50% of the training set data.
You should produce an estimate of the accuracy of this classifier on held
out data consisting of 10% of the dataset, chosen at random.

(b) Now train a naive bayes classifier to classify this data. You should produce
an estimate of the accuracy of this classifier on held out data consisting
of 10% of the dataset, chosen at random.

(c) Compare your classifiers. Which one is better? why?
3.7. The UC Irvine machine learning data repository hosts a collection of data on

whether a mushroom is edible, donated by Jeff Schlimmer and to be found at
http://archive.ics.uci.edu/ml/datasets/Mushroom. This data has a set of cat-
egorical attributes of the mushroom, together with two labels (poisonous or
edible). Use the R random forest package (as in the example in the chapter)
to build a random forest to classify a mushroom as edible or poisonous based
on its attributes.
(a) Produce a class-confusion matrix for this problem. If you eat a mushroom

based on your classifier’s prediction it is edible, what is the probability of
being poisoned?

https://archive.ics.uci.edu/ml/datasets/p53+Mutants
http://archive.ics.uci.edu/ml/datasets/Mushroom
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CODE SNIPPETS

Listing 3.2: R code used for the naive bayes example of worked example 3.1

setwd ( ’/us e r s/daf/Current/ cou r s e s/Probcourse/C l a s s i f i c a t i o n /RCode/Breas tT i s sue ’ )
wdat<−read . csv ( ’ c l e anedb r ea s t . csv ’ )
l ibrary ( klaR )
l ibrary ( ca r e t )
bigx<−wdat [ ,−c ( 1 : 2 ) ]
b igy<−wdat [ , 2 ]
wtd<−cr eateDataPar t i t i on ( y=bigy , p=.8 , l i s t=FALSE)
trax<−bigx [ wtd , ]
tray<−bigy [ wtd ]
model<−t r a i n ( trax , tray , ’ nb ’ , t rContro l=t r a i nCont r o l (method=’ cv ’ , number=10))
t e c l a s s e s<−predict (model , newdata=bigx [−wtd , ] )
confus ionMatr ix (data=te c l a s s e s , b igy [−wtd ] )

Listing 3.3: R code used for the naive bayes example of worked example 3.2

setwd ( ’/us e r s/daf/Current/ cou r s e s/Probcourse/C l a s s i f i c a t i o n /RCode/MouseProtein ’ )
wdat<−read . csv ( ’Data Cortex Nuclear . csv ’ )
#i n s t a l l . packages ( ’ klaR ’ )
#i n s t a l l . packages ( ’ caret ’ )
l ibrary ( klaR )
l ibrary ( ca r e t )
c c i<−complete . c a s e s (wdat )
bigx<−wdat [ cc i ,−c ( 8 2 ) ]
b igy<−wdat [ cc i , 8 2 ]
wtd<−cr eateDataPar t i t i on ( y=bigy , p=.8 , l i s t=FALSE)
trax<−bigx [ wtd , ]
tray<−bigy [ wtd ]
model<−t r a i n ( trax , tray , ’ nb ’ , t rContro l=t r a i nCont r o l (method=’ cv ’ , number=10))
t e c l a s s e s<−predict (model , newdata=bigx [−wtd , ] )
confus ionMatr ix (data=te c l a s s e s , b igy [−wtd ] )
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Extracting Important Relationships
in High Dimensions

Chapter 14 described methods to explore the relationship between two ele-
ments in a dataset. We could extract a pair of elements and construct various plots.
For vector data, we could also compute the correlation between different pairs of
elements. But if each data item is d-dimensional, there could be a lot of pairs to
deal with.

We will think of our dataset as a collection of d dimensional vectors. It turns
out that there are easy generalizations of our summaries. However, is hard to
plot d-dimensional vectors. We need to find some way to make them fit on a 2-
dimensional plot. Some simple methods can offer insights, but to really get what
is going on we need methods that can at all pairs of relationships in a dataset in
one go.

These methods visualize the dataset as a “blob” in a d-dimensional space.
Many such blobs are flattened in some directions, because components of the data
are strongly correlated. Finding the directions in which the blobs are flat yields
methods to compute lower dimensional representations of the dataset.

4.1 SOME PLOTS OF HIGH DIMENSIONAL DATA

4.1.1 Understanding Blobs with Scatterplot Matrices - CLEANUP

Plotting high dimensional data is tricky.

4.1.2 Parallel Plots

Parallel plots can sometimes reveal information, particularly when the dimension
of the dataset is low. To construct a parallel plot, you compute a normalized
representation of each component of each data item. The component is normalized
by translating and scaling so that the minimum value over the dataset is zero, and
the maximum value over the dataset is one. Now write the i’th normalised data
item as (n1, n2, . . . , nd). For this data item, you plot a broken line joining (1, n1)
to (2, n2) to (3, n3, etc. These plots are superimposed on one another. In the case
of the bodyfat dataset, this yields the plot of figure 4.1.

Some structures in the parallel plot are revealing. Outliers often stick out (in
figure 4.1, it’s pretty clear that there’s a data point with a very low height value,
and also one with a very large weight value). Outliers affect the scaling, and so
make other structures difficult to spot. I have removed them for figure 4.2. In this
figure, you can see that two negatively correlated components next to one another
produce a butterfly like shape (bodyfat and density). In this plot, you can also see
that there are still several data points that are very different from others (two data

54
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FIGURE 4.1: A parallel plot of the bodyfat dataset, including all data points. I have
named the components on the horizontal axis. It is easy to see that large values
of bodyfat correspond to small values of density, and vice versa. Notice that one
datapoint has height very different from all others; similarly, one datapoint has
weight very different from all others.

items have ankle values that are very different from the others, for example).

4.1.3 Scatterplot Matrices

One strategy that is very useful when there aren’t too many dimensions is to use a
scatterplot matrix. To build one, you lay out scatterplots for each pair of variables
in a matrix. On the diagonal, you name the variable that is the vertical axis for
each plot in the row, and the horizontal axis in the column. This sounds more
complicated than it is; look at the example of figure 4.3, which shows a scatterplot
matrix for four of the variables in the height weight dataset of http://www2.stetson.
edu/∼jrasp/data.htm; look for bodyfat.xls at that URL). This is originally a 16-
dimensional dataset, but a 16 by 16 scatterplot matrix is squashed and hard to
interpret.

What is nice about this kind of plot is that it’s quite easy to spot correlations
between pairs of variables, though you do need to take into account the coordinates
have not been normalized. For figure 4.3, you can see that weight and adiposity

http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
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FIGURE 4.2: A plot with those data items removed, so that those components are
renormalized. Two datapoints have rather distinct ankle measurements. Generally,
you can see that large knees go with large ankles and large biceps (the v structure).

appear to show quite strong correlations, but weight and age are pretty weakly
correlated. Height and age seem to have a low correlation. It is also easy to
visualize unusual data points. Usually one has an interactive process to do so —
you can move a “brush” over the plot to change the color of data points under the
brush. To show what might happen, figure 4.4 shows a scatter plot matrix with
some points shown as circles. Notice how they lie inside the “blob” of data in some
views, and outside in others. This is an effect of projection.

UC Irvine keeps a large repository of datasets that are important in machine
learning. You can find the repository at http://archive.ics.uci.edu/ml/index.html.
Figures 4.5 and 4.6 show visualizations of a famous dataset to do with the botanical
classification of irises.

Figures ??, ?? and 4.9 show visualizations of another dataset to do with forest
fires in Portugal, also from the UC Irvine repository (look at http://archive.ics.uci.
edu/ml/datasets/Forest+Fires). In this dataset, there are a variety of measurements
of location, time, temperature, etc. together with the area burned by a wildfire.
It would be nice to know what leads to large fires, and a visualization is the place
to start. Many fires are tiny (or perhaps there was no area measurement?) and so

http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/datasets/Forest+Fires
http://archive.ics.uci.edu/ml/datasets/Forest+Fires
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FIGURE 4.3: This is a scatterplot matrix for four of the variables in the height weight
dataset of http://www2.stetson.edu/∼jrasp/data.htm. Each plot is a scatterplot of
a pair of variables. The name of the variable for the horizontal axis is obtained by
running your eye down the column; for the vertical axis, along the row. Although
this plot is redundant (half of the plots are just flipped versions of the other half),
that redundancy makes it easier to follow points by eye. You can look at a column,
move down to a row, move across to a column, etc. Notice how you can spot
correlations between variables and outliers (the arrows).

many values of the area are zero. I found it helpful to take the log of area, and
then to divide the values of the logarithm into seven categories. I ignored the first
four variables, because I didn’t think they’d be too important. Exercise: was I
right? I made two scatterplot matrices, because an eight by eight matrix is too big
to view. Generally, this visualization suggests that it would be hard to predict the
size of a fire from these variables.

http://www2.stetson.edu/~jrasp/data.htm
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FIGURE 4.4: You should compare this figure with figure 4.3. I have marked two
data points with circles in this figure; notice that in some panels these are far from
the rest of the data, in others close by. A “brush” in an interactive application can
be used to mark data like this to allow a user to explore a dataset.
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FIGURE 4.5: This is a scatterplot matrix for the famous Iris data, originally due
to ***. There are four variables, measured for each of three species of iris. I have
plotted each species with a different marker. You can see from the plot that the
species cluster quite tightly, and are different from one another. R code for this plot
is on the website.
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FIGURE 4.6: This is a 3D scatterplot for the famous Iris data, originally due to
***. I have chosen three variables from the four, and have plotted each species with
a different marker. You can see from the plot that the species cluster quite tightly,
and are different from one another. R code for this plot is on the website.
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FIGURE 4.7: This is a scatterplot matrix for the fire dataset from the UC Irvine
repository. The smallest area fire is ’T1’, and the largest is ’T7’; each is plotted with
a different marker. These plots show severity of the fire, plotted against variables
5-8 of the dataset. You should notice that there isn’t much separation between the
markers. It might be very hard to predict the severity of a fire from these variables.
R code for this plot is on the website.
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FIGURE 4.8: This is a scatterplot matrix for the fire dataset from the UC Irvine
repository. The smallest area fire is ’T1’, and the largest is ’T7’; each is plotted with
a different marker. These plots show severity of the fire, plotted against variables
9-12 of the dataset. You should notice that there isn’t much separation between the
markers. It might be very hard to predict the severity of a fire from these variables.
R code for this plot is on the website.
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FIGURE 4.9: This is a 3D scatterplot for the fire dataset from the UC Irvine
repository. The smallest area fire is ’T1’, and the largest is ’T7’; each is plotted with
a different marker. These plots show severity of the fire, plotted against variables
9-11 of the dataset. You should notice that there isn’t much separation between the
markers. It might be very hard to predict the severity of a fire from these variables.
R code for this plot is on the website.
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4.2 SUMMARIES OF HIGH DIMENSIONAL DATA

In this chapter, we assume that our data items are vectors. This means that we can
add and subtract values and multiply values by a scalar without any distress. This
is an important assumption, but it doesn’t necessarily mean that data is continuous
(for example, you can meaningfully add the number of children in one family to the
number of children in another family). It does rule out a lot of discrete data. For
example, you can’t add “sports” to “grades” and expect a sensible answer.

Notation: Our data items are vectors, and we write a vector as x. The
data items are d-dimensional, and there are N of them. The entire data set is {x}.
When we need to refer to the i’th data item, we write xi. We write {xi} for a new
dataset made up of N items, where the i’th item is xi. If we need to refer to the

j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold, because

it is a component not a vector, and the j is in parentheses because it isn’t a power).
Vectors are always column vectors.

4.2.1 The Mean

For one-dimensional data, we wrote

mean ({x}) =
∑

i xi

N
.

This expression is meaningful for vectors, too, because we can add vectors and
divide by scalars. We write

mean ({x}) =
∑

i xi

N

and call this the mean of the data. Notice that each component of mean ({x}) is the
mean of that component of the data. There is not an easy analogue of the median,
however (how do you order high dimensional data?) and this is a nuisance. Notice
that, just as for the one-dimensional mean, we have

mean ({x−mean ({x})}) = 0

(i.e. if you subtract the mean from a data set, the resulting data set has zero mean).

4.2.2 Using Covariance to encode Variance and Correlation

Variance, standard deviation and correlation can each be seen as an instance of a
more general operation on data. Assume that we have two one dimensional data
sets {x} and {y}. Then we can define the covariance of {x} and {y}.
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Definition: 4.1 Covariance

Assume we have two sets of N data items, {x} and {y}. We compute
the covariance by

cov ({x} , {y}) =
∑

i(xi −mean ({x}))(yi −mean ({y}))
N

Covariance measures the tendency of corresponding elements of {x} and of {y} to
be larger than (resp. smaller than) the mean. Just like mean, standard deviation
and variance, covariance can refer either to a property of a dataset (as in the
definition here) or a particular expectation (as in chapter ??). The correspondence
is defined by the order of elements in the data set, so that x1 corresponds to y1,
x2 corresponds to y2, and so on. If {x} tends to be larger (resp. smaller) than its
mean for data points where {y} is also larger (resp. smaller) than its mean, then
the covariance should be positive. If {x} tends to be larger (resp. smaller) than its
mean for data points where {y} is smaller (resp. larger) than its mean, then the
covariance should be negative.

From this description, it should be clear we have seen examples of covariance
already. Notice that

std (x)
2
= var ({x}) = cov ({x} , {x})

which you can prove by substituting the expressions. Recall that variance measures
the tendency of a dataset to be different from the mean, so the covariance of a
dataset with itself is a measure of its tendency not to be constant.

More important, notice that

corr ({(x, y)}) = cov ({x} , {y})
√

cov ({x} , {x})
√

cov ({y} , {y})
.

This is occasionally a useful way to think about correlation. It says that the corre-
lation measures the tendency of {x} and {y} to be larger (resp. smaller) than their
means for the same data points, compared to how much they change on their own.

Working with covariance (rather than correlation) allows us to unify some
ideas. In particular, for data items which are d dimensional vectors, it is straight-
forward to compute a single matrix that captures all covariances between all pairs
of components — this is the covariance matrix.



Section 4.2 Summaries of High Dimensional Data 66

Definition: 4.2 Covariance Matrix

The covariance matrix is:

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

Notice that it is quite usual to write a covariance matrix as Σ, and we
will follow this convention.

Properties of the Covariance Matrix Covariance matrices are often
written as Σ, whatever the dataset (you get to figure out precisely which dataset is
intended, from context). Generally, when we want to refer to the j, k’th entry of
a matrix A, we will write Ajk, so Σjk is the covariance between the j’th and k’th
components of the data.

• The j, k’th entry of the covariance matrix is the covariance of the j’th and
the k’th components of x, which we write cov

({

x(j)
}

,
{

x(k)
})

.

• The j, j’th entry of the covariance matrix is the variance of the j’th compo-
nent of x.

• The covariance matrix is symmetric.

• The covariance matrix is always positive semi-definite; it is positive definite,
unless there is some vector a such that aT (xi −mean ({xi}) = 0 for all i.

Proposition:

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

Proof: Recall

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

and the j, k’th entry in this matrix will be

∑

i(x
(j)
i −mean

({

x(j)
})

)(x
(k)
i −mean

({

x(k)
})

)T

N

which is cov
({

x(j)
}

,
{

x(k)
})

.
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Proposition:

Covmat ({xi})jj = Σjj = var
({

x(j)
})

Proof:

Covmat ({x})jj = cov
({

x(j)
}

,
{

x(j)
})

= var
({

x(j)
})

Proposition:

Covmat ({x}) = Covmat ({x})T

Proof: We have

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

= cov
({

x(k)
}

,
{

x(j)
})

= Covmat ({x})kj
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Proposition: Write Σ = Covmat ({x}). If there is no vector a such that
aT (xi−mean ({x})) = 0 for all i, then for any vector u, such that ||u || > 0,

uTΣu > 0.

If there is such a vector a, then

uTΣu ≥ 0.

Proof: We have

uTΣu =
1

N

∑

i

[

uT (xi −mean ({x}))
] [

(xi −mean ({x}))Tu
]

=
1

N

∑

i

[

uT (xi −mean ({x}))
]2

.

Now this is a sum of squares. If there is some a such that aT (xi −
mean ({x})) = 0 for every i, then the covariance matrix must be positive
semidefinite (because the sum of squares could be zero in this case).
Otherwise, it is positive definite, because the sum of squares will always
be positive.

4.3 BLOB ANALYSIS OF HIGH-DIMENSIONAL DATA

When we plotted histograms, we saw that mean and variance were a very helpful
description of data that had a unimodal histogram. If the histogram had more than
one mode, one needed to be somewhat careful to interpret the mean and variance;
in the pizza example, we plotted diameters for different manufacturers to try and
see the data as a collection of unimodal histograms.

Generally, mean and covariance are a good description of data that lies in a
“blob” (Figure 4.10). You might not believe that this is a technical term, but it’s
quite widely used. This is because mean and covariance supply a natural coordinate
system in which to interpret the blob. Mean and covariance are less useful as
descriptions of data that forms multiple blobs (Figure 4.10). In chapter 16.5, we
discuss methods to model data that forms multiple blobs, or other shapes that we
will interpret as a set of blobs. But many datasets really are single blobs, and we
concentrate on such data here. The way to understand a blob is to think about the
coordinate transformations that place a blob into a particularly convenient form.

4.3.1 Transforming High Dimensional Data

Assume we apply an affine transformation to our data set {x}, to obtain a new
dataset {u}, where ui = Axi + b. Here A is any matrix (it doesn’t have to be
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FIGURE 4.10: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have
plotted the mean of these data points with a ’+’. On the right, a data set that is
best thought of as a collection of five blobs. I have plotted the mean of each with a
’+’. We could compute the mean and covariance of this data, but it would be less
revealing than the mean and covariance of a single blob. In chapter 16.5, I will
describe automatic methods to describe this dataset as a series of blobs.

square, or symmetric, or anything else; it just has to have second dimension d). It
is easy to compute the mean and covariance of {u}. We have

mean ({u}) = mean ({Ax+ b})
= Amean ({x}) + b,

so you get the new mean by multiplying the original mean by A and adding b.
The new covariance matrix is easy to compute as well. We have:

Covmat ({u}) = Covmat ({Ax+ b})

=

∑

i(ui −mean ({u}))(ui −mean ({u}))T
N

=

∑

i(Axi + b−Amean ({x})− b)(Axi + b−Amean ({x})− b)T

N

=
A∑i(xi −mean ({x}))(xi −mean ({x}))TAT

N

= ACovmat ({x})AT .

4.3.2 Transforming Blobs

The trick to interpreting high dimensional data is to use the mean and covariance
to understand the blob. Figure 4.11 shows a two-dimensional data set. Notice that
there is obviously some correlation between the x and y coordinates (it’s a diagonal
blob), and that neither x nor y has zero mean. We can easily compute the mean
and subtract it from the data points, and this translates the blob so that the origin
is at the center (Figure 4.11). In coordinates, this means we compute the new
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Translate center to origin

FIGURE 4.11: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have plotted
the mean of these data points with a hollow square (it’s easier to see when there is
a lot of data). To translate the blob to the origin, we just subtract the mean from
each datapoint, yielding the blob on the right.

dataset {u} from the old dataset {x} by the rule ui = xi −mean ({x}). This new
dataset has been translated so that the mean is zero.

Once this blob is translated (Figure 4.12, left), we can rotate it as well. It
is natural to try to rotate the blob so that there is no correlation between distinct
pairs of dimensions. We can do so by diagonalizing the covariance matrix. In
particular, let U be the matrix formed by stacking the eigenvectors of Covmat ({x})
into a matrix (i.e. U = [v1, . . . ,vd], where vj are eigenvectors of the covariance
matrix). We now form the dataset {n}, using the rule

ni = UTui = UT (xi −mean ({x})).

The mean of this new dataset is clearly 0. The covariance of this dataset is

Covmat ({n}) = Covmat
({

UTx
})

= UTCovmat ({x})U
= Λ,

where Λ is a diagonal matrix of eigenvalues of Covmat ({x}). Remember that, in
describing diagonalization, we adopted the convention that the eigenvectors of the
matrix being diagonalized were ordered so that the eigenvalues are sorted in de-
scending order along the diagonal of Λ. We now have two very useful facts about
{n}: (a) every pair of distinct components has covariance zero, and so has correla-
tion zero; (b) the first component has the highest variance, the second component
has the second highest variance, and so on. We can rotate and translate any blob
into a coordinate system that has these properties. In this coordinate system, we
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Rotate to diagonalize 

covariance

FIGURE 4.12: On the left, the translated blob of figure 4.11. This blob lies somewhat
diagonally, because the vertical and horizontal components are correlated. On the
right, that blob of data rotated so that there is no correlation between these compo-
nents. We can now describe the blob by the vertical and horizontal variances alone,
as long as we do so in the new coordinate system. In this coordinate system, the
vertical variance is significantly larger than the horizontal variance — the blob is
short and wide.

can describe the blob simply by giving the variances of each component — the
covariances are zero.

Translating a blob of data doesn’t change the scatterplot matrix in any inter-
esting way (the axes change, but the picture doesn’t). Rotating a blob produces
really interesting results, however. Figure 4.14 shows the dataset of figure 4.3,
translated to the origin and rotated to diagonalize it. Now we do not have names
for each component of the data (they’re linear combinations of the original compo-
nents), but each pair is now not correlated. This blob has some interesting shape
features. Figure 4.14 shows the gross shape of the blob best. Each panel of this
figure has the same scale in each direction. You can see the blob extends about 80
units in direction 1, but only about 15 units in direction 2, and much less in the
other two directions. You should think of this blob as being rather cigar-shaped;
it’s long in one direction, but there isn’t much in the others. The cigar metaphor
isn’t perfect because there aren’t any 4 dimensional cigars, but it’s helpful. You
can think of each panel of this figure as showing views down each of the four axes
of the cigar.

Now look at figure ??. This shows the same rotation of the same blob of
data, but now the scales on the axis have changed to get the best look at the
detailed shape of the blob. First, you can see that blob is a little curved (look at
the projection onto direction 2 and direction 4). There might be some effect here
worth studying. Second, you can see that some points seem to lie away from the
main blob. I have plotted each data point with a dot, and the interesting points
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Scale this direction

FIGURE 4.13: On the left, the translated and rotated blob of figure 4.12. This blob is
stretched — one direction has more variance than another. Because all covariances
are zero, it is easy to scale the blob so that all variances are one (the blob on the
right). You can think of this as a standard blob. All blobs can be reduced to a
standard blob, by relatively straightforward linear algebra.

with a number. These points are clearly special in some way.
We could now scale the data in this new coordinate system so that all the

variances are either one (if there is any variation in that direction) or zero (directions
where the data doesn’t vary — these occur only if some directions are functions of
others). Figure 4.13 shows the final scaling. The result is a standard blob. Our
approach applies to any dimension — I gave 2D figures because they’re much easier
to understand. There is a crucial point here: we can reduce any blob of data, in any
dimension, to a standard blob of that dimension. All blobs are the same, except
for some stretching, some rotation, and some translation. This is why blobs are so
well-liked.

4.3.3 Whitening Data

It is sometimes useful to actually reduce a dataset to a standard blob. Doing so is
known as whitening the data (for reasons I find obscure). This can be a sensible
thing to do when we don’t have a clear sense of the relative scales of the components
of each data vector. For example, if we have a dataset where one component ranges
from 1e5 to 2e5, and the other component ranges from -1e-5 to 1e-5, we are likely
to face numerical problems in many computations (adding small numbers to big
numbers is often unwise). Often, this kind of thing follows from a poor choice of
units, rather than any kind of useful property of the data. In such a case, it could
be quite helpful to whiten the data. Another reason to whiten the data might
be that we know relatively little about the meaning of each component. In this
case, the original choice of coordinate system was somewhat arbitrary anyhow, and
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FIGURE 4.14: A panel plot of the bodyfat dataset of figure 4.3, now rotated so that the
covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions — they’re linear combinations of the original variables.
Each scatterplot is on the same set of axes, so you can see that the dataset extends
more in some directions than in others.

transforming data to a uniform blob could be helpful.
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FIGURE 4.15: A panel plot of the bodyfat dataset of figure 4.3, now rotated so that
the covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions — they’re linear combinations of the original variables. I
have scaled the axes so you can see details; notice that the blob is a little curved,
and there are several data points that seem to lie some way away from the blob,
which I have numbered.

Useful Facts: 4.1 Whitening a dataset

For a dataset {x}, compute:

• U , the matrix of eigenvectors of Covmat ({x});

• and mean ({x}).

Now compute {n} using the rule

ni = UT (xi −mean ({x})).

Then mean ({n}) = 0 and Covmat ({n}) is diagonal.
Now write Λ for the diagonal matrix of eigenvalues of Covmat ({x}) (so
that Covmat ({x})U = UΛ). Assume that each of the diagonal entries
of Λ is greater than zero (otherwise there is a redundant dimension in
the data). Write λi for the i’th diagonal entry of Λ, and write Λ−(1/2)

for the diagonal matrix whose i’th diagonal entry is 1/
√
λi. Compute

{z} using the rule

zi = Λ(−1/2)U(xi −mean ({x})).

We have that mean ({z}) = 0 and Covmat ({z}) = I. The dataset {z}
is often known as whitened data.
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Translation

“Blob” coordinates

FIGURE 4.16: A 2D blob, with its natural blob coordinate system. The origin of this
coordinate system is at the mean of the data. The coordinate axes are (a) at right
angles to one another and (b) are directions that have no covariance.

It isn’t always a good idea to whiten data. In some circumstances, each
separate component is meaningful, and in a meaningful set of units. For example,
one of the components might be a length using a natural scale and the other might
be a time on a natural scale. When this happens, we might be reluctant to transform
the data, either because we don’t want to add lengths to times or because we want
to preserve the scales.

4.4 PRINCIPAL COMPONENTS ANALYSIS

Mostly, when one deals with high dimensional data, it isn’t clear which individ-
ual components are important. As we have seen with the height weight dataset
(for example, in the case of density and weight) some components can be quite
strongly correlated. Equivalently, as in Figure 16.5, the blob is not aligned with
the coordinate axes.

4.4.1 The Blob Coordinate System and Smoothing

We can use the fact that we could rotate, translate and scale the blob to define
a coordinate system within the blob. The origin of that coordinate system is the
mean of the data, and the coordinate axes are given by the eigenvectors of the
covariance matrix. These are orthonormal, so they form a set of unit basis vectors
at right angles to one another (i.e. a coordinate system). You should think of these
as blob coordinates; Figure 4.16 illustrates a set of blob coordinates.

The blob coordinate system is important because, once we know the blob
coordinate system, we can identify important scales of variation in the data. For
example, if you look at Figure 4.16, you can see that this blob is extended much
further along one direction than along the other. We can use this information to
identify the most significant forms of variation in very high dimensional data. In
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FIGURE 4.17: On the left, a blob of 3D data that has very low variance in two
directions in the blob coordinates. As a result, all the data points are very close to
a 1D blob. Experience shows that this is a common phenomenon. Although there
might be many components in the data items, all data points are very close to a
much lower dimensional object in the high dimensional space. When this is the
case, we could obtain a lower dimensional representation of the data by working in
blob coordinates, or we could smooth the data (as on the right), by projecting each
data point onto the lower dimensional space.

some directions in the blob coordinate system, the blob will be spread out — ie
have large variance — but in others, it might not be.

Equivalently, imagine we choose to represent each data item in blob coordi-
nates. Then the mean over the dataset will be zero. Each pair of distinct coordi-
nates will be uncorrelated. Some coordinates — corresponding to directions where
the blob is spread out — will have a large range of values. Other coordinates —
directions in which the blob is small — will have a small range of values. We could
choose to replace these coordinates with zeros, with little significant loss in accu-
racy. The advantage of doing so is that we would have lower dimensional data to
deal with.

However, it isn’t particularly natural to work in blob coordinates. Each com-
ponent of a data item may have a distinct meaning and scale (i.e. feet, pounds,
and so on), but this is not preserved in any easy way in blob coordinates. Instead,
we should like to (a) compute a lower dimensional representation in blob coordi-
nates then (b) transform that representation into the original coordinate system of
the data item. Doing so is a form of smoothing — suppressing small, irrelevant
variations by exploiting multiple data items.

For example, look at Figure 4.17. Imagine we transform the blob on the left
to blob coordinates. The covariance matrix in these coordinates is a 3× 3 diagonal
matrix. One of the values on the diagonal is large, because the blob is extended on
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one direction; but the other two are small. This means that, in blob coordinates, the
data varies significantly in one direction, but very little in the other two directions.

Now imagine we project the data points onto the high-variation direction;
equivalently, we set the other two directions to zero for each data point. Each
of the new data points is very close to the corresponding old data point, because
by setting the small directions to zero we haven’t moved the point very much.
In blob coordinates, the covariance matrix of this new dataset has changed very
little. It is again a 3 × 3 diagonal matrix, but now two of the diagonal values are
zero, because there isn’t any variance in those directions. The third value is large,
because the blob is extended in that direction. We take the new dataset, and rotate
and translate it into the original coordinate system. Each point must lie close to the
corresponding point in the original dataset. However, the new dataset lies along a
straight line (because it lay on a straight line in the blob coordinates). This process
gets us the blob on the right in Figure 4.17. This blob is a smoothed version of the
original blob.

Smoothing works because when two data items are strongly correlated, the
value of one is a good guide to the value of the other. This principle works for
more than two data items. Section 16.5 describes an example where the data
items have dimension 101, but all values are extremely tightly correlated. In a
case like this, there may be very few dimensions in blob coordinates that have
any significant variation (3-6 for this case, depending on some details of what one
believes is a small number, and so on). The components are so strongly correlated
in this case that the 101-dimensional blob really looks like a slightly thickened 3
(or slightly more) dimensional blob that has been inserted into a 101-dimensional
space (Figure 4.17). If we project the 101-dimensional data onto that structure
in the original, 101-dimensional space, we may get much better estimates of the
components of each data item than the original measuring device can supply. This
occurs because each component is now estimated using correlations between all the
measurements.

4.4.2 The Low-Dimensional Representation of a Blob

We wish to construct an r dimensional representation of a blob, where we have
chosen r in advance. First, we compute {v} by translating the blob so its mean is
at the origin, so that vi = xi − mean ({x}). Now write V = [v1,v2, . . . ,vN ]. The
covariance matrix of {v} is then

Covmat ({v}) = 1

N
VVT = Covmat ({x}).

Now write Λ for the diagonal matrix of eigenvalues of Covmat ({x}) and U for the
matrix of eigenvectors, so that Covmat ({x})U = UΛ. We assume that the elements
of Λ are sorted in decreasing order along the diagonal. The covariance matrix for
the dataset transformed into blob coordinates will be Λ. Notice that

Λ = UTCovmat ({x})U
= UTVVTU
= (UTV)(UTV)T .
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This means we can interpret (UTV) as a new dataset {b}. This is our data, rotated
into blob coordinates.

Now write Πr for the d× d matrix
[

Ir 0
0 0

]

which projects a d dimensional vector onto its first r components, and replaces the
others with zeros. Then we have that

Λr = ΠrΛΠ
T
r

is the covariance matrix for the reduced dimensional data in blob coordinates.
Notice that Λr keeps the r largest eigenvalues on the diagonal of Λ, and replaces
all others with zero.

We have

Λr = ΠrΛΠ
T
r

= ΠrUTCovmat ({x})UΠT
r

= (ΠrUTV)(VTUΠT
r )

= PPT

where P = (ΠrUTV). This represents our data, rotated into blob coordinates,
and then projected down to r dimensions, with remaining terms replaced by zeros.
Write {br} for this new dataset.

Occasionally, we need to refer to this representation, and we give it a special
name. Write

pcaproj (xi, r, {x}) = ΠrUT (xi −mean ({x}))
where the notation seeks to explicitly keep track of the fact that the low dimensional
representation of a particular data item depends on the whole dataset (because you
have to be able to compute the mean, and the eigenvectors of the covariance).
Notice that pcaproj (xi, r, {x}) is a representation of the dataset with important
properties:

• The representation is r-dimensional (i.e. the last d− r components are zero).

• Each pair of distinct components of {pcaproj (xi, r, {x})} has zero covariance.

• The first component of {pcaproj (xi, r, {x})} has largest variance; the second
component has second largest variance; and so on.

4.4.3 Smoothing Data with a Low-Dimensional Representation

We would now like to construct a low dimensional representation of the blob, in
the original coordinates. We do so by rotating the low-dimensional representation
back to the original coordinate system, then adding back the mean to translate the
origin back to where it started. We can write this as

pcasmooth (xi, r, {x}) = UΠT
r

(

ΠrUT (xi −mean ({x}))
)

+mean ({x})
= UΠT

r pcaproj (xi, r, {x}) +mean ({x})
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FIGURE 4.18: Computing a low dimensional representation for principal components
analysis.

we have a new representation of the i’th data item in the original space (Fig-
ure 16.5). Now consider the dataset obtained by smoothing each of our data items.
We write this dataset as {pcasmooth (xi, r, {x})}.

You should think of {pcasmooth (xi, r, {x})} as a smoothed version of the
original data. One way to think of this process is that we have chosen a low-
dimensional basis that represents the main variance in the data rather well. It is
quite usual to think of a data item as being given by a the mean plus a weighted
sum of these basis elements. In this view, the first weight has larger variance than
the second, and so on. By construction, this dataset lies in an r dimensional affine
subspace of the original space. We constructed this r-dimensional space to preserve
the largest variance directions of the data. Each column of this matrix is known as
a principal component. In particular, we have constructed this dataset so that



Section 4.4 Principal Components Analysis 80

1D Representation

Rotated to line up 
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FIGURE 4.19: Smoothing data with principal components analysis.

• mean ({pcasmooth (xi, r, {x})}) = mean ({x});

• Covmat ({pcasmooth (xi, r, {x})}) has rank r;

• Covmat ({pcasmooth (xi, r, {x})}) is the best approximation of Covmat ({x})
with rank r.

Figure 4.19 gives a visualization of the smoothing process. By comparing
figures 4.14 and 4.20, you can see that a real dataset can lose several dimensions
without much significant going wrong. As we shall see in the examples, some
datasets can lose many dimensions without anything bad happening.
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FIGURE 4.20: A panel plot of the bodyfat dataset of figure 4.3, with the dimension
reduced to two using principal components analysis. Compare this figure to figure
4.14, which is on the same set of axes. You can see that the blob has been squashed
in direction 3 and direction 4. But not much has really happened, because there
wasn’t very much variation in those directions in the first place.

Procedure: 4.1 Principal Components Analysis

Assume we have a general data set xi, consisting of N d-dimensional
vectors. Now write Σ = Covmat ({x}) for the covariance matrix.
Form U , Λ, such that ΣU = UΛ (these are the eigenvectors and eigen-
values of Σ). Ensure that the entries of Λ are sorted in decreasing order.
Choose r, the number of dimensions you wish to represent. Typically,
we do this by plotting the eigenvalues and looking for a “knee” (Fig-
ure ??). It is quite usual to do this by hand.
Constructing a low-dimensional representation: Form Ur, a
matrix consisting of the first r columns of U . Now compute
{pcaproj (xi, r, {x})} = {(ΠrUT (xi − mean ({x})))}. This is a set of
data vectors which are r dimensional, and where each component is
independent of each other component (i.e. the covariances of distinct
components are zero).
Smoothing the data: Form {pcasmooth (xi, r, {x})} =
{(Urpcaproj (xi, r, {x}) + mean ({x}))}. These are d dimensional
vectors that lie in a r-dimensional subspace of d-dimensional space.
The “missing dimensions” have the lowest variance, and are indepen-
dent.
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FIGURE 4.21: On the top left, the mean spectral reflectance of a dataset of 1995
spectral reflectances, collected by Kobus Barnard (at http://www.cs.sfu.ca/∼colour/
data/ ). On the top right, eigenvalues of the covariance matrix of spectral re-
flectance data, from a dataset of 1995 spectral reflectances, collected by Kobus
Barnard (at http://www.cs.sfu.ca/∼colour/data/ ). Notice how the first few eigen-
values are large, but most are very small; this suggests that a good representation
using few principal components is available. The bottom row shows the first three
principal components. A linear combination of these, with appropriate weights,
added to the mean of figure ??, gives a good representation of the dataset.

4.4.4 The Error of the Low-Dimensional Representation

We took a dataset, {x}, and constructed a d-dimensional dataset {b} in blob coor-
dinates. We did so by translating, then rotating, the data, so no information was
lost; we could reconstruct our original dataset by rotating, then translating {b}.
But in blob coordinates we projected each data item down to the first r components
to get an r-dimensional dataset {br}. We then reconstructed a smoothed dataset
by rotating, then translating, {br}. Information has been lost here, but how much?

The answer is easy to get if you recall that rotations and translations do not
change lengths. This means that

||xi − pcasmooth (xi, r, {x}) ||2 = ||bi − br,i ||2.

This expression is easy to evaluate, because bi and br,i agree in their first r com-

http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/
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FIGURE 4.22: On the left, a spectral reflectance curve (dashed) and approximations
using the mean, the mean and 3 principal components, the mean and 5 principal
components, and the mean and 7 principal components. Notice the mean is a rela-
tively poor approximation, but as the number of principal components goes up, the
error falls rather quickly. On the right is the error for these approximations. Fig-
ure plotted from a dataset of 1995 spectral reflectances, collected by Kobus Barnard
(at http://www.cs.sfu.ca/∼colour/data/ ).

ponents. The remaining d− r components of br,i are zero. So we can write

||xi − pcasmooth (xi, r, {x}) ||2 =

d
∑

u=r+1

(b
(u)
i )2.

Now a natural measure of error is the average over the dataset of this term. We
have that

1

N

d
∑

u=r+1

(b
(u)
i )2 =

d
∑

u=r+1

var
({

b(u)
})

which is easy to evaluate, because we know these variances — they are the values
of the d−r eigenvalues that we decided to ignore. So the mean error can be written
as

1T (Λ− Λr)1.

Now we could choose r by identifying how much error we can tolerate. More usual
is to plot the eigenvalues of the covariance matrix, and look for a “knee”, like that
in Figure 16.5. You can see that the sum of remaining eigenvalues is small.

4.4.5 Example: Representing Spectral Reflectances

Diffuse surfaces reflect light uniformly in all directions. Examples of diffuse surfaces
include matte paint, many styles of cloth, many rough materials (bark, cement,
stone, etc.). One way to tell a diffuse surface is that it does not look brighter
(or darker) when you look at it along different directions. Diffuse surfaces can

http://www.cs.sfu.ca/~colour/data/
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FIGURE 4.23: On the left,the eigenvalues of the covariance of the Japanese facial
expression dataset; there are 4096, so it’s hard to see the curve (which is packed
to the left). On the right, a zoomed version of the curve, showing how quickly the
values of the eigenvalues get small.

be colored, because the surface reflects different fractions of the light falling on it
at different wavelengths. This effect can be represented by measuring the spectral
reflectance of a surface, which is the fraction of light the surface reflects as a function
of wavelength. This is usually measured in the visual range of wavelengths (about
380nm to about 770 nm). Typical measurements are every few nm, depending on
the measurement device. I obtained data for 1995 different surfaces from http://
www.cs.sfu.ca/∼colour/data/ (there are a variety of great datasets here, from Kobus
Barnard).

Each spectrum has 101 measurements, which are spaced 4nm apart. This
represents surface properties to far greater precision than is really useful. Physical
properties of surfaces suggest that the reflectance can’t change too fast from wave-
length to wavelength. It turns out that very few principal components are sufficient
to describe almost any spectral reflectance function. Figure 4.21 shows the mean
spectral reflectance of this dataset, and Figure 4.21 shows the eigenvalues of the
covariance matrix.

This is tremendously useful in practice. One should think of a spectral re-
flectance as a function, usually written ρ(λ). What the principal components anal-
ysis tells us is that we can represent this function rather accurately on a (really
small) finite dimensional basis. This basis is shown in figure 4.21. This means that
there is a mean function r(λ) and k functions φm(λ) such that, for any ρ(λ),

ρ(λ) = r(λ) +

k
∑

i=1

ciφi(λ) + e(λ)

where e(λ) is the error of the representation, which we know is small (because it
consists of all the other principal components, which have tiny variance). In the
case of spectral reflectances, using a value of k around 3-5 works fine for most
applications (Figure 4.22). This is useful, because when we want to predict what

http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/
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First sixteen principal components of the Japanese Facial Expression dat
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FIGURE 4.24: The mean and first 16 principal components of the Japanese facial
expression dataset.

a particular object will look like under a particular light, we don’t need to use a
detailed spectral reflectance model; instead, it’s enough to know the ci for that
object. This comes in useful in a variety of rendering applications in computer
graphics. It is also the key step in an important computer vision problem, called
color constancy. In this problem, we see a picture of a world of colored ob-
jects under unknown colored lights, and must determine what color the objects
are. Modern color constancy systems are quite accurate, even though the problem
sounds underconstrained. This is because they are able to exploit the fact that
relatively few ci are enough to accurately describe a surface reflectance.

4.4.6 Example: Representing Faces with Principal Components

An image is usually represented as an array of values. We will consider intensity
images, so there is a single intensity value in each cell. You can turn the image
into a vector by rearranging it, for example stacking the columns onto one another
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FIGURE 4.25: Approximating a face image by the mean and some principal compo-
nents; notice how good the approximation becomes with relatively few components.

(use reshape in Matlab). This means you can take the principal components of a
set of images. Doing so was something of a fashionable pastime in computer vision
for a while, though there are some reasons that this is not a great representation of
pictures. However, the representation yields pictures that can give great intuition
into a dataset.

Figure ?? shows the mean of a set of face images encoding facial expressions of
Japanese women (available at http://www.kasrl.org/jaffe.html; there are tons of face
datasets at http://www.face-rec.org/databases/). I reduced the images to 64x64,
which gives a 4096 dimensional vector. The eigenvalues of the covariance of this
dataset are shown in figure 4.23; there are 4096 of them, so it’s hard to see a
trend, but the zoomed figure suggests that the first couple of hundred contain
most of the variance. Once we have constructed the principal components, they
can be rearranged into images; these images are shown in figure 4.24. Principal
components give quite good approximations to real images (figure 4.25).

The principal components sketch out the main kinds of variation in facial
expression. Notice how the mean face in Figure 4.24 looks like a relaxed face, but
with fuzzy boundaries. This is because the faces can’t be precisely aligned, because
each face has a slightly different shape. The way to interpret the components is to
remember one adjusts the mean towards a data point by adding (or subtracting)
some scale times the component. So the first few principal components have to
do with the shape of the haircut; by the fourth, we are dealing with taller/shorter
faces; then several components have to do with the height of the eyebrows, the
shape of the chin, and the position of the mouth; and so on. These are all images of
women who are not wearing spectacles. In face pictures taken from a wider set of
models, moustaches, beards and spectacles all typically appear in the first couple
of dozen principal components.

http://www.kasrl.org/jaffe.html
http://www.face-rec.org/databases/
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4.5 HIGH DIMENSIONS, SVD AND NIPALS

If you remember the curse of dimension, you should have noticed something of a
problem in my account of PCA. When I described the curse, I said one consequence
was that forming a covariance matrix for high dimensional data is hard or impos-
sible. Then I described PCA as a method to understand the important dimensions
in high dimensional datasets. But PCA appears to rely on covariance, so I should
not be able to form the principal components in the first place. In fact, we can
form principal components without computing a covariance matrix.

4.5.1 Principal Components by SVD

I will now assume the dataset has zero mean, to simplify notation. This is easily
achieved. You subtract the mean from each data item at the start, and add the
mean back once you’ve finished smoothing. As usual, we have N data items, each
a d dimensional column vector. We will now arrange these into a matrix,

X =





xT
1

xT
2

. . .xT
N





where each row of the matrix is a data vector. Now notice that the covariance
matrix for this dataset can be formed by constructing X TX , so that

Covmat ({X}) = X TX

and if we form the SVD (see the math notes at the end if you don’t remember this)
of X , we have X = UΣVT . But we have X TX = VΣTΣVT so that

VTX TXV = ΣTΣ

and ΣTΣ is diagonal. So we can recover the principal components of the dataset
without actually forming the covariance matrix - we just form the SVD of X .

4.5.2 Just a few Principal Components with NIPALS

For really big datasets, even taking the SVD is hard. Usually, we don’t really want
to recover all the principal components, because we want to recover a reasonably
accurate low dimensional representation of the data. We continue to work with a
data matrix X , whose rows are data items. Now assume we wish to recover the first
principal component. This means we are seeking a vector u and a set of N numbers
wi such that wiu is a good approximation to xi. In particular, we would like the
dataset made of wiu to encode as much of the variance of the original dataset as
possible. Now we can stack the wi into a column vector w. The Frobenius norm

is a term for the matrix norm obtained by summing squared entries of the matrix.
We write

||A||F =
∑

i,j

a2ij .

In the exercises, you will show that the choice of w and u minimizes the cost

||X −wuT ||F
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which we can write as
C(w,u) =

∑

ij

(xij − wiuj)
2
.

Now we need to find the relevantw and u. Notice there is not a unique choice,
because the pair (sw, (1/s)u) works as well as the pair (w,u). We will choose u

such that ||u || = 1. There is still not a unique choice, because you can flip the
signs in u and w, but this doesn’t matter. The gradient of the cost function is a
set of partial derivatives with respect to components of w and u. The partial with
respect to wk is

∂C

∂wk
=
∑

j

(xkj − wkuj)uj

which can be written in matrix vector form as

∇wC = (X −wuT )u.

Similarly, the partial with respect to ul is

∂C

∂ul
=
∑

i

(xil − wiul)wi

which can be written in matrix vector form as

∇uC = (X T − uwT )w.

At the solution, these partial derivatives are zero. This suggests an algorithm.
First, assume we have an estimate of u, say u(n). Then we could choose the w that
makes the partial wrt w zero, so

w(n+ 1
2 ) =

Xu(n)

(u(n))Tu(n)
.

Now we can update the estimate of u by choosing a value that makes the partial
wrt u zero, using our estimate w(n+ 1

2 ), to get

u(n+ 1
2 ) =

X Tw(n+ 1
2 )

(w(n+ 1
2 ))Tw

.

We need to rescale to ensure that our estimate of u has unit length. Write s =
((w(n+ 1

2 ))Tw)
1
2 We get

u(n+1) =
u(n+ 1

2 )

s

and
w(n+1) = sw(n+ 1

2 ).

This iteration can be started by choosing some row of X as u(0). You can test for
convergence by checking ||u(n+1) − u(n) ||. If this is small enough, then the algorithm
has converged.
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To obtain a second principal component, you form X (1) = X−wuT and apply
the algorithm to that. You can get many principal components like this, but it’s not
a good way to get all of them (eventually numerical issues mean the estimates are
poor). The algorithm is widely known as NIPALS (for Non-linear Iterative Partial
Least Squares).

NIPALS is quite forgiving of missing values, though missing values make
it hard to use matrix notation. Recall I wrote the cost function as C(w,u) =
∑

ij(xij −wiuj)
2. We change the sum so that it ranges over only the known values,

to get

C(w,u) =
∑

ij∈known values

(xij − wiuj)
2

then write
∂C

∂wk
=

∑

j∈known values for k

(xkj − wkuj)uj

and
∂C

∂ul
=

∑

i∈known values for l

(xil − wiul)wi.

These partial derivatives must be zero at the solution, so we can estimate

w
(n+ 1

2 )

k =

∑

j∈known values for k xkjuj

∑

j∈known values for k u
(n+ 1

2 )
j u

(n+ 1
2 )

j

and

u
(n+ 1

2 )

k =

∑

i∈known values for l xilwl

∑

i∈known values for l w
(n+ 1

2 )

l w
(n+ 1

2 )

l

.

We then normalize as before.

Procedure: 4.2 Obtaining some principal components with NIPALS

4.5.3 Projection and Discriminative Problems

You should remind yourself how Lagrange multipliers work before reading this
section.

Principal components analysis identifies the directions in high dimensional
space that best describe the dataset. This may not always be what we are looking
for. For a simple example, look at figure ??. In this case, we have two classes of data
item. Each varies a lot in the x direction and little in the y direction. If we project
onto the first principal component, the outcome represents variance in the data
well, but suppresses the difference between the two classes. For many applications
– for example, classification – we are interested in directions that emphasize the
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differences between classes. One very important construction for such directions
can be used for classification and for regression.

Assume we have a dataset of N items, each with two parts xi and yi. We
assume that at least xi has high dimension. We also assume that mean ({x}) = 0
and mean ({y}) = 0. This simplifies notation, and is easy to achieve (subtract the
mean). This is a mild generalization of what occurred in classification, where we
had a feature vector xi and a label yi for each data item; but now instead of having
just a label, we have a vector. This situation arises in practice quite often. For
example, xi might be a vector that describes an image and yi might be a vector
that describes a caption for that image. If we have a classification problem with C
classes, we might choose yi to be a vector with zero in all components except the
one corresponding to the class (this is sometimes known as a one-hot vector). We
wish to choose projections of x and y to a shared low dimensional space, so that
the projections in this space are strongly correlated to one another.

For the moment, assume the low dimensional space is one dimensional. Then
there is some unit vector a so that projecting xi to that space is given by aTxi;
similarly, there is some unit vector b so that projecting yi to the space is given by
bTyi. Now we stack the vectors into data matrices whose rows are data items, as
above, so the i’th row of X is xT

i and the i’th row of Y is yT
i . Then px = matxXa

is a vector containing all the projections of the x part, and py = Yb is a vector
containing all the projections of the y part. We want these projections to be “like”
one another to the extent possible.

One criterion we can use is to maximize pT
xpy by choice of a and b. We must

maximise
aT maxXTYb subject to aTa = 1 and bTb = 1.

Write λa and λb for Lagrange multipliers. To solve this problem, we must find a

and b such that
X TYb = λaa and YTXa = λbb.

We can substitute using the second equation to get

(X TYYTX )a = λaλba

which means that a is an eigenvector of (X TYYTX ). It turns out we seek the
eigenvector corresponding to the largest eigenvalue; equivalently, we must solve

aT (X TYYTX )a subject to aTa = 1

There is a straightforward way to obtain a second, third, etc. dimension. We
take the dataset, and subtract the a component from each xi and the b component
from each yi; we now have a new dataset, and seek another a, b using our procedure.
These new directions must (a) maximise the covariance we are interested in and (b)
are orthogonal to the original directions. As Figure ?? suggests, these projections
of the data separate blobs of data with different labels.

****PROBLEM FIGURE
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FIGURE 4.26:

4.5.4 Just a few Discriminative Directions with PLS1

Notice that we have, again, formed a (kind of) covariance matrix here, meaning
that this method might not apply if the dimension of the data is big. But we
could obtain a from an SVD. An SVD yields UΣVT = YTX , where U and V are
orthonormal and Σ is diagonal. In turn, we have

aT (X TYYTX )a = aTVΣ2VTa

so that a must be the column of V corresponding to the largest singular value. Now
the argument I used for extracting principal components works for this problem,
too. Recall I was looking for the unit a that maximized aTX TXa; I showed I could
obtain this from an SVD of X ; then I argued that I could recover a by finding a,
w such that ||X −wa ||F 2

was minimized.
When we are looking for a discriminative direction, we would look for a,

w such that ||YTX − awT ||F 2
is minimized. The procedure above applies. This

algorithm is usually called PLS1 (for partial least squares one).

4.6 MULTI-DIMENSIONAL SCALING

One way to get insight into a dataset is to plot it. But choosing what to plot for
a high dimensional dataset could be difficult. Assume we must plot the dataset
in two dimensions (by far the most common choice). We wish to build a scatter
plot in two dimensions — but where should we plot each data point? One natural
requirement is that the points be laid out in two dimensions in a way that reflects
how they sit in many dimensions. In particular, we would like points that are far
apart in the high dimensional space to be far apart in the plot, and points that are
close in the high dimensional space to be close in the plot.
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4.6.1 Principal Coordinate Analysis

We will plot the high dimensional point xi at vi, which is a two-dimensional vector.
Now the squared distance between points i and j in the high dimensional space is

D
(2)
ij (x) = (xi − xj)

T (xi − xj)

(where the superscript is to remind you that this is a squared distance). We could
build an N × N matrix of squared distances, which we write D(2)(x). The i, j’th

entry in this matrix is D
(2)
ij (x), and the x argument means that the distances are

between points in the high-dimensional space. Now we could choose the vi to make

∑

ij

(

D
(2)
i j(x)−D

(2)
ij (v)

)2

as small as possible. Doing so should mean that points that are far apart in the
high dimensional space are far apart in the plot, and that points that are close in
the high dimensional space are close in the plot.

In its current form, the expression is difficult to deal with, but we can refine
it. Because translation does not change the distances between points, it cannot
change either of the D(2) matrices. So it is enough to solve the case when the mean
of the points xi is zero. We can assume that 1

N

∑

i xi = 0. Now write 1 for the
n-dimensional vector containing all ones, and I for the identity matrix. Notice that

D
(2)
ij = (xi − xj)

T (xi − xj) = xi · xi − 2xi · xj + xj · xj .

Now write

A =

[

I − 1

N
11T

]

.

Using this expression, you can show that the matrix M, defined below,

M(x) = −1

2
AD(2)(x)AT

has i, jth entry xi · xj (exercises). I now argue that, to make D(2)(v) is close to
D(2)(x), it is enough to make M(v) close to M(x). Proving this will take us out
of our way unnecessarily, so I omit a proof.

We can choose a set of vi that makes D(2)(v) close to D(2)(x) quite easily,
using the method of the previous section. Take the dataset of N d-dimensional
column vectors xi, and form a matrix X by stacking the vectors, so

X = [x1,x2, . . . ,xN ] .

In this notation, we have
M(x) = X TX .

This matrix is symmetric, and it is positive semidefinite. It can’t be positive defi-
nite, because the data is zero mean, so M(x)1 = 0. The M(v) we seek must (a)
be as close as possible to M(x) and (b) have rank 2. It must have rank 2 because
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there must be some V which is 2 × N so that M(v) = VTV . The columns of this
V are our vi.

We can use the method of section 17.1.2 to construct M(v) and V . As usual,
we write U for the matrix of eigenvectors of M(x), Λ for the diagonal matrix of
eigenvalues sorted in descending order, Λ2 for the 2 × 2 upper left hand block of

Λ, and Λ
(1/2)
2 for the matrix of positive square roots of the eigenvalues. Then our

methods yield

M(v) = U2Λ
(1/2)
2 Λ

(1/2)
2 UT

2

and
V = Λ

(1/2)
2 UT

2

and we can plot these vi (example in section 16.5). This method for constructing
a plot is known as principal coordinate analysis.

This plot might not be perfect, because reducing the dimension of the data
points should cause some distortions. In many cases, the distortions are tolerable.
In other cases, we might need to use a more sophisticated scoring system that
penalizes some kinds of distortion more strongly than others. There are many ways
to do this; the general problem is known as multidimensional scaling.

Procedure: 4.3 Principal Coordinate Analysis

Assume we have a matrix D(2) consisting of the squared differences
between each pair of N points. We do not need to know the points. We
wish to compute a set of points in r dimensions, such that the distances
between these points are as similar as possible to the distances in D(2).
Form A =

[

I − 1
N 11T

]

. Form W = 1
2AD(2)AT . Form U , Λ, such that

WU = UΛ (these are the eigenvectors and eigenvalues of W). Ensure
that the entries of Λ are sorted in decreasing order. Choose r, the
number of dimensions you wish to represent. Form Λr, the top left

r × r block of Λ. Form Λ
(1/2)
r , whose entries are the positive square

roots of Λr. Form Ur, the matrix consisting of the first r columns of U .
Then V = Λ

(1/2)
2 UT

2 = [v1, . . . ,vN ] is the set of points to plot.

4.6.2 Example: Mapping with Multidimensional Scaling

Multidimensional scaling gets positions (the V of section 4.6.1) from distances (the
D(2)(x) of section 4.6.1). This means we can use the method to build maps from
distances alone. I collected distance information from the web (I used http://www.
distancefromto.net, but a google search on “city distances” yields a wide range of
possible sources), then apply multidimensional scaling. Table ?? shows distances
between the South African provincial capitals, in kilometers, rounded to the near-
est kilometer. I then used principal coordinate analysis to find positions for each
capital, and rotated, translated and scaled the resulting plot to check it against a
real map (Figure 4.27).

http://www.distancefromto.net
http://www.distancefromto.net
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FIGURE 4.27: On the left, a public domain map of South Africa, obtained from
http://commons.wikimedia.org/wiki/File:Map of South Africa.svg , and edited to re-
move surrounding countries. On the right, the locations of the cities inferred by
multidimensional scaling, rotated, translated and scaled to allow a comparison to
the map by eye. The map doesn’t have all the provincial capitals on it, but it’s easy
to see that MDS has placed the ones that are there in the right places (use a piece
of ruled tracing paper to check).
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FIGURE 4.28: Two views of the spectral data of section 4.4.5, plotted as a scatter
plot by applying principal coordinate analysis to obtain a 3D set of points. Notice
that the data spreads out in 3D, but seems to lie on some structure; it certainly isn’t
a single blob. This suggests that further investigation would be fruitful.

One natural use of principal coordinate analysis is to see if one can spot
any structure in a dataset. Does the dataset form a blob, or is it clumpy? This
isn’t a perfect test, but it’s a good way to look and see if anything interesting is
happening. In figure 4.28, I show a 3D plot of the spectral data, reduced to three
dimensions using principal coordinate analysis. The plot is quite interesting. You
should notice that the data points are spread out in 3D, but actually seem to lie on
a complicated curved surface — they very clearly don’t form a uniform blob. To
me, the structure looks somewhat like a butterfly. I don’t know why this occurs, but
it certainly suggests that something worth investigating is going on. Perhaps the

http://commons.wikimedia.org/wiki/File:Map_of_South_Africa.svg
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choice of samples that were measured is funny; perhaps the measuring instrument
doesn’t make certain kinds of measurement; or perhaps there are physical processes
that prevent the data from spreading out over the space.
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FIGURE 4.29: A map of country similarity, prepared from the data of figure ??. The
map is often interpreted as showing a variation in development or wealth (poorest
at bottom left to richest at top right); and freedom (most repressed at top left and
freeest at bottom right). I haven’t plotted these axes, because the interpretation
wouldn’t be consistent with current intuition (the similarity data is forty years old,
and quite a lot has happened in that time).

Our algorithm has one really interesting property. In some cases, we do not
actually know the datapoints as vectors. Instead, we just know distances between
the datapoints. This happens often in the social sciences, but there are important
cases in computer science as well. As a rather contrived example, one could survey
people about breakfast foods (say, eggs, bacon, cereal, oatmeal, pancakes, toast,
muffins, kippers and sausages for a total of 9 items). We ask each person to rate the
similarity of each pair of distinct items on some scale. We advise people that similar
items are ones where, if they were offered both, they would have no particular
preference; but, for dissimilar items, they would have a strong preference for one
over the other. The scale might be “very similar”, “quite similar”, “similar”, “quite
dissimilar”, and “very dissimilar” (scales like this are often called Likert scales).
We collect these similarities from many people for each pair of distinct items, and
then average the similarity over all respondents. We compute distances from the
similarities in a way that makes very similar items close and very dissimilar items
distant. Now we have a table of distances between items, and can compute a V

and produce a scatter plot. This plot is quite revealing, because items that most
people think are easily substituted appear close together, and items that are hard
to substitute are far apart. The neat trick here is that we did not start with a X ,
but with just a set of distances; but we were able to associate a vector with “eggs”,
and produce a meaningful plot.

Table ?? shows data from one such example. Students were interviewed (in
1971! things may have changed since then) about their perceptions of the similarity
of countries. The averaged perceived similarity is shown in table ??. Large numbers
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FIGURE 4.30: Two views of a multidimensional scaling to three dimensions of the
height-weight dataset. Notice how the data seems to lie in a flat structure in 3D,
with one outlying data point. This means that the distances between data points can
be (largely) explained by a 2D representation.

reflect high similarity, so we can’t use these numbers directly. It is reasonable to
turn these numbers into distances by (a) using 0 as the distance between a country
and itself and (b) using e−sij as the distance between countries i and j (where sij is
the similarity between them). Once we have distances, we can apply the procedure
of section 4.6.1 to get points, then plot a scatter plot (Figure 4.29).

4.7 EXAMPLE: UNDERSTANDING HEIGHT AND WEIGHT

Recall the height-weight data set of section ?? (from http://www2.stetson.edu/
∼jrasp/data.htm; look for bodyfat.xls at that URL). This is, in fact, a 16-dimensional
dataset. The entries are (in this order): bodyfat; density; age; weight; height; adi-
posity; neck; chest; abdomen; hip; thigh; knee; ankle; biceps; forearm; wrist. We
know already that many of these entries are correlated, but it’s hard to grasp a 16
dimensional dataset in one go. The first step is to investigate with a multidimen-
sional scaling.

Figure ?? shows a multidimensional scaling of this dataset down to three
dimensions. The dataset seems to lie on a (fairly) flat structure in 3D, meaning
that inter-point distances are relatively well explained by a 2D representation. Two
points seem to be special, and lie far away from the flat structure. The structure
isn’t perfectly flat, so there will be small errors in a 2D representation; but it’s clear
that a lot of dimensions are redundant. Figure 4.31 shows a 2D representation of
these points. They form a blob that is stretched along one axis, and there is no sign
of multiple blobs. There’s still at least one special point, which we shall ignore but
might be worth investigating further. The distortions involved in squashing this
dataset down to 2D seem to have made the second special point less obvious than
it was in figure ??.

The next step is to try a principal component analysis. Figure 4.32 shows
the mean of the dataset. The components of the dataset have different units, and
shouldn’t really be compared. But it is difficult to interpret a table of 16 numbers, so
I have plotted the mean by showing a vertical bar for each component. Figure 4.33

http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
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FIGURE 4.31: A multidimensional scaling to two dimensions of the height-weight
dataset. One data point is clearly special, and another looks pretty special. The
data seems to form a blob, with one axis quite a lot more important than another.
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FIGURE 4.32: The mean of the bodyfat.xls dataset. Each component is likely in a
different unit (though I don’t know the units), making it difficult to plot the data
without being misleading. I’ve adopted one solution here, by plotting each component
as a vertical bar, and labelling the bar. You shouldn’t try to compare the values to
one another. Instead, think of this plot as a compact version of a table.

shows the eigenvalues of the covariance for this dataset. Notice how one dimension is
very important, and after the third principal component, the contributions become
small. Of course, I could have said “fourth”, or “fifth”, or whatever — the precise
choice depends on how small a number you think is “small”.

Figure 4.33 also shows the first principal component. The eigenvalues justify
thinking of each data item as (roughly) the mean plus some weight times this
principal component. From this plot you can see that data items with a larger
value of weight will also have larger values of most other measurements, except age
and density. You can also see how much larger; if the weight goes up by 8.5 units,
then the abdomen will go up by 3 units, and so on. This explains the main variation
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FIGURE 4.33: On the left, the eigenvalues of the covariance matrix for the bodyfat
data set. Notice how fast the eigenvalues fall off; this means that most principal
components have very small variance, so that data can be represented well with a
small number of principal components. On the right, the first principal component
for this dataset, plotted using the same convention as for figure 4.32.

in the dataset.
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FIGURE 4.34: On the left, the second principal component, and on the right the
third principal component of the height-weight dataset.

In the rotated coordinate system, the components are not correlated, and they
have different variances (which are the eigenvalues of the covariance matrix). You
can get some sense of the data by adding these variances; in this case, we get 1404.
This means that, in the translated and rotated coordinate system, the average data
point is about 37 =

√
1404 units away from the center (the origin). Translations

and rotations do not change distances, so the average data point is about 37 units
from the center in the original dataset, too. If we represent a datapoint by using
the mean and the first three principal components, there will be some error. We
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can estimate the average error from the component variances. In this case, the sum
of the first three eigenvalues is 1357, so the mean square error in representing a
datapoint by the first three principal components is

√

(1404− 1357), or 6.8. The
relative error is 6.8/37 = 0.18. Another way to represent this information, which is
more widely used, is to say that the first three principal components explain all but
(1404− 1357)/1404 = 0.034, or 3.4% of the variance; notice that this is the square
of the relative error, which will be a much smaller number.

All this means that explaining a data point as the mean and the first three
principal components produces relatively small errors. Figure 4.35 shows the second
and third principal component of the data. These two principal components suggest
some further conclusions. As age gets larger, height and weight get slightly smaller,
but the weight is redistributed; abdomen gets larger, whereas thigh gets smaller.
A smaller effect (the third principal component) links bodyfat and abdomen. As
bodyfat goes up, so does abdomen.

4.8 WHAT YOU SHOULD REMEMBER - NEED SOMETHING

PROBLEMS

Summaries

4.1. You have a dataset {x} of N vectors, xi, each of which is d-dimensional. We
will consider a linear function of this dataset. Write a for a constant vector;
then the value of this linear function evaluated on the i’th data item is aTxi.
Write fi = aTxi. We can make a new dataset {f} out of the values of this
linear function.
(a) Show that mean ({f}) = aTmean ({x}) (easy).
(b) Show that var ({f}) = aTCovmat ({x})a (harder, but just push it through

the definition).
(c) Assume the dataset has the special property that there exists some a so

that aTCovmat ({x})a. Show that this means that the dataset lies on a
hyperplane.
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FIGURE 4.35: Figure for the question

4.2. On Figure 4.35, mark the mean of the dataset, the first principal component,
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Listing 4.1: R code for iris example.

# r code f o r s c a t t e r p l o t o f i r i s data
i r i s d a t<−read . csv ( ’ i r i s . dat ’ , header=FALSE) ;
l ibrary ( ’ l a t t i c e ’ )
numir i s=i r i s d a t [ , c (1 , 2 , 3 , 4 ) ]
postscript ( ” i r i s s c a t t e r p l o t . eps ” )
# so t ha t I ge t a p o s t s c r i p t f i l e
speciesnames<−c ( ’ s e t o s a ’ , ’ v e r s i c o l o r ’ , ’ v i r g i n i c a ’ )
pchr<−c (1 , 2 , 3)
c o l r<−c ( ’ red ’ , ’ green ’ , ’ b lue ’ , ’ ye l l ow ’ , ’ orange ’ )
s s<−expand . grid ( s p e c i e s =1:3)
par s et<−with ( ss , simpleTheme ( pch=pchr [ s p e c i e s ] ,

col=co l r [ s p e c i e s ] ) )
splom ( i r i s d a t [ , c ( 1 : 4 ) ] , groups=i r i s d a t $V5,

par . s e t t i n g s=parset ,
varnames=c ( ’ Sepal \nLength ’ , ’ Sepal \nWidth ’ ,

’ Petal \nLength ’ , ’ Petal \nWidth ’ ) ,
key=l i s t ( text=l i s t ( speciesnames ) ,

points=l i s t ( pch=pchr ) , columns=3))
dev . of f ( )

and the second principal component.
4.3. You have a dataset {x} of N vectors, xi, each of which is d-dimensional.

Assume that Covmat ({x}) has one non-zero eigenvalue. Assume that x1 and
x2 do not have the same value.
(a) Show that you can choose a set of ti so that you can represent every data

item xi exactly
xi = x1 + ti(x2 − x1).

(b) Now consider the dataset of these t values. What is the relationship
between (a) std (t) and (b) the non-zero eigenvalue of Covmat ({x})? Why?

PROGRAMMING EXERCISES

4.4. Obtain the iris dataset from the UC Irvine machine learning data repository at
http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data.
(a) Plot a scatterplot matrix of this dataset, showing each species with a

different marker. The fragment of R code in listing 4.1 should take you
most of the way.

(b) Now obtain the first two principal components of the data. Plot the
data on those two principal components alone, again showing each species
with a different marker. Has this plot introduced significant distortions?
Explain

(c) Now use PLS1 to obtain two discriminative directions, and project the
data on to those directions. Does the plot look better? Explain Keep in
mind that the most common error here is to forget that the X and the Y
in PLS1 are centered - i.e. we subtract the mean.

4.5. Take the wine dataset from the UC Irvine machine learning data repository at
https://archive.ics.uci.edu/ml/datasets/Wine.
(a) Plot the eigenvalues of the covariance matrix in sorted order. How many

principal components should be used to represent this dataset? Why?

http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
https://archive.ics.uci.edu/ml/datasets/Wine
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(b) Construct a stem plot of each of the first 3 principal components (i.e. the
eigenvectors of the covariance matrix with largest eigenvalues). What do
you see?

(c) Compute the first two principal components of this dataset, and project
it onto those components. Now produce a scatter plot of this two dimen-
sional dataset, where data items of class 1 are plotted as a ’1’, class 2 as
a ’2’, and so on.

4.6. Take the wheat kernel dataset from the UC Irvine machine learning data repos-
itory at http://archive.ics.uci.edu/ml/datasets/seeds. Compute the first two
principal components of this dataset, and project it onto those components.
(a) Produce a scatterplot of this projection. Do you see any interesting phe-

nomena?
(b) Plot the eigenvalues of the covariance matrix in sorted order. How many

principal components should be used to represent this dataset? why?
4.7. The UC Irvine machine learning data repository hosts a collection of data

on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and
William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an
id number, 10 continuous variables, and a class (benign or malignant). There
are 569 examples. Separate this dataset randomly into 100 validation, 100
test, and 369 training examples.
(a) Plot this dataset on the first three principal components, using different

markers for benign and malignant cases. What do you see?
(b) Now use PLS1 to obtain three discriminative directions, and project the

data on to those directions. Does the plot look better? Explain Keep in
mind that the most common error here is to forget that the X and the Y in
PLS1 are centered - i.e. we subtract the mean. Once you have computed
the first (etc. direction, you should subtract it from X , but leave Y alone.

http://archive.ics.uci.edu/ml/datasets/seeds
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)


C H A P T E R 5

Clustering: Models of High
Dimensional Data

High-dimensional data comes with problems. Data points tend not to be
where you think; they can scattered quite far apart, and can be quite far from
the mean. Except in special cases, the only really reliable probability model is the
Gaussian (or Gaussian blob, or blob).

There is an important rule of thumb for coping with high dimensional data:
Use simple models. A blob is a good simple model. Modelling data as a blob
involves computing its mean and its covariance. Sometimes, as we shall see, the
covariance can be hard to compute. Even so, a blob model is really useful. It is
natural to try and extend this model to cover datasets that don’t obviously consist
of a single blob.

One very good, very simple, model for high dimensional data is to assume
that it consists of multiple blobs. To build models like this, we must determine
(a) what the blob parameters are and (b) which datapoints belong to which blob.
Generally, we will collect together data points that are close and form blobs out of
them. This process is known as clustering.

Clustering is a somewhat puzzling activity. It is extremely useful to cluster
data, and it seems to be quite important to do it reasonably well. But it surprisingly
hard to give crisp criteria for a good (resp. bad) clustering of a dataset. Usually,
clustering is part of building a model, and the main way to know that the clustering
algorithm is bad is that the model is bad.

5.1 AGGLOMERATIVE AND DIVISIVE CLUSTERING

There are two natural algorithms for clustering. In divisive clustering, the entire
data set is regarded as a cluster, and then clusters are recursively split to yield a
good clustering (Algorithm 5.2). In agglomerative clustering, each data item is
regarded as a cluster, and clusters are recursively merged to yield a good clustering
(Algorithm 5.1).

Make each point a separate cluster
Until the clustering is satisfactory

Merge the two clusters with the
smallest inter-cluster distance

end

Algorithm 5.1: Agglomerative Clustering or Clustering by Merging.

102
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Construct a single cluster containing all points
Until the clustering is satisfactory

Split the cluster that yields the two
components with the largest inter-cluster distance

end

Algorithm 5.2: Divisive Clustering, or Clustering by Splitting.

There are two major issues in thinking about clustering:

• What is a good inter-cluster distance? Agglomerative clustering uses an inter-
cluster distance to fuse nearby clusters; divisive clustering uses it to split in-
sufficiently coherent clusters. Even if a natural distance between data points
is available (which might not be the case for vision problems), there is no
canonical inter-cluster distance. Generally, one chooses a distance that seems
appropriate for the data set. For example, one might choose the distance
between the closest elements as the inter-cluster distance, which tends to
yield extended clusters (statisticians call this method single-link cluster-

ing). Another natural choice is the maximum distance between an element of
the first cluster and one of the second, which tends to yield rounded clusters
(statisticians call this method complete-link clustering). Finally, one could
use an average of distances between elements in the cluster, which also tends
to yield “rounded” clusters (statisticians call this method group average

clustering).

• How many clusters are there? This is an intrinsically difficult task if there
is no model for the process that generated the clusters. The algorithms we
have described generate a hierarchy of clusters. Usually, this hierarchy is
displayed to a user in the form of a dendrogram—a representation of the
structure of the hierarchy of clusters that displays inter-cluster distances—
and an appropriate choice of clusters is made from the dendrogram (see the
example in Figure 5.1).

The main difficulty in using a divisive model is knowing where to split. This is
sometimes made easier for particular kinds of data. For example, we could segment
an image by clustering pixel values. In this case, you can sometimes find good splits
by constructing a histogram of intensities, or of color values.

Another important thing to notice about clustering from the example of fig-
ure 5.1 is that there is no right answer. There are a variety of different clusterings
of the same data. For example, depending on what scales in that figure mean, it
might be right to zoom out and regard all of the data as a single cluster, or to zoom
in and regard each data point as a cluster. Each of these representations may be
useful.
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FIGURE 5.1: Left, a data set; right, a dendrogram obtained by agglomerative clus-
tering using single-link clustering. If one selects a particular value of distance, then
a horizontal line at that distance splits the dendrogram into clusters. This repre-
sentation makes it possible to guess how many clusters there are and to get some
insight into how good the clusters are.

5.1.1 Clustering and Distance

In the algorithms above, and in what follows, we assume that the features are scaled
so that distances (measured in the usual way) between data points are a good
representation of their similarity. This is quite an important point. For example,
imagine we are clustering data representing brick walls. The features might contain
several distances: the spacing between the bricks, the length of the wall, the height
of the wall, and so on. If these distances are given in the same set of units, we could
have real trouble. For example, assume that the units are centimeters. Then the
spacing between bricks is of the order of one or two centimeters, but the heights
of the walls will be in the hundreds of centimeters. In turn, this means that the
distance between two datapoints is likely to be completely dominated by the height
and length data. This could be what we want, but it might also not be a good
thing.

There are some ways to manage this issue. One is to know what the features
measure, and know how they should be scaled. Usually, this happens because you
have a deep understanding of your data. If you don’t (which happens!), then it is
often a good idea to try and normalize the scale of the data set. There are two good
strategies. The simplest is to translate the data so that it has zero mean (this is
just for neatness - translation doesn’t change distances), then scale each direction
so that it has unit variance. More sophisticated is to translate the data so that
it has zero mean, then transform it so that each direction is independent and has
unit variance. Doing so is sometimes referred to as decorrelation or whitening
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FIGURE 5.2: A dendrogram obtained from the body fat dataset, using single link
clustering. Recall that the data points are on the horizontal axis, and that the
vertical axis is distance; there is a horizontal line linking two clusters that get
merged, established at the height at which they’re merged. I have plotted the entire
dendrogram, despite the fact it’s a bit crowded at the bottom, because it shows that
most data points are relatively close (i.e. there are lots of horizontal branches at
about the same height).

(because you make the data more like white noise); I described how to do this in
section ??.
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FIGURE 5.3: A clustering of the body fat dataset, using agglomerative clustering,
single link distance, and requiring a maximum of 30 clusters. I have plotted each
cluster with a distinct marker (though some markers differ only by color; you might
need to look at the PDF version to see this figure at its best). Notice that one
cluster contains much of the data, and that there are a set of small isolated clusters.
The original data is 16 dimensional, which presents plotting problems; I show a
scatter plot on the first two principal components (though I computed distances for
clustering in the original 16 dimensional space).

Worked example 5.1 Agglomerative clustering in Matlab

Cluster the height-weight dataset of http://www2.stetson.edu/∼jrasp/data.htm
(look for bodyfat.xls) using an agglomerative clusterer, and describe the results.

Solution: Matlab provides some tools that are useful for agglomerative clus-
tering. These functions use a scheme where one first builds the whole tree of
merges, then analyzes that tree to decide which clustering to report. linkage
will determine which pairs of clusters should be merged at which step (there
are arguments that allow you to choose what type of inter-cluster distance it
should use); dendrogram will plot you a dendrogram; and cluster will ex-
tract the clusters from the linkage, using a variety of options for choosing the
clusters. I used these functions to prepare the dendrogram of figure 5.2 for
the height-weight dataset of section ?? (from http://www2.stetson.edu/∼jrasp/
data.htm; look for bodyfat.xls). I deliberately forced Matlab to plot the whole
dendrogram, which accounts for the crowded look of the figure (you can allow
it to merge small leaves, etc.). I used a single-link strategy. In particular,
notice that many data points are about the same distance from one another,
which suggests a single big cluster with a smaller set of nearby clusters. The
clustering of figure 5.3 supports this view. I plotted the data points on the
first two principal components, using different colors and shapes of marker to
indicate different clusters. There are a total of 30 clusters here, though most
are small.

http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
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FIGURE 5.4: A dendrogram obtained from the seed dataset, using single link cluster-
ing. Recall that the data points are on the horizontal axis, and that the vertical axis
is distance; there is a horizontal line linking two clusters that get merged, established
at the height at which they’re merged. I have plotted the entire dendrogram, despite
the fact it’s a bit crowded at the bottom, because you can now see how clearly the
data set clusters into a small set of clusters — there are a small number of vertical
“runs”.

Worked example 5.2 Agglomerative clustering in Matlab, 2

Cluster the seed dataset from the UC Irvine Machine Learning Dataset Repos-
itory (you can find it at http://archive.ics.uci.edu/ml/datasets/seeds).

Solution: Each item consists of seven measurements of a wheat kernel; there
are three types of wheat represented in this dataset. As you can see in figures 5.4
and 5.5, this data clusters rather well.

http://archive.ics.uci.edu/ml/datasets/seeds
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FIGURE 5.5: A clustering of the seed dataset, using agglomerative clustering, single
link distance, and requiring a maximum of 30 clusters. I have plotted each cluster
with a distinct marker (though some markers differ only by color; you might need to
look at the PDF version to see this figure at its best). Notice that there are a set of
fairly natural isolated clusters. The original data is 8 dimensional, which presents
plotting problems; I show a scatter plot on the first two principal components (though
I computed distances for clustering in the original 8 dimensional space).

Worked example 5.3 Agglomerative clustering in R

Cluster the questions in the student evaluation dataset from the UC Irvine
Machine Learning Dataset Repository (you can find it at https://archive.ics.
uci.edu/ml/datasets/Turkiye+Student+Evaluation; this dataset was donated by
G. Gunduz and E. Fokoue), and display it on the first two principal components.
You should use 5 clusters, but investigate the results of choosing others.

Solution: R provides tools for agglomerative clustering, too. I used the block
of code shown in listing 5.1 to produce figure 5.6. The clustering shown in
that figure is to 5 clusters. To get some idea of what the clusters are like,
you can compute the per-cluster means, using a line in that listing. I found
means where: all students in the cluster gave moderately low, low, moderately
high and high answers to all questions, respectively; and one where all students
answered 1 to all questions. There are 5820 students in this collection. The
clusters suggest that answers tend to be quite strongly correlated — a student
who gives a low answer to a question will likely give low answers to others, too.
Choosing other numbers of clusters wasn’t particularly revealing, though there
were more levels to the answers.

https://archive.ics.uci.edu/ml/datasets/Turkiye+Student+Evaluation
https://archive.ics.uci.edu/ml/datasets/Turkiye+Student+Evaluation
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These two components explain 86.76 % of the point variability.
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FIGURE 5.6: A clustering of the student evaluation dataset, using agglomerative
clustering and 5 clusters. I produced this clustering with the code fragment in
listing 5.1. One difficulty with this dataset is there are 28 questions (Q1-Q28),
meaning the data is quite difficult to plot. You should be able to see the clusters on
the figure, but notice that they are smeared on top of one another; this is because I
had to project off 26 dimensions to produce the plot. The plotting function I used
(clusplot) plots a covariance ellipse for each cluster.

5.2 THE K-MEANS ALGORITHM AND VARIANTS

Assume we have a dataset that, we believe, forms many clusters that look like
blobs. If we knew where the center of each of the clusters was, it would be easy to
tell which cluster each data item belonged to — it would belong to the cluster with
the closest center. Similarly, if we knew which cluster each data item belonged to,
it would be easy to tell where the cluster centers were — they’d be the mean of the
data items in the cluster. This is the point closest to every point in the cluster.

We can turn these observations into an algorithm. Assume that we know how
many clusters there are in the data, and write k for this number. The jth data
item to be clustered is described by a feature vector xj . We write ci for the center
of the ith cluster. We assume that most data items are close to the center of their
cluster. This suggests that we cluster the data by minimizing the the cost function

Φ(clusters, data) =
∑

i∈clusters







∑

j∈ith cluster

(xj − ci)
T (xj − ci)







.

Notice that if we know the center for each cluster, it is easy to determine which
cluster is the best choice for each point. Similarly, if the allocation of points to
clusters is known, it is easy to compute the best center for each cluster. However,
there are far too many possible allocations of points to clusters to search this space
for a minimum. Instead, we define an algorithm that iterates through two activities:
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Listing 5.1: R code for student example.

setwd ( ’/us e r s/daf/Current/ cou r s e s/Probcourse/Clu s t e r i ng/RCode ’ )
wdat<−read . csv ( ’ turk iye−student−eva luat i on R Sp e c i f i c . csv ’ )
wdm<−wdat [ , c ( 6 : 3 3 ) ] # choose the que s t i on s
d <− d i s t (wdm, method = ” euc l i dean ” ) # dis tance matrix
f i t <− hc l u s t (d , method=”ward” ) # the c l u s t e r i n g
cm<−cov (wdm)
ev<−eigen (cm)
pr inc<−ev$vec to r s
proj<−t ( rbind ( t ( pr inc [ , 1 ] ) , t ( pr inc [ , 2 ] ) ) )
wdzm<−scale (wdm, center=TRUE, scale=FALSE) #sub t rac t the mean
wdzm<−data .matrix (wdzm)
wdpcs<−wdzm%∗%proj
kv<−c (5)
groups<−cutr ee ( f i t , k=kv )
wdbig<−wdm
wdbig$group<−groups
cg<−cut ( groups , kv )
p<−ggp lot ( as . data . frame (wdpcs))+geom point ( aes (y=V1 , x=V2 , shape=cg ) )
setEPS ( )
postscript ( ” c l u s t e r s . eps ” )
p
dev . of f ( )
cm1<−colMeans ( subset (wdbig , group==1)) # mean of the 1 s t c l u s t e r

• Assume the cluster centers are known and, allocate each point to the closest
cluster center.

• Assume the allocation is known, and choose a new set of cluster centers. Each
center is the mean of the points allocated to that cluster.

We then choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process eventually converges to a local minimum of
the objective function (the value either goes down or is fixed at each step, and
it is bounded below). It is not guaranteed to converge to the global minimum of
the objective function, however. It is also not guaranteed to produce k clusters,
unless we modify the allocation phase to ensure that each cluster has some nonzero
number of points. This algorithm is usually referred to as k-means (summarized
in Algorithm 5.3).

Usually, we are clustering high dimensional data, so that visualizing clusters
can present a challenge. If the dimension isn’t too high, then we can use panel
plots. An alternative is to project the data onto two principal components, and
plot the clusters there. A natural dataset to use to explore k-means is the iris
data, where we know that the data should form three clusters (because there are
three species). Recall this dataset from section ??. I reproduce figure 4.5 from
that section as figure 5.11, for comparison. Figures 5.8, ?? and ?? show different
k-means clusterings of that data.
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FIGURE 5.7: Left: a 3D scatterplot for the famous Iris data, originally due to ***.
I have chosen three variables from the four, and have plotted each species with a
different marker. You can see from the plot that the species cluster quite tightly,
and are different from one another. Right: a scatterplot matrix for the famous Iris
data, originally due to ***. There are four variables, measured for each of three
species of iris. I have plotted each species with a different marker. You can see from
the plot that the species cluster quite tightly, and are different from one another.

Worked example 5.4 K-means clustering in R

Cluster the iris dataset into two clusters using k-means, then plot the results
on the first two principal components

Solution: I used the code fragment in listing 5.2, which produced figure ??

5.2.1 How to choose K

The iris data is just a simple example. We know that the data forms clean clusters,
and we know there should be three of them. Usually, we don’t know how many
clusters there should be, and we need to choose this by experiment. One strategy
is to cluster for a variety of different values of k, then look at the value of the cost
function for each. If there are more centers, each data point can find a center that
is close to it, so we expect the value to go down as k goes up. This means that
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Choose k data points to act as cluster centers
Until the cluster centers change very little

Allocate each data point to cluster whose center is nearest.
Now ensure that every cluster has at least
one data point; one way to do this is by
supplying empty clusters with a point chosen at random from
points far from their cluster center.

Replace the cluster centers with the mean of the elements
in their clusters.

end

Algorithm 5.3: Clustering by K-Means.

Listing 5.2: R code for iris example.

setwd ( ’/us e r s/daf/Current/ cou r s e s/Probcourse/Clu s t e r i ng/RCode ’ )
#l i b r a r y ( ’ l a t t i c e ’ )
# work with i r i s da t a s e t t h i s i s famous , and inc luded in R
# there are three spe c i e s
head ( i r i s )
#
l ibrary ( ’ c l u s t e r ’ )
numir i s=i r i s [ , c (1 , 2 , 3 , 4 ) ] #the numerical va lue s
#s c a l e d i r i s<−s c a l e ( numiris ) # sca l e to un i t variance
nc lus<−2
s f i t<−kmeans ( numiris , nc lus )
c o l r<−c ( ’ red ’ , ’ green ’ , ’ b lue ’ , ’ ye l l ow ’ , ’ orange ’ )
c l u s p l o t ( numiris , s f i t $ c l u s t e r , c o l o r=TRUE, shade=TRUE,

labels=0, l ines=0)

looking for the k that gives the smallest value of the cost function is not helpful,
because that k is always the same as the number of data points (and the value is
then zero). However, it can be very helpful to plot the value as a function of k, then
look at the “knee” of the curve. Figure 5.11 shows this plot for the iris data. Notice
that k = 3 — the “true” answer — doesn’t look particularly special, but k = 2,
k = 3, or k = 4 all seem like reasonable choices. It is possible to come up with
a procedure that makes a more precise recommendation by penalizing clusterings
that use a large k, because they may represent inefficient encodings of the data.
However, this is often not worth the bother.

In some special cases (like the iris example), we might know the right answer
to check our clustering against. In such cases, one can evaluate the clustering by
looking at the number of different labels in a cluster (sometimes called the purity),
and the number of clusters. A good solution will have few clusters, all of which
have high purity.

Mostly, we don’t have a right answer to check against. An alternative strategy,
which might seem crude to you, for choosing k is extremely important in practice.
Usually, one clusters data to use the clusters in an application (one of the most
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FIGURE 5.8: On the left, a panel plot of the iris data clustered using k-means with
k = 2. By comparison with figure 5.11, notice how the versicolor and verginica
clusters appear to have been merged. On the right, this data set projected onto the
first two principal components, with one blob drawn over each cluster.

important, vector quantization, is described in section 5.3). There are usually
natural ways to evaluate this application. For example, vector quantization is often
used as an early step in texture recognition or in image matching; here one can
evaluate the error rate of the recognizer, or the accuracy of the image matcher.
One then chooses the k that gets the best evaluation score on validation data. In
this view, the issue is not how good the clustering is; it’s how well the system that
uses the clustering works.

5.2.2 Soft Assignment

One difficulty with k-means is that each point must belong to exactly one cluster.
But, given we don’t know how many clusters there are, this seems wrong. If a point
is close to more than one cluster, why should it be forced to choose? This reasoning
suggests we assign points to cluster centers with weights.

We allow each point to carry a total weight of 1. In the conventional k-means
algorithm, it must choose a single cluster, and assign its weight to that cluster
alone. In soft-assignment k-means, the point can allocate some weight to each
cluster center, as long as (a) the weights are all non-negative and (b) the weights
sum to one. Write wi,j for the weight connecting point i to cluster center j. We
interpret these weights as the degree to which the point participates in a particular
cluster. We require wi,j ≥ 0 and

∑

j wi,j = 1.
We would like wi,j to be large when xi is close to cj , and small otherwise.

Write di,j for the distance ||xi − cj || between these two. Write

si,j = e
−d2

i,j

2σ2
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FIGURE 5.9: On the left, a panel plot of the iris data clustered using k-means with
k = 3. By comparison with figure 5.11, notice how the clusters appear to follow
the species labels. On the right, this data set projected onto the first two principal
components, with one blob drawn over each cluster.

where σ > 0 is a choice of scaling parameter. This is often called the affinity
between the point i and the center j. Now a natural choice of weights is

wi,j =
si,j

∑k
l=1 si,l

.

All these weights are non-negative, they sum to one, and the weight is large if the
point is much closer to one center than to any other. The scaling parameter σ sets
the meaning of “much closer” — we measure distance in units of σ.

Once we have weights, re-estimating the cluster centers is easy. We use a
weights to compute a weighted average of the points. In particular, we re-estimate
the j’th cluster center by

∑

iwi,jxi
∑

iwi,j
.

Notice that k-means is a special case of this algorithm where σ limits to zero. In
this case, each point has a weight of one for some cluster, and zero for all others,
and the weighted mean becomes an ordinary mean. I have collected the description
into Algorithm 5.4 for convenience.

5.2.3 General Comments on K-Means

If you experiment with k-means, you will notice one irritating habit of the algorithm.
It almost always produces either some rather spread out clusters, or some single
element clusters. Most clusters are usually rather tight and blobby clusters, but
there is usually one or more bad cluster. This is fairly easily explained. Because
every data point must belong to some cluster, data points that are far from all
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FIGURE 5.10: On the left, a panel plot of the iris data clustered using k-means with
k = 5. By comparison with figure 5.11, notice how setosa seems to have been broken
in two groups, and versicolor and verginica into a total of three . On the right,
this data set projected onto the first two principal components, with one blob drawn
over each cluster.

others (a) belong to some cluster and (b) very likely “drag” the cluster center into
a poor location. This applies even if you use soft assignment, because every point
must have total weight one. If the point is far from all others, then it will be
assigned to the closest with a weight very close to one, and so may drag it into a
poor location, or it will be in a cluster on its own.

There are ways to deal with this. If k is very big, the problem is often not
significant, because then you simply have many single element clusters that you
can ignore. It isn’t always a good idea to have too large a k, because then some
larger clusters might break up. An alternative is to have a junk cluster. Any point
that is too far from the closest true cluster center is assigned to the junk cluster,
and the center of the junk cluster is not estimated. Notice that points should not
be assigned to the junk cluster permanently; they should be able to move in and
out of the junk cluster as the cluster centers move.

In some cases, we want to cluster objects that can’t be averaged. For example,
you can compute distances between two trees but you can’t meaningfully average
them. In some cases, you might have a table of distances between objects, but
not know vectors representing the objects. For example, one could collect data on
the similarities between countries (as in Section 4.6.2, particularly Figure 4.29),
then try and cluster using this data (similarities can be turned into distances by,
for example, taking the negative logarithm). A variant of k-means, known as k-
medoids, applies to this case.

In k-medoids, the cluster centers are data items rather than averages, but the
rest of the algorithm has a familiar form. We assume the number of medoids is
known, and initialize these randomly. We then iterate two procedures. In the first,
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FIGURE 5.11: On the left, the scatterplot matrix for the Iris data, for reference. On
the right, a plot of the value of the cost function for each of several different values
of k. Notice how there is a sharp drop in cost going from k = 1 to k = 2, and again
at k = 4; after that, the cost falls off slowly. This suggests using k = 2, k = 3, or
k = 4, depending on the precise application.

we allocate data points to medoids. In the second, we choose the best medoid for
each cluster by finding the medoid that minimizes the sum of distances of points in
the cluster to that medoid (blank search is fine).

5.3 DESCRIBING REPETITION WITH VECTOR QUANTIZATION

Repetition is an important feature of many interesting signals. For example, im-
ages contain textures, which are orderly patterns that look like large numbers of
small structures that are repeated. Examples include the spots of animals such as
leopards or cheetahs; the stripes of animals such as tigers or zebras; the patterns on
bark, wood, and skin. Similarly, speech signals contain phonemes — characteristic,
stylised sounds that people assemble together to produce speech (for example, the
“ka” sound followed by the “tuh” sound leading to “cat”). Another example comes
from accelerometers. If a subject wears an accelerometer while moving around, the
signals record the accelerations during their movements. So, for example, brushing
one’s teeth involves a lot of repeated twisting movements at the wrist, and walking
involves swinging the hand back and forth.

Repetition occurs in subtle forms. The essence is that a small number of
local patterns can be used to represent a large number of examples. You see this
effect in pictures of scenes. If you collect many pictures of, say, a beach scene, you
will expect most to contain some waves, some sky, and some sand. The individual
patches of wave, sky or sand can be surprisingly similar, and different images are
made by selecting some patches from a vocabulary of patches, then placing them
down to form an image. Similarly, pictures of living rooms contain chair patches,
TV patches, and carpet patches. Many different living rooms can be made from
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Choose k data points to act as cluster centers
Until the cluster centers change very little

First, we estimate the weights

For i indexing data points
For j indexing cluster centers

Compute si,j = e
−||xi−cj||

2σ2

For i indexing data points
For j indexing cluster centers

Compute wi,j = si,j/
∑

l=1 ksi,l

Now, we re-estimate the centers

For j indexing cluster centers

Compute cj =

∑

i
wi,jxi

∑

i
wi,j

end

Algorithm 5.4: Soft Clustering by K-Means.

small vocabularies of patches; but you won’t often see wave patches in living rooms,
or carpet patches in beach scenes.

An important part of representing signals that repeat is building a vocabulary
of patterns that repeat, then describing the signal in terms of those patterns. For
many problems, problems, knowing what vocabulary elements appear and how
often is much more important than knowing where they appear. For example,
if you want to tell the difference between zebra’s and leopards, you need to know
whether stripes or spots are more common, but you don’t particularly need to know
where they appear. As another example, if you want to tell the difference between
brushing teeth and walking using accelerometer signals, knowing that there are lots
of (or few) twisting movements is important, but knowing how the movements are
linked together in time may not be.

5.3.1 Vector Quantization

It is natural to try and find patterns by looking for small pieces of signal of fixed
size that appear often. In an image, a piece of signal might be a 10x10 patch; in a
sound file, which is likely represented as a vector, it might be a subvector of fixed
size. But finding patterns that appear often is hard to do, because the signal is
continuous — each pattern will be slightly different, so we cannot simply count how
many times a particular pattern occurs.

Here is a strategy. First, we take a training set of signals, and cut each signal
into vectors of fixed dimension (say d). It doesn’t seem to matter too much if these
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vectors overlap or not. We then build a set of clusters out of these vectors; this set
of clusters is often thought of as a dictionary. We can now now describe any new
vector with the cluster center closest to that vector. This means that a vector in
a continuous space is described with a number in the range [1, . . . , k] (where you
get to choose k), and two vectors that are close should be described by the same
number. This strategy is known as vector quantization.

We can now build features that represent important repeated structure in sig-
nals. We take a signal, and cut it up into vectors of length d. These might overlap,
or be disjoint; we follow whatever strategy we used in building the dictionary. We
then take each vector, and compute the number that describes it (i.e. the number of
the closest cluster center, as above). We then compute a histogram of the numbers
we obtained for all the vectors in the signal. This histogram describes the signal.

Notice several nice features to this construction. First, it can be applied to
anything that can be thought of in terms of vectors, so it will work for speech
signals, sound signals, accelerometer signals, images, and so on. You might need to
adjust some indices. For example, you cut the image into patches, then rearrange
the patch to form a vector. As another example, accelerometer signals are three
dimensional vectors that depend on time, so you cut out windows of a fixed number
of time samples (say t), then rearrange to get a 3t dimensional vector.

Another nice feature is the construction can accept signals of different length,
and produce a description of fixed length. One accelerometer signal might cover 100
time intervals; another might cover 200; but the description is always a histogram
with k buckets, so it’s always a vector of length k.

Yet another nice feature is that we don’t need to be all that careful how we
cut the signal into fixed length vectors. This is because it is hard to hide repetition.
This point is easier to make with a figure than in text, so look at figure ??.

5.3.2 Example: Groceries in Portugal

At http://archive.ics.uci.edu/ml/datasets/Wholesale+customers, you will find a dataset
giving sums of money spent annually on different commodities by customers in Por-
tugal. The commodities are divided into a set of categories (fresh; milk; grocery;
frozen; detergents and paper; and delicatessen) relevant for the study. These cus-
tomers are divided by channel (two channels) and by region (three regions). You
can think of the data as being divided into six groups (one for each channel-region
pair). There are 440 records, and so there are many customers per group. Fig-
ure 5.12 shows a panel plot of the customer data; the data has been clustered, and
I gave each of 20 clusters its own marker. Relatively little structure is apparent in
this scatter plot. You can’t, for example, see evidence of six groups that are cleanly
separated.

It’s unlikely that all the customers in a group are the same. Instead, we
expect that there might be different “types” of customer. For example, customers
who prepare food at home might spend more money on fresh or on grocery, and
those who mainly buy prepared food might spend more money on delicatessan;
similarly, coffee drinkers with cats or children might spend more on milk than the
lactose-intolerant, and so on. Because some of these effects are driven by things
like wealth and the tendency of people to like to have neighbors who are similar to

http://archive.ics.uci.edu/ml/datasets/Wholesale+customers
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FIGURE 5.12: A panel plot of the wholesale customer data of http://archive.ics.uci.
edu/ml/datasets/Wholesale+customers, which records sums of money spent annu-
ally on different commodities by customers in Portugal. This data is recorded for six
different groups (two channels each within three regions). I have plotted each group
with a different marker, but you can’t really see much structure here, for reasons
explained in the text.

them, you could expect that different groups contain different numbers of each type
of customer. There might be more deli-spenders in wealthier regions; more milk-
spenders and detergent-spenders in regions where it is customary to have many
children; and so on.

An effect like this is hard to see on a panel plot (Figure 5.12). The plot
for this dataset is hard to read, because the dimension is fairly high for a panel
plot and the data is squashed together in the bottom left corner. There is another
effect. If customers are grouped in the way I suggested above, then each group
might look the same in a panel plot. A group of some milk-spenders and more
detergent-spenders will have many data points with high milk expenditure values
(and low other values) and also many data points with high detergent expenditure
values (and low other values). In a panel plot, this will look like two blobs; but
another group with more milk-spenders and some detergent-spenders will also look
like two blobs, in about the same place. It will be hard to spot the difference. A
histogram of the types within each group will make this difference obvious.

I used k-means clustering to cluster the customer data to 20 different clusters
(Figure 5.14). I chose 20 rather arbitrarily, but with the plot of error against k
in mind. Then I described the each group of data by the histogram of customer
types that appeared in that group (Figure ??). Notice how the distinction between
the groups is now apparent — the groups do appear to contain quite different
distributions of customer type. It looks as though the channels (rows in this figure)
are more different than the regions (columns in this figure). To be more confident
in this analysis, we would need to be sure that different types of customer really

http://archive.ics.uci.edu/ml/datasets/Wholesale+customers
http://archive.ics.uci.edu/ml/datasets/Wholesale+customers
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FIGURE 5.13: On the left, the sum of squared error for clusterings of the customer
data with k-means for k running from 2 to 35. This suggests using a k somewhere in
the range 10-30; I chose 20. On the right, I have clustered this data to 20 cluster
centers with k-means. The clusters do seem to be squashed together, but the plot on
the left suggests that clusters do capture some important information. Using too few
clusters will clearly lead to problems. Notice that I did not scale the data, because
each of the measurements is in a comparable unit. For example, it wouldn’t make
sense to scale expenditures on fresh and expenditures on grocery with a different
scale.

are different. We could do this by repeating the analysis for fewer clusters, or by
looking at the similarity of customer types.

5.3.3 Efficient Clustering and Hierarchical K Means

One important difficulty occurs in applications. We might need to have an enormous
dataset (millions of image patches are a real possibility), and so a very large k. In
this case, k means clustering becomes difficult because identifying which cluster
center is closest to a particular data point scales linearly with k (and we have to
do this for every data point at every iteration). There are two useful strategies for
dealing with this problem.

The first is to notice that, if we can be reasonably confident that each cluster
contains many data points, some of the data is redundant. We could randomly
subsample the data, cluster that, then keep the cluster centers. This works, but
doesn’t scale particularly well.

A more effective strategy is to build a hierarchy of k-means clusters. We
randomly subsample the data (typically, quite aggressively), then cluster this with
a small value of k. Each data item is then allocated to the closest cluster center, and
the data in each cluster is clustered again with k-means. We now have something
that looks like a two-level tree of clusters. Of course, this process can be repeated to
produce a multi-level tree of clusters. It is easy to use this tree to vector quantize a
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FIGURE 5.14: The histogram of different types of customer, by group, for the cus-
tomer data. Notice how the distinction between the groups is now apparent — the
groups do appear to contain quite different distributions of customer type. It looks
as though the channels (rows in this figure) are more different than the regions
(columns in this figure).

query data item. We vector quantize at the first level. Doing so chooses a branch of
the tree, and we pass the data item to this branch. It is either a leaf, in which case
we report the number of the leaf, or it is a set of clusters, in which case we vector
quantize, and pass the data item down. This procedure is efficient both when one
clusters and at run time.

5.3.4 Example: Activity from Accelerometer Data

A complex example dataset appears at https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+W
This dataset consists of examples of the signal from a wrist mounted accelerometer,
produced as different subjects engaged in different activities of daily life. Activities
include: brushing teeth, climbing stairs, combing hair, descending stairs, and so on.
Each is performed by sixteen volunteers. The accelerometer samples the data at
32Hz (i.e. this data samples and reports the acceleration 32 times per second). The
accelerations are in the x, y and z-directions. Figure 5.15 shows the x-component
of various examples of toothbrushing.

There is an important problem with using data like this. Different subjects
take quite different amounts of time to perform these activities. For example, some
subjects might be more thorough tooth-brushers than other subjects. As another
example, people with longer legs walk at somewhat different frequencies than people
with shorter legs. This means that the same activity performed by different subjects
will produce data vectors that are of different lengths. It’s not a good idea to deal

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
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FIGURE 5.15: Some examples from the accelerom-
eter dataset at https://archive.ics.uci.edu/ml/datasets/
Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer. I have la-
belled each signal by the activity. These show acceleration in the X direction (Y
and Z are in the dataset, too). There are four examples for brushing teeth and
four for eat meat. You should notice that the examples don’t have the same length
in time (some are slower and some faster eaters, etc.), but that there seem to be
characteristic features that are shared within a category (brushing teeth seems to
involve faster movements than eating meet).

with this by warping time and resampling the signal. For example, doing so will
make a thorough toothbrusher look as though they are moving their hands very
fast (or a careless toothbrusher look ludicrously slow: think speeding up or slowing
down a movie). So we need a representation that can cope with signals that are a
bit longer or shorter than other signals.

Another important property of these signals is that all examples of a particular
activity should contain repeated patterns. For example, brushing teeth should show
fast accelerations up and down; walking should show a strong signal at somewhere
around 2 Hz; and so on. These two points should suggest vector quantization to
you. Representing the signal in terms of stylized, repeated structures is probably a
good idea because the signals probably contain these structures. And if we represent
the signal in terms of the relative frequency with which these structures occur, the
representation will have a fixed length, even if the signal doesn’t. To do so, we need
to consider (a) over what time scale we will see these repeated structures and (b)
how to ensure we segment the signal into pieces so that we see these structures.

Generally, repetition in activity signals is so obvious that we don’t need to be
smart about segment boundaries. I broke these signals into 32 sample segments,
one following the other. Each segment represents one second of activity. This
is long enough for the body to do something interesting, but not so long that our
representation will suffer if we put the segment boundaries in the wrong place. This
resulted in about 40, 000 segments. I then used hierarchical k-means to cluster these
segments. I used two levels, with 40 cluster centers at the first level, and 12 at the
second. Figure 5.16 shows some cluster centers at the second level.

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
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FIGURE 5.16: Some cluster centers from the accelerometer dataset. Each cluster
center represents a one-second burst of activity. There are a total of 480 in my
model, which I built using hierarchical k-means. Notice there are a couple of cen-
ters that appear to represent movement at about 5Hz; another few that represent
movement at about 2Hz; some that look like 0.5Hz movement; and some that seem
to represent much lower frequency movement. These cluster centers are samples
(rather than chosen to have this property).
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FIGURE 5.17: Histograms of cluster centers for the accelerometer dataset, for differ-
ent activities. You should notice that (a) these histograms look somewhat similar for
different actors performing the same activity and (b) these histograms look some-
what different for different activities.
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I then computed histogram representations for different example signals (Fig-
ure 5.17). You should notice that when the activity label is different, the histogram
looks different, too.

Another useful way to check this representation is to compare the average
within class chi-squared distance with the average between class chi-squared dis-
tance. I computed the histogram for each example. Then, for each pair of examples,
I computed the chi-squared distance between the pair. Finally, for each pair of ac-
tivity labels, I computed the average distance between pairs of examples where one
example has one of the activity labels and the other example has the other activity
label. In the ideal case, all the examples with the same label would be very close
to one another, and all examples with different labels would be rather different.
Table 5.1 shows what happens with the real data. You should notice that for some
pairs of activity label, the mean distance between examples is smaller than one
would hope for (perhaps some pairs of examples are quite close?). But generally,
examples of activities with different labels tend to be further apart than examples
of activities with the same label.

0.9 2.0 1.9 2.0 2.0 2.0 1.9 2.0 1.9 1.9 2.0 2.0 2.0 2.0
1.6 2.0 1.8 2.0 2.0 2.0 1.9 1.9 2.0 1.9 1.9 2.0 1.7

1.5 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 2.0
1.4 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.8

1.5 1.8 1.7 1.9 1.9 1.8 1.9 1.9 1.8 2.0
0.9 1.7 1.9 1.9 1.8 1.9 1.9 1.9 2.0

0.3 1.9 1.9 1.5 1.9 1.9 1.9 2.0
1.8 1.8 1.9 1.9 1.9 1.9 1.9

1.7 1.9 1.9 1.9 1.9 1.9
1.6 1.9 1.9 1.9 2.0

1.8 1.9 1.9 1.9
1.8 2.0 1.9

1.5 2.0
1.5

TABLE 5.1: Each column of the table represents an activity
for the activity dataset https://archive.ics.uci.edu/ml/datasets/
Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer, as does each
row. In each of the upper diagonal cells, I have placed the average chi-squared
distance between histograms of examples from that pair of classes (I dropped the
lower diagonal for clarity). Notice that in general the diagonal terms (average
within class distance) are rather smaller than the off diagonal terms. This quite
strongly suggests we can use these histograms to classify examples successfully.

Yet another way to check the representation is to try classification with nearest
neighbors, using the chi-squared distance to compute distances. I split the dataset
into 80 test pairs and 360 training pairs; using 1-nearest neighbors, I was able to
get a held-out error rate of 0.79. This suggests that the representation is fairly
good at exposing what is important.

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
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5.4 YOU SHOULD

5.4.1 remember:

New term: clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
New term: decorrelation . . . . . . . . . . . . . . . . . . . . . . . . . 104
New term: whitening . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
New term: k-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
New term: vector quantization . . . . . . . . . . . . . . . . . . . . . 118
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PROGRAMMING EXERCISES

5.1. Obtain the activities of daily life dataset from the UC Irvine machine learning
website (https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
data provided by Barbara Bruno, Fulvio Mastrogiovanni and Antonio Sgor-
bissa).
(a) Build a classifier that classifies sequences into one of the 14 activities pro-

vided. To make features, you should vector quantize, then use a histogram
of cluster centers (as described in the subsection; this gives a pretty ex-
plicit set of steps to follow). You will find it helpful to use hierarchical
k-means to vector quantize. You may use whatever multi-class classifier
you wish, though I’d start with R’s decision forest, because it’s easy to
use and effective. You should report (a) the total error rate and (b) the
class confusion matrix of your classifier.

(b) Now see if you can improve your classifier by (a) modifying the number
of cluster centers in your hierarchical k-means and (b) modifying the size
of the fixed length samples that you use.

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer


C H A P T E R 6

Clustering using Probability Models

6.1 THE MULTIVARIATE NORMAL DISTRIBUTION

All the nasty facts about high dimensional data, above, suggest that we need to use
quite simple probability models. By far the most important model is the multivari-
ate normal distribution, which is quite often known as the multivariate gaussian
distribution. There are two sets of parameters in this model, the mean µ and the
covariance Σ. For a d-dimensional model, the mean is a d-dimensional column
vector and the covariance is a d× d dimensional matrix. The covariance is a sym-
metric matrix. For our definitions to be meaningful, the covariance matrix must be
positive definite.

The form of the distribution p(x|µ,Σ) is

p(x|µ,Σ) = 1
√

(2π)ddet(Σ)
exp

(

−1

2
(x − µ)TΣ−1(x− µ)

)

,

where Σ is a positive definite matrix. Notice that if Σ is not positive definite, then
we cannot have a probability distribution, because there are some directions d such
that exp

(

− 1
2 (td− µ)TΣ−1(td− µ)

)

does not fall off to zero as t limits to infinity.
In turn, this means we can’t compute the integral, and so can’t normalize.

The following facts explain the names of the parameters:

Useful Facts: 6.1 Parameters of a Multivariate Normal Distribution

Assuming a multivariate normal distribution, we have

• E[x] = µ, meaning that the mean of the distribution is µ.

• E
[

(x − µ)(x− µ)T
]

= Σ, meaning that the entries in Σ represent
covariances.

Assume I know have a dataset of items xi, where i runs from 1 to N , and we
wish to model this data with a multivariate normal distribution. The maximum
likelihood estimate of the mean, µ̂, is

µ̂ =

∑

i xi

N

127
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(which is quite easy to show). The maximum likelihood estimate of the covariance,
Σ̂, is

Σ̂ =

∑

i(xi − µ̂)(xi − µ̂)T

N

(which is rather a nuisance to show, because you need to know how to differentiate
a determinant). You should be aware that this estimate is not guaranteed to be
positive definite, even though the covariance matrix of a gaussian must be positive
definite. We deal with this problem by checking the estimate. If its smallest
eigenvalue is too close to zero, then we add some small positive constant times the
identity to get a positive definite matrix.

6.1.1 Affine Transformations and Gaussians

Gaussians behave very well under affine transformations. In fact, we’ve already
worked out all the math. Assume I have a dataset {x} with N data points xi, each
a d-dimensional vector. The mean of the maximum likelihood gaussian model is
mean ({x}), and the covariance is Covmat ({x}). We assume that this is positive
definite, or adjust it as above.

I can now transform the data with an affine transformation, to get yi =
Axi + b. We assume that A is a square matrix with full rank, so that this trans-
formation is 1-1. The mean of the maximum likelihood gaussian model for the
transformed dataset is mean ({y}) = Amean ({x}) + b. Similarly, the covariance is
Covmat ({y}) = ACovmat ({x})AT .

A very important point follows in an obvious way. I can apply an affine
transformation to any multivariate gaussian to obtain one with (a) zero mean and
(b) independent components. In turn, this means that, in the right coordinate
system, any gaussian is a product of zero mean, unit standard deviation, one-
dimensional normal distributions. This fact is quite useful. For example, it means
that simulating multivariate normal distributions is quite straightforward — you
could simulate a standard normal distribution for each component, then apply an
affine transformation.

6.1.2 Plotting a 2D Gaussian: Covariance Ellipses

There are some useful tricks for plotting a 2D Gaussian, which are worth knowing
both because they’re useful, and they help to understand Gaussians. Assume we
are working in 2D; we have a Gaussian with mean µ (which is a 2D vector), and
covariance Σ (which is a 2x2 matrix). We could plot the collection of points x that
has some fixed value of p(x|µ,Σ). This set of points is given by:

1

2

(

(x− µ)TΣ−1(x− µ)
)

= c2

where c is some constant. I will choose c2 = 1
2 , because the choice doesn’t matter,

and this choice simplifies some algebra. You might recall that a set of points x that
satisfies a quadratic like this is a conic section. Because Σ (and so Σ−1) is positive
definite, the curve is an ellipse. There is a useful relationship between the geometry
of this ellipse and the Gaussian.
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This ellipse — like all ellipses — has a major axis and a minor axis. These
are at right angles, and meet at the center of the ellipse. We can determine the
properties of the ellipse in terms of the Gaussian quite easily. The geometry of the
ellipse isn’t affected by rotation or translation, so we will translate the ellipse so
that µ = 0 (i.e. the mean is at the origin) and rotate it so that Σ−1 is diagonal.
Writing x = [x, y] we get that the set of points on the ellipse satisfies

1

2
(
1

k21
x2 +

1

k22
y2) =

1

2

where 1
k2
1
and 1

k2
2
are the diagonal elements of Σ−1. We will assume that the ellipse

has been rotated so that k1 < k2. The points (k1, 0) and (−k1, 0) lie on the ellipse,
as do the points (0, k2) and (0,−k2). The major axis of the ellipse, in this coordinate
system, is the x-axis, and the minor axis is the y-axis. In this coordinate system,
x and y are independent. If you do a little algebra, you will see that the standard
deviation of x is abs (k1) and the standard deviation of y is abs (k2). So the ellipse
is longer in the direction of largest standard deviation and shorter in the direction
of smallest standard deviation.

Now rotating the ellipse is means we will pre- and post-multiply the covariance
matrix with some rotation matrix. Translating it will move the origin to the mean.
As a result, the ellipse has its center at the mean, its major axis is in the direction
of the eigenvector of the covariance with largest eigenvalue, and its minor axis is
in the direction of the eigenvector with smallest eigenvalue. A plot of this ellipse,
which can be coaxed out of most programming environments with relatively little
effort, gives us a great deal of information about the underlying Gaussian. These
ellipses are known as covariance ellipses.

6.2 MIXTURE MODELS AND CLUSTERING

It is natural to think of clustering in the following way. The data was created by
a collection of distinct models (one per cluster). For each data item, something
(nature?) chose which model was to produce a point, and then the model produced
a point. We see the results: crucially, we’d like to know what the models were,
but we don’t know which model produced which point. If we knew the models, it
would be easy to decide which model produced which point. Similarly, if we knew
which point went to which model, we could determine what the models were.

One encounters this situation – or problems that can be mapped to this sit-
uation – again and again. It is very deeply embedded in clustering problems. It is
pretty clear that a natural algorithm is to iterate between estimating which model
gets which point, and the model parameters. We have seen this approach before,
in the case of k-means.

A particularly interesting case occurs when the models are probabilistic. There
is a standard, and very important, algorithm for estimation here, called EM (or
expectation maximization, if you want the long version). I will develop this
algorithm in two simple cases, and we will see it in a more general form later.

Notation: This topic lends itself to a glorious festival of indices, limits of
sums and products, etc. I will do one example in quite gory detail; the other
follows the same form, and for that we’ll proceed more expeditiously. Writing the
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limits of sums or products explicitly is usually even more confusing than adopting
a compact notation. When I write

∑

i or
∏

i, I mean a sum (or product) over all
values of i. When I write

∑

i,ĵ or
∏

i,ĵ , I mean a sum (or product) over all values
of i except for the j’th item. I will write vectors, as usual, as x; the i’th such vector
in a collection is xi, and the k’th component of the i’th vector in a collection is xik.
In what follows, I will construct a vector δi corresponding to the i’th data item xi

(it will tell us what cluster that item belongs to). I will write δ to mean all the δi
(one for each data item). The j’th component of this vector is δij . When I write
∑

δu
, I mean a sum over all values that δu can take. When I write

∑

δ, I mean a
sum over all values that each δ can take. When I write

∑

δ,δ̂v
, I mean a sum over

all values that all δ can take, omitting all cases for the v’th vector δv.

6.2.1 A Finite Mixture of Blobs

A blob of data points is quite easily modelled with a single normal distribution.
Obtaining the parameters is straightforward (estimate the mean and covariance
matrix with the usual expressions). Now imagine I have t blobs of data, and I know
t. A normal distribution is likely a poor model, but I could think of the data as being
produced by t normal distributions. I will assume that each normal distribution has
a fixed, known covariance matrix Σ, but the mean of each is unknown. Because the
covariance matrix is fixed, and known, we can compute a factorization Σ = AAT .
The factors must have full rank, because the covariance matrix must be positive
definite. This means that we can apply A−1 to all the data, so that each blob
covariance matrix (and so each normal distribution) is the identity.

Write µj for the mean of the j’th normal distribution. We can model a
distribution that consists of t distinct blobs by forming a weighted sum of the
blobs, where the j’th blob gets weight πj . We ensure that

∑

j πj = 1, so that we
can think of the overall model as a probability distribution. We can then model
the data as samples from the probability distribution

p(x|µ1, . . . , µk, π1, . . . , πk) =
∑

j

πj

[

1
√

(2π)d
exp

(

−1

2
(x− µj)

T (x− µj)

)

]

.

The way to think about this probability distribution is that a point is generated by
first choosing one of the normal distributions (the j’th is chosen with probability
πj), then generating a point from that distribution. This is a pretty natural model
of clustered data. Each mean is the center of a blob. Blobs with many points in
them have a high value of πj , and blobs with few points have a low value of πj .
We must now use the data points to estimate the values of πj and µj (again, I am
assuming that the blobs – and the normal distribution modelling each – have the
identity as a covariance matrix). A distribution of this form is known as a mixture

of normal distributions.
Writing out the likelihood will reveal a problem: we have a product of many

sums. The usual trick of taking the log will not work, because then you have a sum
of logs of sums, which is hard to differentiate and hard to work with. A much more
productive approach is to think about a set of hidden variables which tell us which
blob each data item comes from. For the i’th data item, we construct a vector
δi. The j’th component of this vector is δij , where δij = 1 if xi comes from blob
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(equivalently, normal distribution) j and zero otherwise. Notice there is exactly
one 1 in δi, because each data item comes from one blob. I will write δ to mean all
the δi (one for each data item). Assume we know the values of these terms. I will
write θ = (µ1, . . . , µk, π1, . . . , πk) for the unknown parameters. Then we can write

p(xi|δi, θ) =
∏

j

[

1
√

(2π)d
exp

(

−1

2
(xi − µj)

T (xi − µj)

)

]δij

(because δij = 1 means that xi comes from blob j, so the terms in the product are
a collection of 1’s and the probability we want). We also have

p(δij = 1|θ) = πj

allowing us to write

p(δi|θ) =
∏

j

[πj ]
δij

(because this is the probability that we select blob j to produce a data item; again,
the terms in the product are a collection of 1’s and the probability we want). This
means that

p(xi, δi|θ) =
∏

j

{[

1
√

(2π)d
exp

(

−1

2
(xi − µj)

T (xi − µj)

)

]

πj

}δij

and we can write a log-likelihood. The data are the observed values of x and δ
(remember, we pretend we know these; I’ll fix this in a moment), and the parameters
are the unknown values of µ1, . . . , µk and π1, . . . , πk. We have

L(µ1, . . . , µk, π1, . . . , πk;x, δ) = L(θ;x, δ)

=
∑

ij

{[(

−1

2
(xi − µj)

T (xi − µj)

)]

+ log πj

}

δij +K

where K is a constant that absorbs the normalizing constants for the normal dis-
tributions. You should check this expression gives the right answer. I have used
the δij as a “switch” – for one term, δij = 1 and the term in curly brackets is “on”,
and for all others that term is multiplied by zero. The problem with all this is that
we don’t know δ. I will deal with this when we have another example.

6.2.2 Topics and Topic Models

A real attraction of probabilistic clustering methods is that we can cluster data
where there isn’t a clear distance function. One example occurs in document pro-
cessing. For many kinds of document, we obtain a good representation by (a)
choosing a list of different words then (b) representing the document by a vector of
word counts, where we simply ignore every word outside the list. This is a viable
representation for many applications because quite often, most of the words people
actually use come from a relatively short list (typically 100s to 1000s, depending
on the particular application). The vector has one component for each word in the



Section 6.2 Mixture Models and Clustering 132

list, and that component contains the number of times that particular word is used.
The problem is to cluster the documents.

It isn’t a particularly good idea to cluster on the distance between word vec-
tors. This is because quite small changes in word use might lead to large differences
between count vectors. For example, some authors might write “car” when others
write “auto”. In turn, two documents might have a large (resp. small) count for
“car” and a small (resp. large) count for “auto”. Just looking at the counts would
significantly overstate the difference between the vectors. However, the counts are
informative: a document that uses the word “car” often, and the word “lipstick”
seldom, is likely quite different from a document that uses “lipstick” often and “car”
seldom.

We get a useful notion of the differences between documents by pretending
that the count vector for each document comes from one of a small set of underlying
topics. Each topic generates words as independent, identically distributed samples
from a multinomial distribution, with one probability per word in the vocabulary.
You should think of each topic as being like a cluster center. If two documents come
from the same topic, they should have “similar” word distributions. Topics are one
way to deal with changes in word use. For example, one topic might have quite
high probability of generating the word “car” and a high probability of generating
the word “auto”; another might have low probability of generating those words,
but a high probability of generating “lipstick”.

We cluster documents together if they come from the same topic. Imagine
we know which document comes from which topic. Then we could estimate the
word probabilities using the documents in each topic. Now imagine we know the
word probabilities for each topic. Then we could tell (at least in principle) which
topic a document comes from by looking at the probability each topic generates
the document, and choosing the topic with the highest probability. This should
strike you as being a circular argument. It has a form you should recognize from
k-means, though the details of the distance have changed.

To construct a probabilistic model, we will assume that a document is gener-
ated in two steps. We will have t topics. First, we choose a topic, choosing the j’th
topic with probability πj . Then we will obtain a set of words by repeatedly drawing
IID samples from that topic, and record the count of each word in a count vector.
Assume we have N vectors of word counts, and write xi for the i’th such vector.
Each topic is a multinomial probability distribution. Write pj for the vector of
word probabilities for the j’th topic. We assume that words are generated inde-
pendently, conditioned on the topic. Write xik for the k’th component of xi, and
so on. Notice that xT

i 1 is the sum of entries in xi, and so the number of words in
document i. Then the probability of observing the counts in xi when the document
was generated by topic j is

p(xi|pj) =

(

(xT
i 1)!

∏

v xiv !

)

∏

u

pxiu

ju .

We can now write the probability of observing a document. Again, we write θ =
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(p1, . . . ,pt, π1, . . . , πt) for the vector of unknown parameters. We have

p(xi|θ) =
∑

l

p(xi|topic is l)p(topic is l|θ)

=
∑

l

[

(

(xT
i 1)!

∏

v xiv!

)

∏

u

pxiu

lu

]

πl.

This model is widely called a topic model; be aware that there are many kinds
of topic model, and this is a simple one. The expression should look unpromising,
in a familiar way. If you write out a likelihood, you will see a product of sums;
and if you write out a log-likelihood, you will see a sum of logs of sums. Neither
is enticing. We could use the same trick we used for a mixture of normals. Write
δij = 1 if xi comes from topic j, and δij = 0 otherwise. Then we have

p(xi|δij = 1, θ) =

[

(

(xT
i 1)!

∏

v xiv!

)

∏

u

pxiu

ju

]

(because δij = 1 means that xi comes from topic j). This means we can write

p(xi|δi, θ) =
∏

j

{[

(

(xT
i 1)!

∏

v xiv!

)

∏

u

pxiu

ju

]}δij

(because δij = 1 means that xi comes from topic j, so the terms in the product are
a collection of 1’s and the probability we want). We also have

p(δij = 1|θ) = πj

(because this is the probability that we select topic j to produce a data item),
allowing us to write

p(δi|θ) =
∏

j

[πj ]
δij

(again, the terms in the product are a collection of 1’s and the probability we want).
This means that

p(xi, δi|θ) =
∏

j

[

(

(xT
i 1)!

∏

v xiv !

)

∏

u

(

pxiu

ju

)

πj

]δij

and we can write a log-likelihood. The data are the observed values of x and δ
(remember, we pretend we know these for the moment), and the parameters are
the unknown values collected in θ. We have

L(θ;x, δ) =
∑

i







∑

j

[

∑

u

xiu log pju + log πj

]

δij







+K

where K is a term that contains all the

log

(

(xT
i 1)!

∏

v xiv!

)
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terms. This is of no interest to us, because it doesn’t depend on any of our pa-
rameters. It takes a fixed value for each dataset. You should check this expression,
noticing that, again, I have used the δij as a “switch” – for one term, δij = 1 and
the term in curly brackets is “on”, and for all others that term is multiplied by
zero. The problem with all this, as before, is that we don’t know δij . But there is
a recipe.

6.3 THE EM ALGORITHM

There is a straightforward, natural, and very powerful recipe. In essence, we will
average out the things we don’t know. But this average will depend on our estimate
of the parameters, so we will average, then re-estimate parameters, then re-average,
and so on. If you lose track of what’s going on here, think of the example of k-means
with soft weights (section 16.5; this is what the equations for the case of a mixture
of normals will boil down to). In this analogy, the δ tell us which cluster center a
data item came from. Because we don’t know the values of the δ, we assume we
have a set of cluster centers; these allow us to make a soft estimate of the δ; then
we use this estimate to re-estimate the centers; and so on.

This is an instance of a general recipe. Recall we wrote θ for a vector of
parameters. In the mixture of normals case, θ contained the means and the mixing
weights; in the topic model case, it contained the topic distributions and the mixing
weights. Assume we have an estimate of the value of this vector, say θ(n). We could
then compute p(δ|θ(n),x). In the mixture of normals case, this is a guide to which
example goes to which cluster. In the topic case, it is a guide to which example
goes to which topic.

We could use this to compute the expected value of the likelihood with respect
to δ. We compute

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

(where the sum is over all values of δ). Notice that Q(θ; θ(n)) is a function of θ
(because L was), but now does not have any unknown δ terms in it. This Q(θ; θ(n))
encodes what we know about δ.

For example, assume that p(δ|θ(n),x) has a single, narrow peak in it, at (say)
δ = δ0. In the mixture of normals case, this would mean that there is one allocation
of points to clusters that is significantly better than all others, given θ(n). For this
example, Q(θ; θ(n)) will be approximately L(θ;x, δ0).

Now assume that p(δ|θ(n),x) is about uniform. In the mixture of normals
case, this would mean that any particular allocation of points to clusters is about
as good as any other. For this example, Q(θ; θ(n)) will average L over all possible
δ values with about the same weight for each.

We obtain the next estimate of θ by computing

θ(n+1) =
argmax

θ
Q(θ; θ(n))

and iterate this procedure until it converges (which it does, though I shall not prove
that). The algorithm I have described is extremely general and powerful, and is
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known as expectation maximization or (more usually) EM. The step where
we compute Q(θ; θ(n)) is called the E step; the step where we compute the new
estimate of θ is known as the M step.

One trick to be aware of: it is quite usual to ignore additive constants in the log-
likelihood, because they have no effect. When you do the E-step, taking the expectation of
a constant gets you a constant; in the M-step, the constant can’t change the outcome. As
a result, I will tend to be careless about it. In the mixture of normals example, below, I’ve
tried to keep track of it; for the mixture of multinomials, I’ve ignored it.

6.3.1 Example: Mixture of Normals: The E-step

Now let us do the actual calculations for a mixture of normal distributions. The E
step requires a little work. We have

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

If you look at this expression, it should strike you as deeply worrying. There are
a very large number of different possible values of δ. In this case, there are N × t
cases (there is one δi for each data item, and each of these can have a one in each
of t locations). It isn’t obvious how we could compute this average.

But notice

p(δ|θ(n),x) = p(δ,x|θ(n))
p(x|θ(n))

and let us deal with numerator and denominator separately. For the numerator,
notice that the xi and the δi are independent, identically distributed samples, so
that

p(δ,x|θ(n)) =
∏

i

p(δi,xi|θ(n)).

The denominator is slightly more work. We have

p(x|θ(n)) =
∑

δ

p(δ,x|θ(n))

=
∑

δ

[

∏

i

p(δi,xi|θ(n))
]

=
∏

i





∑

δi

p(δi,xi|θ(n))



 .

You should check the last step; one natural thing to do is check with N = 2 and
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t = 2. This means that we can write

p(δ|θ(n),x) =
p(δ,x|θ(n))
p(x|θ(n))

=

∏

i p(δi,xi|θ(n))
∏

i

[

∑

δi p(δi,xi|θ(n))
]

=
∏

i

p(δi,xi|θ(n))
∑

δi p(δi,xi|θ(n))

=
∏

i

p(δi|xi, θ
(n))

Now we need to look at the log-likelihood. We have

L(θ;x, δ) =
∑

ij

{[(

−1

2
(xi − µj)

T (xi − µj)

)]

+ log πj

}

δij +K.

The K term is of no interest – it will result in a constant – but we will try to
keep track of it. To simplify the equations we need to write, I will construct a t
dimensional vector ci for the i’th data point. The j’th component of this vector
will be

{[(

−1

2
(xi − µj)

T (xi − µj)

)]

+ log πj

}

so we can write
L(θ;x, δ) =

∑

i

cTi δi +K.

Now all this means that

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

δ

(

∑

i

cTi δi +K

)

p(δ|θ(n),x)

=
∑

δ

(

∑

i

cTi δi +K

)

∏

u

p(δu|θ(n),x)

=
∑

δ

(

cT1 δ1
∏

u

p(δu|θ(n),x) + . . . cTN δN
∏

u

p(δu|θ(n),x)
)

.

We can simplify further. We have that
∑

δi p(δi|xi, θ
(n)) = 1, because this is a

probability distribution. Notice that, for any index v,

∑

δ

(

cTv δv
∏

u

p(δu|θ(n),x)
)

=
∑

δv

(

cTv δvp(δv|θ(n),x)
)







∑

δ, δ̂v

∏

u,v̂

p(δu|θ(n),x)







=
∑

δv

(

cTv δvp(δv|θ(n),x)
)
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So we can write

Q(θ; θ(n)) = L(θ;x, δ)p(δ|θ(n),x)

=
∑

i





∑

δi

cTi δip(δi|θ(n),x)



+K

=
∑

i









∑

j

{[(

−1

2
(xi − µj)

T (xi − µj)

)

+ log πj

]

wij

}







+K

where

wij = 1p(δij = 1|θ(n),x) + 0p(δij = 0|θ(n),x)
= p(δij = 1|θ(n),x).

Now

p(δij = 1|θ(n),x) =
p(x, δij = 1|θ(n))

p(x|θ(n))

=
p(x, δij = 1|θ(n))
∑

l p(x, δil = 1|θ(n))

=
p(xi, δij = 1|θ(n))∏u,̂i p(xu, δu|θ)

(
∑

l p(x, δil = 1|θ(n))
)
∏

u,̂i p(xu, δu|θ)

=
p(xi, δij = 1|θ(n))
∑

l p(x, δil = 1|θ(n))

If the last couple of steps puzzle you, remember we obtained p(x, δ|θ) =∏i p(xi, δi|θ).
Also, look closely at the denominator; it expresses the fact that the data must have
come from somewhere. So the main question is to obtain p(xi, δij = 1|θ(n)). But

p(xi, δij = 1|θ(n)) = p(xi|δij = 1, θ(n))p(δij = 1|θ(n))

= =

[

1
√

(2π)d
exp

(

−1

2
(xi − µj)

T (xi − µj)

)

]

πj .

Substituting yields

p(δij = 1|θ(n),x) =
[

exp
(

− 1
2 (xi − µj)

T (xi − µj)
)]

πj
∑

k

[

exp
(

− 1
2 (xi − µk)T (xi − µk)

)]

πk

= wij .

6.3.2 Example: Mixture of Normals: The M-step

The M-step is more straightforward. Recall

Q(θ; θ(n)) =





∑

ij

{[(

−1

2
(xi − µj)

T (xi − µj)

)]

+ log πj

}

wij +K
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and we have to maximise this with respect to µ and π, and the terms wij are known.
This maximization is easy. We compute

µ
(n+1)
j =

∑

i xiwij
∑

i wij

and

π
(n+1)
j =

∑

iwij

N
.

You should check these expressions by differentiating and setting to zero. When you
do so, remember that, because π is a probability distribution,

∑

j πj = 1 (otherwise
you’ll get the wrong answer).

6.3.3 Example: Topic Model: The E-Step

We need to work out two steps. The E step requires a little calculation. We have

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

δ





∑

ij

{[

∑

u

xiu log pju

]

+ log πj

}

δij



 p(δ|θ(n),x)

=





∑

ij

{[

∑

k

xi,k log pj,k

]

+ log πj

}

wij





Here the last two steps follow from the same considerations as in the mixture of
normals. The xi and δi are IID samples, and so the expectation simplifies as in
that case. If you’re uncertain, rewrite the steps of section 6.3.1. The form of this Q
function is the same as that (a sum of cTi δi terms, but using a different expression
for ci). In this case, as above,

wij = 1p(δij = 1|θ(n),x) + 0p(δij = 0|θ(n),x)
= p(δij = 1|θ(n),x).

Again, we have

p(δij = 1|θ(n),x) =
p(xi, δij = 1|θ(n))

p(xi|θ(n))

=
p(xi, δij = 1|θ(n))
∑

l p(xi, δil = 1|θ(n))

and so the main question is to obtain p(xi, δij = 1|θ(n)). But

p(xi, δij = 1|θ(n)) = p(xi|δij = 1, θ(n))p(δij = 1|θ(n))

= =

[

∏

k

pxk

j,k

]

πj .
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Substituting yields

p(δij = 1|θ(n),x) =

[

∏

k p
xk

j,k

]

πj

∑

l

[

∏

k p
xk

l,k

]

πl

6.3.4 Example: Topic Model: The M-step

The M-step is more straightforward. Recall

Q(θ; θ(n)) =





∑

ij

{[

∑

k

xi,k log pj,k

]

+ log πj

}

wij





and we have to maximise this with respect to µ and π, and the terms wij are known.
This maximization is easy, but remember that the probabilities sum to one, so you
need either to use a Lagrange multiplier or to set one probability to (1−all others).
You should get

p
(n+1)
j =

∑

i xiwij
∑

i x
T
i 1wij

and

π
(n+1)
j =

∑

iwij

N
.

You should check these expressions by differentiating and setting to zero.

6.3.5 EM in Practice

The algorithm we have seen is amazingly powerful; I will use it again, ideally with
less notation. One could reasonably ask whether it produces a “good” answer.
Slightly surprisingly, the answer is yes. The algorithm produces a local minimum
of p(x|θ), the likelihood of the data conditioned on parameters. This is rather
surprising because we engaged in all the activity with δ to avoid directly dealing
with this likelihood (which in our cases was an unattractive product of sums). I
did not prove this, but it’s true anyway.

There are some practical issues. First, how many cluster centers should there
be? Mostly, the answer is a practical one. We are usually clustering data for a
reason (vector quantization is a really good reason), and then we search for a k
that yields the best results.

Second, how should one start the iteration? This depends on the problem
you want to solve, but for the two cases I have described, a rough clustering using
k-means usually provides an excellent start. In the mixture of normals problem,
you can take the cluster centers as initial values for the means, and the fraction of
points in each cluster as initial values for the mixture weights. In the topic model
problem, you can cluster the count vectors with k-means, use the overall counts
within a cluster to get an initial estimate of the multinomial model probabilities,
and use the fraction of documents within a cluster to get mixture weights. You need
to be careful here, though. You really don’t want to initialize a topic probability
with a zero value for any word (otherwise no document containing that word can
ever go into the cluster, which is a bit extreme). For our purposes, it will be enough
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to allocate a small value to each zero count, then adjust all the word probabilies to
be sure they sum to one. More complicated approaches are possible.

Third, we need to avoid numerical problems in the implementation. Notice
that you will be evaluating terms that look like

πke
−(xi−µk)

T (xi−µk)/2

∑

u πue−(xi−µu)T (xi−µu)/2
.

Imagine you have a point that is far from all cluster means. If you just blithely
exponentiate the negative distances, you could find yourself dividing zero by zero,
or a tiny number by a tiny number. This can lead to trouble. There’s an easy
alternative. Find the center the point is closest to. Now subtract the square of this
distance (d2min for concreteness) from all the distances. Then evaluate

πke
−
[

(xi−µk)
T (xi−µk)−d2

min

]

/2

∑

u πue
−
[

(xi−µu)T (xi−µu)−d2

min

]

/2

which is a better way of estimating the same number (notice the e
−d2

min
/2

terms
cancel top and bottom).

The last problem is more substantial. EM will get me to a local minimum of
p(x|θ), but there might be more than one local minimum. For clustering problems,
the usual case is there are lots of them. One doesn’t really expect a clustering
problem to have a single best solution, as opposed to a lot of quite good solutions.
Points that are far from all clusters are a particular source of local minima; placing
these points in different clusters yields somewhat different sets of cluster centers,
each about as good as the other. It’s not usual to worry much about this point. A
natural strategy is to start the method in a variety of different places (use k means
with different start points), and choose the one that has the best value of Q when
it has converged.

However, EM isn’t magic. There are problems where computing the expecta-
tion is hard, typically because you have to sum over a large number of cases which
don’t have the nice independence structure that helped in the examples I showed.
There are strategies for dealing with this problem — essentially, you can get away
with an approximate expectation – but they’re beyond our reach at present.
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PROGRAMMING EXERCISES

6.1. Obtain the activities of daily life dataset from the UC Irvine machine learning
website (https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
data provided by Barbara Bruno, Fulvio Mastrogiovanni and Antonio Sgor-
bissa).
(a) Build a classifier that classifies sequences into one of the 14 activities pro-

vided. To make features, you should vector quantize, then use a histogram
of cluster centers (as described in the subsection; this gives a pretty ex-
plicit set of steps to follow). You will find it helpful to use hierarchical
k-means to vector quantize. You may use whatever multi-class classifier
you wish, though I’d start with R’s decision forest, because it’s easy to
use and effective. You should report (a) the total error rate and (b) the
class confusion matrix of your classifier.

(b) Now see if you can improve your classifier by (a) modifying the number
of cluster centers in your hierarchical k-means and (b) modifying the size
of the fixed length samples that you use.

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
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Regression

Classification tries to predict a class from a data item. Regression tries to
predict a value. For example, we know the zip code of a house, the square footage
of its lot, the number of rooms and the square footage of the house, and we wish to
predict its likely sale price. As another example, we know the cost and condition of
a trading card for sale, and we wish to predict a likely profit in buying it and then
reselling it. As yet another example, we have a picture with some missing pixels
– perhaps there was text covering them, and we want to replace it – and we want
to fill in the missing values. As a final example, you can think of classification as
a special case of regression, where we want to predict either +1 or −1; this isn’t
usually the best way to proceed, however. Predicting values is very useful, and so
there are many examples like this.

7.1 OVERVIEW

Some formalities are helpful here. In the simplest case, we have a dataset consisting
of a set of N pairs (xi, yi). We think of yi as the value of some function evaluated
at xi, but with some random component. This means there might be two data
items where the xi are the same, and the yi are different. We refer to the xi as
explanatory variables and the yi is a dependent variable. We regularly say
that we are regressing the dependent variable against the explanatory variables.
We want to use the examples we have — the training examples — to build a
model of the dependence between y and x. This model will be used to predict
values of y for new values of x, which are usually called test examples. By far
the most important model has the form y = xTβ + ξ, where β are some set of
parameters we need to choose and ξ are random effects. Now imagine that we have
one independent variable. An appropriate choice of x (details below) will mean
that the predictions made by this model will lie on a straight line. Figure 7.1 shows
two regressions. The data are plotted with a scatter plot, and the line gives the
prediction of the model for each value on the x axis.

We do not guarantee that different values of x produce different values of y.
Data just isn’t like this (see the crickets example Figure 7.1). Traditionally, regres-
sion produces some representation of a probability distribution for y conditioned on
x, so that we would get (say) some representation of a distribution on the houses
likely sale value. The best prediction would then be the expected value of that
distribution.

It should be clear that none of this will work if there is not some relationship
between the training examples and the test examples. If I collect training data
on the height and weight of children, I’m unlikely to get good predictions of the
weight of adults from their height. We can be more precise with a probabilistic
framework. We think of xi as IID samples from some (usually unknown) probability
distribution P (X). Then the test examples should also be IID samples from P (X),

143
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FIGURE 7.1: On the left, a regression of weight against length for perch from a
Finnish lake (you can find this dataset, and the back story at http://www.amstat.
org/publications/ jse/ jse data archive.htm; look for “fishcatch” on that page). No-
tice that the linear regression fits the data fairly well, meaning that you should be
able to predict the weight of a perch from its length fairly well. On the right, a
regression of air temperature against chirp frequency for crickets. The data is fairly
close to the line, meaning that you should be able to tell the temperature from the
pitch of cricket’s chirp fairly well. This data is from http://mste.illinois.edu/patel/
amar430/keyprob1.html. The R2 you see on each figure is a measure of the goodness
of fit of the regression (section 7.2.4).

or, at least, rather like them – you usually can’t check this point with any certainty.
A probabilistic formalism can help be precise about the yi, too. Assume another
random variable Y has joint distribution with X given by P (Y,X). We think of
each yi as a sample from P (Y | {X = xi}). Then our modelling problem would be:
given the training data, build a model that takes a test example x and yields a
model of P (Y | {X = xi}).

Thinking about the problem this way should make it clear that we’re not
relying on any exact, physical, or causal relationship between Y and X . It’s enough
that their joint probability makes useful predictions possible, something we will test
by experiment. This means that you can build regressions that work in somewhat
surprising circumstances. For example, regressing childrens’ reading ability against
their foot size can be quite successful. This isn’t because having big feet somehow
helps you read; it’s because on the whole, older children read better, and also have
bigger feet.

To do anything useful with this formalism requires some aggressive simplifying
assumptions. There are very few circumstances that require a comprehensive rep-
resentation of P (Y | {X = xi}). Usually, we are interested in E[Y | {X = xi}] (the
mean of P (Y | {X = xi})) and in var ({P (Y | {X = xi})}). To recover this represen-
tation, we assume that, for any pair of examples (x, y), the value of y is obtained

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://mste.illinois.edu/patel/amar430/keyprob1.html
http://mste.illinois.edu/patel/amar430/keyprob1.html
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FIGURE 7.2: Regressions do not necessarily yield good predictions or good model fits.
On the left, a regression of the lifespan of female fruitflies against the length of
their torso as adults (apparently, this doesn’t change as a fruitfly ages; you can
find this dataset, and the back story at http://www.amstat.org/publications/jse/
jse data archive.htm; look for “fruitfly” on that page). The figure suggests you can
make some prediction of how long your fruitfly will last by measuring its torso, but
not a particularly accurate one. On the right, a regression of heart rate against
body temperature for adults. You can find the data at http://www.amstat.org/
publications/jse/ jse data archive.htm as well; look for “temperature” on that page.
Notice that predicting heart rate from body temperature isn’t going to work that well,
either.

by applying some (unknown) function f to x, then adding some random variable
ξ with zero mean. We can write y(x) = f(x) + ξ, though it’s worth remembering
that there can be many different values of y associated with a single x. Now we
must make some estimate of f — which yields E[Y | {X = xi}] — and estimate the
variance of ξ. The variance of ξ might be constant, or might vary with x.

7.1.1 Regression to Spot Trends

Regression isn’t only used to predict values. Another reason to build a regression
model is to compare trends in data. Doing so can make it clear what is really hap-
pening. Here is an example from Efron (“Computer-Intensive methods in statistical
regression”, B. Efron, SIAM Review, 1988). The table in the appendix shows some
data from medical devices, which sit in the body and release a hormone. The data
shows the amount of hormone currently in a device after it has spent some time in
service, and the time the device spent in service. The data describes devices from
three production lots (A, B, and C). Each device, from each lot, is supposed to have
the same behavior. The important question is: Are the lots the same? The amount
of hormone changes over time, so we can’t just compare the amounts currently in
each device. Instead, we need to determine the relationship between time in service

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
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and hormone, and see if this relationship is different between batches. We can do
so by regressing hormone against time.
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FIGURE 7.3: On the left, a scatter plot of hormone against time for devices from
tables 7.1 and 7.1. Notice that there is a pretty clear relationship between time and
amount of hormone (the longer the device has been in service the less hormone there
is). The issue now is to understand that relationship so that we can tell whether lots
A, B and C are the same or different. The best fit line to all the data is shown as
well, fitted using the methods of section 7.2. On the right, a scatter plot of residual
— the distance between each data point and the best fit line — against time for the
devices from tables 7.1 and 7.1. Now you should notice a clear difference; some
devices from lots B and C have positive and some negative residuals, but all lot
A devices have negative residuals. This means that, when we account for loss of
hormone over time, lot A devices still have less hormone in them. This is pretty
good evidence that there is a problem with this lot.

Figure 7.3 shows how a regression can help. In this case, we have modelled
the amount of hormone in the device as

a× (time in service) + b

for a, b chosen to get the best fit (much more on this point later!). This means
we can plot each data point on a scatter plot, together with the best fitting line.
This plot allows us to ask whether any particular batch behaves differently from
the overall model in any interesting way.

However, it is hard to evaluate the distances between data points and the best
fitting line by eye. A sensible alternative is to subtract the amount of hormone
predicted by the model from the amount that was measured. Doing so yields a
residual — the difference between a measurement and a prediction. We can then
plot those residuals (Figure 7.3). In this case, the plot suggests that lot A is special
— all devices from this lot contain less hormone than our model predicts.
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Definition: 7.1 Regression

Regression accepts a feature vector and produces a prediction, which
is usually a number, but can sometimes have other forms. You can
use these predictions as predictions, or to study trends in data. It is
possible, but not usually particularly helpful, to see classification as a
form of regression.

7.2 LINEAR REGRESSION AND LEAST SQUARES

Assume we have a dataset consisting of a set of N pairs (xi, yi). We think of yi as
the value of some function evaluated at xi, with some random component added.
This means there might be two data items where the xi are the same, and the yi are
different. We refer to the xi as explanatory variables and the yi is a dependent

variable. We want to use the examples we have — the training examples —
to build a model of the dependence between y and x. This model will be used to
predict values of y for new values of x, which are usually called test examples. It
can also be used to understand the relationships between the x. The model needs
to have some probabilistic component; we do not expect that y is a function of x,
and there is likely some error in evaluating y anyhow.

7.2.1 Linear Regression

We cannot expect that our model makes perfect predictions. Furthermore, y may
not be a function of x — it is quite possible that the same value of x could lead
to different y’s. One way that this could occur is that y is a measurement (and so
subject to some measurement noise). Another is that there is some randomness in
y. For example, we expect that two houses with the same set of features (the x)
might still sell for different prices (the y’s).

A good, simple model is to assume that the dependent variable (i.e. y) is
obtained by evaluating a linear function of the explanatory variables (i.e. x), then
adding a zero-mean normal random variable. We can write this model as

y = xTβ + ξ

where ξ represents random (or at least, unmodelled) effects. We will always assume
that ξ has zero mean. In this expression, β is a vector of weights, which we must
estimate. When we use this model to predict a value of y for a particular set of
explanatory variables x∗, we cannot predict the value that ξ will take. Our best
available prediction is the mean value (which is zero). Notice that if x = 0, the
model predicts y = 0. This may seem like a problem to you — you might be
concerned that we can fit only lines through the origin — but remember that x

contains explanatory variables, and we can choose what appears in x. The two
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examples show how a sensible choice of x allows us to fit a line with an arbitrary
y-intercept.

Definition: 7.2 Linear regression

A linear regression takes the feature vector x and predicts xTβ, for
some vector of coefficients β. The coefficients are adjusted, using data,
to produce the best predictions.

Example: 7.1 A linear model fitted to a single explanatory variable

Assume we fit a linear model to a single explanatory variable. Then
the model has the form y = xβ + ξ, where ξ is a zero mean random
variable. For any value x∗ of the explanatory variable, our best estimate
of y is βx∗. In particular, if x∗ = 0, the model predicts y = 0, which
is unfortunate. We can draw the model by drawing a line through the
origin with slope β in the x, y plane. The y-intercept of this line must
be zero.

Example: 7.2 A linear model with a non-zero y-intercept

Assume we have a single explanatory variable, which we write u. We
can then create a vector x = [u, 1]

T
from the explanatory variable. We

now fit a linear model to this vector. Then the model has the form
y = xTβ + ξ, where ξ is a zero mean random variable. For any value
x∗ = [u∗, 1]T of the explanatory variable, our best estimate of y is
(x∗)Tβ, which can be written as y = β1u

∗ + β2. If x∗ = 0, the model
predicts y = β2. We can draw the model by drawing a line through the
origin with slope β1 and y-intercept β2 in the x, y plane.

7.2.2 Choosing β

We must determine β. We can proceed in two ways. I show both because different
people find different lines of reasoning more compelling. Each will get us to the
same solution. One is probabilistic, the other isn’t. Generally, I’ll proceed as if
they’re interchangeable, although at least in principle they’re different.
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Probabilistic approach: we could assume that ξ is a zero mean normal
random variable with unknown variance. Then P (y|x, β) is normal, with mean
xTβ, and so we can write out the log-likelihood of the data. Write σ2 for the
variance of ξ, which we don’t know, but will not worry about right now. We have
that

logL(β) = −
∑

i

logP (yi|xi, β)

=
1

2σ2

∑

i

(yi − xT
i β)

2 + term not depending on β

Maximizing the log-likelihood of the data is equivalent to minimizing the negative
log-likelihood of the data. Furthermore, the term 1

2σ2 does not affect the location
of the minimum, so we must have that β minimizes

∑

i(yi − xT
i β)

2, or anything
proportional to it. It is helpful to minimize an expression that is an average of
squared errors, because (hopefully) this doesn’t grow much when we add data. We
therefore minimize

(

1

N

)

(

∑

i

(yi − xT
i β)

2

)

.

Direct approach: notice that, if we have an estimate of β, we have an
estimate of the values of the unmodelled effects ξi for each example. We just take
ξi = yi − xT

i β. It is quite natural to make the unmodelled effects “small”. A good
measure of size is the mean of the squared values, which means we want to minimize

(

1

N

)

(

∑

i

(yi − xT
i β)

2

)

.

We can write all this more conveniently using vectors and matrices. Write y

for the vector








y1
y2
. . .
yn









and X for the matrix




xT
1

xT
2

. . .xT
n



 .

Then we want to minimize
(

1

N

)

(

y −Xβ)T (y −Xβ
)

which means that we must have

X TXβ −X Ty = 0.

For reasonable choices of features, we could expect that X TX — which should
strike you as being a lot like a covariance matrix — has full rank. If it does, which
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Listing 7.1: R code used for the linear regression example of worked example 7.1

e fd<−read . table ( ’ e f r o n t ab l e . txt ’ , header=TRUE)
# the t a b l e has the form
#N1 Ah Bh Ch N2 At Bt Ct
# now we need to cons t ruc t a new da t a s e t
hor<−s tack ( efd , s e l e c t =2:4)
tim<−s tack ( efd , s e l e c t =6:8)
f oo<−data . frame ( time=tim [ , c ( ” va lues ” ) ] ,

hormone=hor [ , c ( ” va lues ” ) ] )
f oo . lm<−lm( hormone˜time , data=foo )
plot ( f oo )
abline ( f oo . lm)

is the usual case, this equation is easy to solve. If it does not, there is more to do,
which we will do in section 7.4.2.

Remember this: The vector of coefficients β for a linear regression is
usually estimated using a least-squares procedure.

Worked example 7.1 Simple Linear Regression with R

Regress the hormone data against time for all the devices in the Efron example.

Solution: This example is mainly used to demonstrate how to regress in R.
There is sample code in listing 7.1. The summary in the listing produces a
great deal of information (try it). Most of it won’t mean anything to you yet.
You can get a figure by doing plot(foo.lm), but these figures will not mean
anything yet, either. In the code, I’ve shown how to plot the data and a line
on top of it.

7.2.3 Residuals

Assume we have produced a regression by solving

X TX β̂ −X Ty = 0

for the value of β̂. I write β̂ because this is an estimate; we likely don’t have the
true value of the β that generated the data (the model might be wrong; etc.). We

cannot expect that X β̂ is the same as y. Instead, there is likely to be some error.
The residual is the vector

e = y −X β̂
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which gives the difference between the true value and the model’s prediction at each
point. Each component of the residual is an estimate of the unmodelled effects for
that data point. The mean square error is

m =
eTe

N

and this gives the average of the squared error of prediction on the training exam-
ples.

Notice that the mean squared error is not a great measure of how good the
regression is. This is because the value depends on the units in which the dependent
variable is measured. So, for example, if you measure y in meters you will get a
different mean squared error than if you measure y in kilometers.

7.2.4 R-squared

There is an important quantitative measure of how good a regression is which
doesn’t depend on units. Unless the dependent variable is a constant (which would
make prediction easy), it has some variance. If our model is of any use, it should
explain some aspects of the value of the dependent variable. This means that
the variance of the residual should be smaller than the variance of the dependent
variable. If the model made perfect predictions, then the variance of the residual
should be zero.

We can formalize all this in a relatively straightforward way. We will ensure
that X always has a column of ones in it, so that the regression can have a non-zero
y-intercept. We now fit a model

y = Xβ + e

(where e is the vector of residual values) by choosing β such that eTe is minimized.
Then we get some useful technical results.
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Useful Facts: 7.1 Regression

We write y = X β̂+ e, where e is the residual. Assume X has a column
of ones, and β̂ is chosen to minimize eTe. Then we have

1. eTX = 0, i.e. that e is orthogonal to any column of X . This
is because, if e is not orthogonal to some column of e, we can
increase or decrease the β̂ term corresponding to that column to
make the error smaller. Another way to see this is to notice that
β̂ is chosen to minimize 1

N eTe, which is 1
N (y − X β̂)T (y − X β̂).

Now because this is a minimum, the gradient with respect to β̂ is
zero, so (y −X β̂)T (−X ) = −eTX = 0.

2. eT1 = 0 (recall that X has a column of all ones, and apply the
previous result).

3. 1T (y −X β̂) = 0 (same as previous result).

4. eTX β̂ = 0 (first result means that this is true).

Now y is a one dimensional dataset arranged into a vector, so we can compute
mean ({y}) and var[y]. Similarly, X β̂ is a one dimensional dataset arranged into a

vector (its elements are xT
i β̂), as is e, so we know the meaning of mean and variance

for each. We have a particularly important result:

var[y] = var
[

X β̂
]

+ var[e].

This is quite easy to show, with a little more notation. Write y = (1/N)(1Ty)1 for

the vector whose entries are all mean ({y}); similarly for e and for X β̂. We have

var[y] = (1/N)(y − y)T (y − y)

and so on for var[ei], etc. Notice from the facts that y = X β̂. Now

var[y] = (1/N)
([

X β̂ −X β̂
]

+ [e− e]
)T ([

X β̂ −X β̂
]

+ [e− e]
)

= (1/N)

(

[

X β̂ −X β̂
]T [

X β̂ −X β̂
]

+ 2 [e− e]
T
[

X β̂ −X β̂
]

+ [e− e]
T
[e− e]

)

= (1/N)

(

[

X β̂ −X β̂
]T [

X β̂ −X β̂
]

+ [e− e]
T
[e− e]

)

because e = 0 and eTX β̂ = 0 and eT1 = 0

= var
[

X β̂
]

+ var[e].

This is extremely important, because us allows us to think about a regression as
explaining variance in y. As we are better at explaining y, var[e] goes down. In
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turn, a natural measure of the goodness of a regression is what percentage of the
variance of y it explains. This is known as R2 (the r-squared measure). We have

R2 =
var
[

xT
i β̂
]

var[yi]

which gives some sense of how well the regression explains the training data. Notice
that the value of R2 is not affected by the units of y (exercises)

Good predictions result in high values of R2, and a perfect model will have
R2 = 1 (which doesn’t usually happen). For example, the regression of figure 7.3
has an R2 value of 0.87. Figures 7.1 and 7.2 show the R2 values for the regressions
plotted there; notice how better models yield larger values of R2. Notice that if
you look at the summary that R provides for a linear regression, it will offer you
two estimates of the value for R2. These estimates are obtained in ways that try to
account for (a) the amount of data in the regression, and (b) the number of variables
in the regression. For our purposes, the differences between these numbers and the
R2 I defined are not significant. For the figures, I computed R2 as I described in the
text above, but if you substitute one of R’s numbers nothing terrible will happen.

Remember this: The quality of predictions made by a regression can be
evaluated by looking at the fraction of the variance in the dependent variable
that is explained by the regression. This number is called R2, and lies be-
tween zero and one; regressions with larger values make better predictions.

7.2.5 Transforming Variables

Sometimes the data isn’t in a form that leads to a good linear regression. In this
case, transforming explanatory variables, the dependent variable, or both can lead
to big improvements. Figure 7.4 shows one example, based on the idea of word
frequencies. Some words are used very often in text; most are used seldom. The
dataset for this figure consists of counts of the number of time a word occurred
for the 100 most common words in Shakespeare’s printed works. It was originally
collected from a concordance, and has been used to attack a variety of interesting
questions, including an attempt to assess how many words Shakespeare knew. This
is hard, because he likely knew many words that he didn’t use in his works, so
one can’t just count. If you look at the plot of Figure 7.4, you can see that a
linear regression of count (the number of times a word is used) against rank (how
common a word is, 1-100) is not really useful. The most common words are used
very often, and the number of times a word is used falls off very sharply as one
looks at less common words. You can see this effect in the scatter plot of residual
against dependent variable in Figure 7.4 — the residual depends rather strongly
on the dependent variable. This is an extreme example that illustrates how poor
linear regressions can be.
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FIGURE 7.4: On the left, word count plotted against rank for the 100 most common
words in Shakespeare, using a dataset that comes with R (called “bard”, and quite
likely originating in an unpublished report by J. Gani and I. Saunders). I show a
regression line too. This is a poor fit by eye, and the R2 is poor, too (R2 = 0.1). On
the right, log word count plotted against log rank for the 100 most common words
in Shakespeare, using a dataset that comes with R (called “bard”, and quite likely
originating in an unpublished report by J. Gani and I. Saunders). The regression
line is very close to the data.

However, if we regress log-count against log-rank, we get a very good fit
indeed. This suggests that Shakespeare’s word usage (at least for the 100 most
common words) is consistent with Zipf’s law. This gives the relation between
frequency f and rank r for a word as

f ∝ 1

r

s

where s is a constant characterizing the distribution. Our linear regression suggests
that s is approximately 1.67 for this data.

In some cases, the natural logic of the problem will suggest variable transfor-
mations that improve regression performance. For example, one could argue that
humans have approximately the same density, and so that weight should scale as
the cube of height; in turn, this suggests that one regress weight against the cube
root of height. Generally, shorter people tend not to be scaled versions of taller
people, so the cube root might be too aggressive, and so one thinks of the square
root.
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Remember this: The performance of a regression can be improved by
transforming variables. Transformations can follow from looking at plots,
or thinking about the logic of the problem
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FIGURE 7.5: The Box-Cox transformation suggests a value of λ = 0.303 for the
regression of weight against height for the perch data of Figure 7.1. You can
find this dataset, and the back story at http://www.amstat.org/publications/jse/
jse data archive.htm; look for “fishcatch” on that page). On the left, a plot of the
resulting curve overlaid on the data. For the cricket temperature data of that fig-
ure (from http://mste.illinois.edu/patel/amar430/keyprob1.html), the transforma-
tion suggests a value of λ = 4.75. On the right, a plot of the resulting curve
overlaid on the data.

The Box-Cox transformation is a method that can search for a transfor-
mation of the dependent variable that improves the regression. The method uses a
one-parameter family of transformations, with parameter λ, then searches for the
best value of this parameter using maximum likelihood. A clever choice of transfor-
mation means that this search is relatively straightforward. We define the Box-Cox
transformation of the dependent variable to be

y
(bc)
i =

{

yλ
i −1
λ if λ 6= 0

log yi if λ = 0
.

It turns out to be straightforward to estimate a good value of λ using maximum
likelihood. One searches for a value of λ that makes residuals look most like a
normal distribution. Statistical software will do it for you; the exercises sketch
out the method. This transformation can produce significant improvements in a

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://mste.illinois.edu/patel/amar430/keyprob1.html
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regression. For example, the transformation suggests a value of λ = 0.303 for
the fish example of Figure 7.1. It isn’t natural to plot weight0.303 against height,
because we don’t really want to predict weight0.303. Instead, we plot the predictions
of weight that come from this model, which will lie on a curve with the form
(ax+ b)

1
0.303 , rather than on a straight line. Similarly, the transformation suggests

a value of λ = 0.475 for the cricket data. Figure 7.5 shows the result of these
transforms.

7.2.6 Can you Trust Your Regression?

Linear regression is useful, but it isn’t magic. Some regressions make poor predic-
tions (recall the regressions of figure 7.2). As another example, regressing the first
digit of your telephone number against the length of your foot won’t work.

We have some straightforward tests to tell whether a regression is working.
You can look at a plot for a dataset with one explanatory variable and one
dependent variable. You plot the data on a scatter plot, then plot the model as a
line on that scatterplot. Just looking at the picture can be informative (compare
Figure 7.1 and Figure 7.2).

You can check if the regression predicts a constant. This is usually a bad
sign. You can check this by looking at the predictions for each of the training data
items. If the variance of these predictions is small compared to the variance of
the independent variable, the regression isn’t working well. If you have only one
explanatory variable, then you can plot the regression line. If the line is horizontal,
or close, then the value of the explanatory variable makes very little contribution
to the prediction. This suggests that there is no particular relationship between
the explanatory variable and the independent variable.

You can also check, by eye, if the residual isn’t random. If y − xTβ is
a zero mean normal random variable, then the value of the residual vector should
not depend on the corresponding y-value. Similarly, if y − xTβ is just a zero
mean collection of unmodelled effects, we want the value of the residual vector to
not depend on the corresponding y-value either. If it does, that means there is
some phenomenon we are not modelling. Looking at a scatter plot of e against
y will often reveal trouble in a regression (Figure 7.7). In the case of Figure 7.7,
the trouble is caused by a few data points that are very different from the others
severely affecting the regression. We will discuss how to identify and deal with
such points in Section ??. Once they have been removed, the regression improves
markedly (Figure 7.8).

Remember this: Linear regressions can make bad predictions. You can
check for trouble by: evaluating R2; looking at a plot; looking to see if the
regression makes a constant prediction; or checking whether the residual is
random. Other strategies exist, but are beyond the scope of this book.
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Procedure: 7.1 Linear Regression using Least Squares

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional explanatory vector, and each yi is a single dependent vari-
able. We assume that each data point conforms to the model

yi = xT
i β + ξi

where ξi represents unmodelled effects. We assume that ξi are samples
of a random variable with 0 mean and unknown variance. Sometimes,
we assume the random variable is normal. Write

y =









y1
y2
. . .
yn









and

X =





xT
1

xT
2

. . .xT
n



 .

We estimate β̂ (the value of β) by solving the linear system

X TX β̂ −X Ty = 0.

For a data point x, our model predicts xT β̂. The residuals are

e = y −X β̂.

We have that eT1 = 0. The mean square error is given by

m =
eT e

N
.

The R2 is given by

var
({

xT
i β̂
})

var ({y}) .

Values of R2 range from 0 to 1; a larger value means the regression is
better at explaining the data.

7.3 PROBLEM DATA POINTS

I have described regressions on a single explanatory variable, because it is easy to
plot the line in this case. You can find most problems by looking at the line and
the data points. But a single explanatory variable isn’t the most common or useful
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case. If we have many explanatory variables, it can be hard to plot the regression
in a way that exposes problems. This section mainly describes methods to identify
and solve difficulties that don’t involve looking at the line.
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FIGURE 7.6: On the left, a synthetic dataset with one independent and one explana-
tory variable, with the regression line plotted. Notice the line is close to the data
points, and its predictions seem likely to be reliable. On the right, the result of
adding a single outlying datapoint to that dataset. The regression line has changed
significantly, because the regression line tries to minimize the sum of squared verti-
cal distances between the data points and the line. Because the outlying datapoint is
far from the line, the squared vertical distance to this point is enormous. The line
has moved to reduce this distance, at the cost of making the other points further
from the line.

7.3.1 Problem Data Points have Significant Impact

Outlying data points can significantly weaken the usefulness of a regression. For
some regression problems, we can identify data points that might be a problem, and
then resolve how to deal with them. One possibility is that they are true outliers —
someone recorded a data item wrong, or they represent an effect that just doesn’t
occur all that often. Another is that they are important data, and our linear model
may not be good enough. If the data points really are outliers, we can drop them
from the data set. If they aren’t, we may be able to improve the regression by
transforming features or by finding a new explanatory variable.

When we construct a regression, we are solving for the β that minimizes
∑

i(yi − xT
i β)

2, equivalently for the β that produces the smallest value of
∑

i e
2
i .

This means that residuals with large value can have a very strong influence on
the outcome — we are squaring that large value, resulting in an enormous value.
Generally, many residuals of medium size will have a smaller cost than one large
residual and the rest tiny. As figure 7.6 illustrates, this means that a data point
that lies far from the others can swing the regression line significantly.
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FIGURE 7.7: On the left, weight regressed against height for the bodyfat dataset. The
line doesn’t describe the data particularly well, because it has been strongly affected
by a few data points (filled-in markers). On the right, a scatter plot of the residual
against the value predicted by the regression. This doesn’t look like noise, which is
a sign of trouble.

This creates a problem, because data points that are very different from most
others (sometimes called outliers) can also have the highest influence on the out-
come of the regression. Figure 7.8 shows this effect for a simple case. When we
have only one explanatory variable, there’s an easy method to spot problem data
points. We produce a scatter plot and a regression line, and the difficulty is usually
obvious. In particularly tricky cases, printing the plot and using a see-through ruler
to draw a line by eye can help (if you use an opaque ruler, you may not see some
errors).

These data points can come from many sources. They may simply be errors.
Failures of equipment, transcription errors, someone guessing a value to replace lost
data, and so on are some methods that might produce outliers. Another possibility
is your understanding of the problem is wrong. If there are some rare effects that are
very different than the most common case, you might see outliers. Major scientific
discoveries have resulted from investigators taking outliers seriously, and trying to
find out what caused them (though you shouldn’t see a Nobel prize lurking behind
every outlier).

What to do about outliers is even more fraught. The simplest strategy is to
find them, then remove them from the data. I will describe some methods that
can identify outliers, but you should be aware that this strategy can get dangerous
fairly quickly. First, you might find that each time you remove a few problematic
data points, some more data points look strange to you. This process is unlikely to
end well. Second, you should be aware that throwing out outliers can increase your
future prediction error, particularly if they’re caused by real effects. An alternative
strategy is to build methods that can either discount the effects of outliers, or
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FIGURE 7.8: On the left, weight regressed against height for the bodyfat dataset. I
have now removed the four suspicious looking data points, identified in Figure 7.7
with filled-in markers; these seemed the most likely to be outliers. On the right, a
scatter plot of the residual against the value predicted by the regression. Notice that
the residual looks like noise. The residual seems to be uncorrelated to the predicted
value; the mean of the residual seems to be zero; and the variance of the residual
doesn’t depend on the predicted value. All these are good signs, consistent with our
model, and suggest the regression will yield good predictions.

model them; I describe some such methods, which can be technically complex, in
the following chapter.

Remember this: Outliers can affect linear regressions significantly.
Usually, if you can plot the regression, you can look for outliers by eyeballing
the plot. Other methods exist, but are beyond the scope of this text.

7.3.2 The Hat Matrix and Leverage

Write β̂ for the estimated value of β, and y(p) = X β̂ for the predicted y values.
Then we have

β̂ =
(

X TX
)−1

(X Ty)

so that
y(p) = (X

(

X TX
)−1 X T )y.

What this means is that the values the model predicts at training points are a linear

function of the true values at the training points. The matrix (X
(

X TX
)−1 X T ) is
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sometimes called the hat matrix. The hat matrix is written H, and I shall write
the i, j’th component of the hat matrix hij .

Remember this: The predictions of a linear regression at training
points are a linear function of the y-values at the training points. The
linear function is given by the hat matrix.

The hat matrix has a variety of important properties. I won’t prove any here,
but the proofs are in the exercises. It is a symmetric matrix. The eigenvalues can
be only 1 or 0. And the row sums have the important property that

∑

j

h2
ij ≤ 1.

This is important, because it can be used to find data points that have values that
are hard to predict. The leverage of the i’th training point is the i’th diagonal
element, hii, of the hat matrix H. Now we can write the prediction at the i’th
training point yp,i = hiiyi +

∑

j 6=i hijyj . But if hii has large absolute value, then
all the other entries in that row of the hat matrix must have small absolute value.
This means that, if a data point has high leverage, the model’s value at that point
is predicted almost entirely by the observed value at that point. Alternatively, it’s
hard to use the other training data to predict a value at that point.

Here is another way to see this importance of hii. Imagine we change the

value of yi by adding ∆; then y
(p)
i becomes y

(p)
i +hii∆. In turn, a large value of hii

means that the predictions at the i’th point are very sensitive to the value of yi.

Remember this: Ideally, the value predicted for a particular data point
depends on many other data points. Leverage measures the importance of
a data point in producing a prediction at that data point. If the leverage of
a point is high, other points are not contributing much to the prediction for
that point, and it may well be an outlier.

7.3.3 Cook’s Distance

Another way to find points that may be creating problems is to look at the effect
of omitting the point from the regression. We could compute y(p) using the whole
data set. We then omit the i’th point from the dataset, compute the regression
coefficients from the remaining data (which I will write β̂î), then compare y(p)

to X ˆbetaî. If there is a large difference, the point is suspect, because omitting it
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strongly changes the predictions. The score for the comparison is called Cook’s

distance. If a point has a large value of Cook’s distance, then it has a strong
influence on the regression and might well be an outlier. Typically, one computes
Cook’s distance for each point, and takes a closer look at any point with a large
value. This procedure is described in more detail in procedure 96

Notice the rough similarity to cross-validation (omit some data and recom-
pute). But in this case, we are using the procedure to identify points we might not
trust, rather than to get an unbiased estimate of the error.

Procedure: 7.2 Computing Cook’s distance

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional explanatory vector, and each yi is a single dependent vari-
able. Write β̂ for the coefficients of a linear regression (see proce-

dure 7.1), and β̂î for the coefficients of the linear regression computed

by omitting the i’th data point, y(p) for X β̂, and m for the mean square
error. The Cook’s distance of the i’th data point is

(y(p) −X β̂î)
T (y(p) − X β̂î)

dm
.

Large values of this distance suggest a point may present problems.
Statistical software will compute and plot this distance for you.

Remember this: The Cook’s distance of a training data point measures
the effect on predictions of leaving that point out of the regression. A large
value of Cook’s distance suggests other points are poor at predicting the
value at a given point, so a point with a large value of Cook’s distance may
be an outlier.

7.3.4 Standardized Residuals

The hat matrix has another use. It can be used to tell how “large” a residual is. The
residuals that we measure depend on the units in which y was expressed, meaning
we have no idea what a “large” residual is. For example, if we were to express y in
kilograms, then we might want to think of 0.1 as a small residual. Using exactly
the same dataset, but now with y expressed in grams, that residual value becomes
100 — is it really “large” because we changed units?

Now recall that we assumed, in section 7.2.1, that y − xTβ was a zero mean
normal random variable, but we didn’t know its variance. It can be shown that,
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FIGURE 7.9: On the left, standardized residuals plotted against predicted value for
weight regressed against height for the bodyfat dataset. I removed the four suspicious
looking data points, identified in Figure 7.7 with filled-in markers ; these seemed the
most likely to be outliers. You should compare this plot with the residuals in figure
7.8, which are not standardized. On the right, a histogram of the residual values.
Notice this looks rather like a histogram of a standard normal random variable,
though there are slightly more large positive residuals than one would like. This
suggests the regression is working tolerably.

under our assumption, the i’th residual value, ei, is a sample of a normal random
variable whose variance is

(

(eT e)

N

)

(1− hii).

This means we can tell whether a residual is large by standardizing it – that is,
dividing by its standard deviation. Write si for the standard residual at the i’th
training point. Then we have that

si =
ei

√

(

(eT e)
N

)

(1 − hii)

.

When the regression is behaving, this standard residual should look like a sample
of a standard normal random variable. In turn, this means that if all is going well,
about 66% of the residuals should have values in the range [−1, 1], and so on. Large
values of the standard residuals are a sign of trouble.

R produces a nice diagnostic plot that can be used to look for problem data
points (code and details in the appendix). The plot is a scatter plot of the standard-
ized residuals against leverage, with level curves of Cook’s distance superimposed.
Figure 7.10 shows an example. Some bad points that are likely to present problems
are identified with a number (you can control how many, and the number, with
arguments to plot; appendix). Problem points will have high leverage and/or high
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FIGURE 7.10: A diagnostic plot, produced by R, of a linear regression of weight
against height for the bodyfat dataset. Top: the whole dataset; bottom left: with
the two most extreme points in the top figure removed; bottom right: with two
further points (highest residual) removed. Details in text.

Cook’s distance and/or high residual. The figure shows this plot for three differ-
ent versions of the dataset (original; two problem points removed; and two further
problem points removed).

7.4 MANY EXPLANATORY VARIABLES

In earlier sections, I implied you could put anything into the explanatory variables.
This is correct, and makes it easy to do the math for the general case. However, I
have plotted only cases where there was one explanatory variable (together with a
constant, which hardly counts). In some cases (section 7.4.1), we can add explana-
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tory variables and still have an easy plot. Adding explanatory variables can cause
the matrix X TX to have poor condition number; there’s an easy strategy to deal
with this (section 7.4.2).

Most cases are hard to plot successfully, and one needs better ways to visualize
the regression than just plotting. The value of R2 is still a useful guide to the
goodness of the regression, but the way to get more insight is to use the tools of
the previous section.

7.4.1 Functions of One Explanatory Variable

Imagine we have only one measurement to form explanatory variables. For example,
in the perch data of Figure 7.1, we have only the length of the fish. If we evaluate
functions of that measurement, and insert them into the vector of explanatory
variables, the resulting regression is still easy to plot. It may also offer better
predictions. The fitted line of Figure 7.1 looks quite good, but the data points
look as though they might be willing to follow a curve. We can get a curve quite
easily. Our current model gives the weight as a linear function of the length with
a noise term (which we wrote yi = β1xi + β0 + ξi). But we could expand this
model to incorporate other functions of the length. In fact, it’s quite suprising that
the weight of a fish should be predicted by its length. If the fish doubled in each
direction, say, its weight should go up by a factor of eight. The success of our
regression suggests that fish do not just scale in each direction as they grow. But
we might try the model yi = β2x

2
i + β1xi + β0 + ξi. This is easy to do. The i’th

row of the matrix X currently looks like [xi, 1]. We build a new matrix X (b), where
the i’th row is [x2

i , xi, 1], and proceed as before. This gets us a new model. The
nice thing about this model is that it is easy to plot – our predicted weight is still
a function of the length, it’s just not a linear function of the length. Several such
models are plotted in Figure 7.11.

You should notice that it can be quite easy to add a lot of functions like this
(in the case of the fish, I tried x3

i as well). However, it’s hard to decide whether the
regression has actually gotten better. The least-squares error on the training data
will never go up when you add new explanatory variables, so the R2 will never get
worse. This is easy to see, because you could always use a coefficient of zero with the
new variables and get back the previous regression. However, the models that you
choose are likely to produce worse and worse predictions as you add explanatory
variables. Knowing when to stop can be tough (Section 8.1), though it’s sometimes
obvious that the model is untrustworthy (Figure 7.11).

Remember this: If you have only one measurement, you can construct
a high dimensional x by using functions of that measurement. This produces
a regression that has many explanatory variables, but is still easy to plot.
Knowing when to stop is hard. An understanding of the problem is helpful.
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FIGURE 7.11: On the left, several different models predicting fish weight from length.
The line uses the explanatory variables 1 and xi; and the curves use other monomi-
als in xi as well, as shown by the legend. This allows the models to predict curves
that lie closer to the data. It is important to understand that, while you can make
a curve go closer to the data by inserting monomials, that doesn’t mean you neces-
sarily have a better model. On the right, I have used monomials up to x10

i . This
curve lies very much closer to the data points than any on the other side, at the
cost of some very odd looking wiggles inbetween data points (look at small lengths;
the model goes quite strongly negative there, but I can’t bring myself to change the
axes and show predictions that are obvious nonsense). I can’t think of any reason
that these structures would come from true properties of fish, and it would be hard
to trust predictions from this model.

7.4.2 Regularizing Linear Regressions

When we have many explanatory variables, some might be significantly correlated.
This means that we can predict, quite accurately, the value of one explanatory
variable using the values of the other variables. This means there must be a vector
w so that Xw is small (exercises). In turn, that wTX TXw must be small, so that
X TX has some small eigenvalues. These small eigenvalues lead to bad predictions,
as follows. The vector w has the property that X TXw is small. This means that
X TX (β̂ +w) is not much different from X TX β̂ (equivalently, the matrix can turn
large vectors into small ones). All this means that (X TX )−1 will turn some small
vectors into big ones. A small change in X TY can lead to a large change in the
estimate of β̂.

This is a problem, because we can expect that different samples from the same
data will have somewhat different values of X TY. For example, imagine the person
recording fish measurements in Lake Laengelmavesi recorded a different set of fish;
we expect changes in X and Y. But, if X TX has small eigenvalues, these changes
could produce large changes in our model.

The problem is relatively easy to control. When there are small eigenvalues
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FIGURE 7.12: On the left, cross-validated error estimated for different choices of reg-
ularization constant for a linear regression of weight against height for the bodyfat
dataset, with four outliers removed. The horizontal axis is log regression constant;
the vertical is cross-validated error. The mean of the error is shown as a spot, with
vertical error bars. The vertical lines show a range of reasonable choices of regular-
ization constant (left yields the lowest observed error, right the error whose mean
is within one standard error of the minimum). On the right, two regression lines
on a scatter plot of this dataset; one is the line computed without regularization, the
other is obtained using the regularization parameter that yields the lowest observed
error. In this case, the regularizer doesn’t change the line much, but may produce
improved values on new data (notice how the cross-validated error is fairly flat with
low values of the regularization constant).

in X TX , we expect that β̂ will be large (because we can add components in the

direction of w without changing all that much), and the largest components in β̂
might be very inaccurately estimated. If we are trying to predict new y values, we
expect that large components in β̂ turn into large errors in prediction (exercises).

An important and useful way to suppress these errors is to try to find a β̂
that isn’t large, and also gives a low error. We can do this by regularizing, using
the same trick we saw in the case of classification. Instead of choosing the value of
β that minimizes

(

1

N

)

(y −Xβ)T (y −Xβ)

we minimize
(

1

N

)

(y −Xβ)T (y −Xβ) + λβTβ

Error + Regularizer

Here λ > 0 is a constant that weights the two requirements (small error; small β̂)
relative to one another. Notice also that dividing the total error by the number of
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data points means that our choice of λ shouldn’t be affected by changes in the size
of the data set.

2 4 6 8

70
0

80
0

90
0

10
00

11
00

12
00

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

NA NA NA NA NA NA NA NA NA NA NA NA NA NA

all points

30 40 50 60 70

15
0

20
0

25
0

30
0

35
0

Linear regression of Weight against Height,
 all points

Height

W
ei

gh
t

no regularization
regularization

FIGURE 7.13: Regularization doesn’t make outliers go away. On the left, cross-
validated error estimated for different choices of regularization constant for a linear
regression of weight against height for the bodyfat dataset, with all points. The
horizontal axis is log regression constant; the vertical is cross-validated error. The
mean of the error is shown as a spot, with vertical error bars. The vertical lines
show a range of reasonable choices of regularization constant (left yields the lowest
observed error, right the error whose mean is within one standard error of the
minimum). On the right, two regression lines on a scatter plot of this dataset; one
is the line computed without regularization, the other is obtained using the regular-
ization parameter that yields the lowest observed error. In this case, the regularizer
doesn’t change the line much, but may produce improved values on new data (no-
tice how the cross-validated error is fairly flat with low values of the regularization
constant).

Regularization helps deal with the small eigenvalue, because to solve for β we
must solve the equation

[(

1

N

)

X TX + λI
]

β̂ =

(

1

N

)

X Ty

(obtained by differentiating with respect to β and setting to zero) and the smallest
eigenvalue of the matrix (

(

1
N

)

(X TX +λI) will be at least λ (exercises). Penalizing
a regression with the size of β in this way is sometimes known as ridge regression.

We choose λ in the same way we used for classification; split the training set
into a training piece and a validation piece, train for different values of λ, and test
the resulting regressions on the validation piece. The error is a random variable,
random because of the random split. It is a fair model of the error that would occur
on a randomly chosen test example (assuming that the training set is “like” the
test set, in a way that I do not wish to make precise yet). We could use multiple
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FIGURE 7.14: On the left, residuals plotted against leverage for a regression of
weight against all other measurements for the bodyfat dataset. I did not remove the
outliers. The contours on the plot are contours of Cook’s distance; I have overlaid
arrows showing points with suspiciously large Cook’s distance. Notice also that
several points have high leverage, without having a large residual value. These points
may or may not present problems. On the right, the same plot for this dataset with
points 36, 39, 41 and 42 removed (these are the points I have been removing for
each such plot). Notice that another point now has high Cook’s distance, but mostly
the residual is much smaller.

splits, and average over the splits. Doing so yields both an average error for a value
of λ and an estimate of the standard deviation of error.

Statistical software will do all the work for you. I used the glmnet package
in R (see exercises for details). Figure 7.12 shows an example, for weight regressed
against height. Notice the regularization doesn’t change the model (plotted in the
figure) all that much. For each value of λ (horizontal axis), the method has com-
puted the mean error and standard deviation of error using cross-validation splits,
and displays these with error bars. Notice that λ = 0 yields poorer predictions
than a larger value; large β̂ really are unreliable. Notice that now there is now no λ
that yields the smallest validation error, because the value of error depends on the
random splits used in cross-validation. A reasonable choice of λ lies between the
one that yields the smallest error encountered (one vertical line in the plot) and the
largest value whose mean error is within one standard deviation of the minimum
(the other vertical line in the plot).

All this is quite similar to regularizing a classification problem. We started
with a cost function that evaluated the errors caused by a choice of β, then added
a term that penalized β for being “large”. This term is the squared length of β, as
a vector. It is sometimes known as the L2 norm of the vector. In section 16.5, I
describe the consequences of using other norms.
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FIGURE 7.15: On the left, standardized residuals plotted against predicted value
for weight regressed against all variables for the bodyfat dataset. Four data points
appear suspicious, and I have marked these with a filled in marker. On the right,
standardized residuals plotted against predicted value for weight regressed against
all variables for the bodyfat dataset, but with the four suspicious looking data points
removed. Notice two other points stick out markedly.

Remember this: The performance of a regression can be improved by
regularizing, particularly if some explanatory variables are correlated. The
procedure is similar to that used for classification.

7.4.3 Example: Weight against Body Measurements

We can now look at regressing weight against all body measurements for the bodyfat
dataset. We can’t plot this regression (too many independent variables), but we
can approach the problem in a series of steps.

Finding suspect points: Figure 7.14 shows the R diagnostic plots for a
regression of weight against all body measurements for the bodyfat dataset. We’ve
already seen there are outliers, so the odd structure of this plot should be no par-
ticular surprise. There are several really worrying points here. As the figure shows,
removing the four points identified in the caption, based on their very high stan-
dardized residuals, high leverage, and high Cook’s distance, yields improvements.
We can get some insight by plotting standardized residuals against predicted value
(Figure 7.9). There is clearly a problem here; the residual seems to depend quite
strongly on the predicted value. Removing the four outliers we have already iden-
tified leads to a much improved plot, also shown in Figure 7.15. This is banana-
shaped, which is suspicious. There are two points that seem to come from some
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FIGURE 7.16: On the left, standardized residuals plotted against predicted value for
weight regressed against all variables for the bodyfat dataset. I removed the four
suspicious data points of Figure 7.15, and the two others identified in that figure.
Notice a suspicious “banana” shape – the residuals are distinctly larger for small and
for large predicted values. This suggests a non-linear transformation of something
might be helpful. I used a Box-Cox transformation, which suggested a value of 0.5
(i.e. regress 2(

√
weight − 1)) against all variables. On the right, the standardized

residuals for this regression. Notice that the “banana” has gone, though there is
a suspicious tendency for the residuals to be smaller rather than larger. Notice
also the plots are on different axes. It’s fair to compare these plots by eye; but it’s
not fair to compare details, because the residual of a predicted square root means
something different than the residual of a predicted value.

other model (one above the center of the banana, one below). Removing these
points gives the residual plot shown in Figure 7.16.

Transforming variables: The banana shape of the plot of standardized
residuals against value is a suggestion that some non-linearity somewhere would
improve the regression. One option is a non-linear transformation of the indepen-
dent variables. Finding the right one might require some work, so it’s natural to
try a Box-Cox transformation first. This gives the best value of the parameter as
0.5 (i.e. the dependent variable should be

√
weight, which makes the residuals look

much better (Figure 7.16).
Choosing a regularizing value: Figure 7.17 shows the glmnet plot of cross-

validated error as a function of regularizer weight. A sensible choice of value here
seems to be a bit smaller than -2 (between the value that yields the smallest error
encountered – one vertical line in the plot – and the largest value whose mean error
is within one standard deviation of the minimum – the other vertical line in the
plot). I chose -2.2

How good are the resulting predictions likely to be: the standard-
ized residuals don’t seem to depend on the predicted values, but how good are the
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FIGURE 7.17: Plots of mean-squared error as a function of log regularization param-
eter (i.e. logλ) for a regression of weight1/2 against all variables for the bodyfat
dataset. These plots show mean-squared error averaged over cross-validation folds
with a vertical one standard deviation bar. On the left, the plot for the dataset with
the six outliers identified in Figure 16.5 removed. On the right, the plot for the
whole dataset. Notice how the outliers increase the variability of the error, and the
best error.
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FIGURE 7.18: A scatter plot of the predicted weight against the true weight for the
bodyfat dataset. The prediction is made with all variables, but the six outliers iden-
tified above are omitted. I used a Box-Cox transformation with parameter 1/2,
and the regularization parameter that yielded the smallest mean square error in
Figure 7.17.
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predictions? We already have some information on this point. Figure 7.17 shows
cross-validation errors for regressions of weight1/2 against height for different reg-
ularization weights, but some will find this slightly indirect. We want to predict
weight, not weight1/2. I chose the regularization weight that yielded the lowest
mean-square-error for the model of Figure 7.17, omitting the six outliers previously
mentioned. I then computed the predicted weight for each data point using that
model (which predicts weight1/2, remember; but squaring takes care of that). Fig-
ure 7.18 shows the predicted values plotted against the true values. You should
not regard this plot as a safe way to estimate generalization (the points were used
in training the model; Figure 7.17 is better for that), but it helps to visualize the
errors. This regression looks as though it is quite good at predicting bodyweight
from other measurements.
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APPENDIX: DATA

Batch A
Amount of Time in
Hormone Service

25.8 99
20.5 152
14.3 293
23.2 155
20.6 196
31.1 53
20.9 184
20.9 171
30.4 52

Batch B
Amount of Time in
Hormone Service

16.3 376
11.6 385
11.8 402
32.5 29
32.0 76
18.0 296
24.1 151
26.5 177
25.8 209

Batch C
Amount of Time in
Hormone Service

28.8 119
22.0 188
29.7 115
28.9 88
32.8 58
32.5 49
25.4 150
31.7 107
28.5 125

TABLE 7.1: A table showing the amount of hormone remaining and the time in
service for devices from lot A, lot B and lot C. The numbering is arbitrary (i.e.
there’s no relationship between device 3 in lot A and device 3 in lot B). We expect
that the amount of hormone goes down as the device spends more time in service,
so cannot compare batches just by comparing numbers.
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PROBLEMS
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FIGURE 7.19: A regression of blood pressure against age, for 30 data points.

7.1. Figure 7.19 shows a linear regression of systolic blood pressure against age.
There are 30 data points.
(a) Write ei = yi − xT

i β for the residual. What is the mean ({e}) for this
regression?

(b) For this regression, var ({y}) = 509 and the R2 is 0.4324. What is var ({e})
for this regression?

(c) How well does the regression explain the data?
(d) What could you do to produce better predictions of blood pressure (with-

out actually measuring blood pressure)?
7.2. This exercise investigates the effect of correlation on a regression. Assume we

have N data items, (xi, yi). Write xi1 for the first component of xi, and xi,1̂
for the vector obtained by deleting the first component of xi. Assume our data
has the property that xi1 = xT

i1̂
u+ ri. Write r for the vector of residuals (i.e.

the i’th component of r is ri). Now assume rT 1 = 0 (i.e. the average of the
ri’s is zero) and rT r ≤ ǫ. All this means that the data have the property that
the first component is relatively accurately predicted by the other components.

(a) Write w = [−1,u]T . Show that

wTXTXw ≤ ǫ.

(b) Now show that the smallest eigenvalue of XTX is less than or equal to ǫ.
(c) Write sk =

∑

u x2uk, and smax for max(s1, . . . , sd). Show that the largest

eigenvalue of XTX is greater than or equal to smax.
(d) The condition number of a matrix is the ratio of largest to smallest

eigenvalue of a matrix. Use the information above to bound the condition
number of XTX .

(e) Assume that β̂ is the solution to XTX β̂ = XTY. Show that the

(XTY −XTX (β̂ +w))T (XTY − XTX (β̂ +w))

is bounded above by
ǫ2(1 + uTu)
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(f) Use the last sub exercises to explain why correlated data will lead to a
poor estimate of β̂.

7.3. In this exercise, I will show that the prediction process of chapter 14(see
page 286) is a linear regression with two independent variables. Assume we
have N data items which are 2-vectors (x1, y1), . . . , (xN , yN ), where N > 1.
These could be obtained, for example, by extracting components from larger
vectors. As usual, we will write x̂i for xi in normalized coordinates, and so on.
The correlation coefficient is r (this is an important, traditional notation).
(a) Show that r = mean ({(x−mean ({x}))(y −mean ({y}))})/(std (x)std (y)).

(b) Now write s =
std(y)
std(x)

. Now assume that we have an xo, for which we wish

to predict a y value. Show that the value of the prediction obtained using
the method of page 287 is

sr(x0 −mean ({x})) +mean ({y}).

(c) Show that sr = mean ({(xy)})−mean ({x})mean ({y}).
(d) Now write

X =







x1 1
x2 1
. . . . . .
xn 1






and Y =







y1
y2
. . .
yn






.

The coefficients of the linear regression will be β̂, where XTX β̂ = XTY.
Show that

XTX = N

(

mean
({

x2
})

mean ({x})

mean ({x}) 1

)

(e) Now show that var ({x}) = mean
({

(x−mean ({x}))2
})

= mean
({

x2
})

−

mean ({x})2.
(f) Now show that std (x)std (y)corr ({(x, y)}) = mean ({(x−mean ({x}))(y −mean ({y}))}).



C H A P T E R 8

Regression: Choosing and Managing
Models

8.1 MODEL SELECTION: WHICH MODEL IS BEST?

It is usually quite easy to have many explanatory variables in a regression problem.
Even if you have only one measurement, you could always compute a variety of non-
linear functions of that measurement. As we have seen, inserting variables into a
model will reduce the fitting cost, but that doesn’t mean that better predictions will
result (section 7.4.1). We need to choose which explanatory variables we will use.
A linear model with few explanatory variables may make poor predictions because
the model itself is incapable of representing the independent variable accurately (an
effect known as bias). A linear model with many explanatory variables may make
poor predictions because we can’t estimate the coefficients well (an effect known as
variance). Choosing which explanatory variables we will use (and so which model
we will use) requires that we balance these effects, described in greater detail in
section 8.1.1. In the following sections, we describe straightforward methods of
doing so.

8.1.1 Bias and Variance

We now look at the process of finding a model in a fairly abstract way. Doing
so makes plain three distinct and important effects that cause models to make
predictions that are wrong. One is irreducible error. Even a perfect choice of
model can make mistake predictions, because more than one prediction could be
correct for the same x. Another way to think about this is that there could be
many future data items, all of which have the same x, but each of which has a
different y. In this case some of our predictions must be wrong, and the effect is
unavoidable.

A second effect is bias. We must use some collection of models. Even the
best model in the collection may not be capable of predicting all the effects that
occur in the data. Errors that are caused by the best model still not being able to
predict the data accurately are attributed to bias.

The third effect is variance. We must choose our model from the collection
of models. The model we choose is unlikely to be the best model. This might occur,
for example, because our estimates of the parameters aren’t exact because we have
a limited amount of data. Errors that are caused by our choosing a model that is
not the best in the family are attributed to variance.

All this can be written out in symbols. We have a vector of predictors x, and
a random variable Y . At any given point x, we have

Y = f(x) + ξ

178
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where ξ is noise and f is an unknown function. We have E[ξ] = 0, and E
[

ξ2
]

=
var ({ξ}) = σ2

ξ ; furthermore, ξ is independent of X . We have some procedure that

takes a selection of training data, consisting of pairs (xi, yi), and selects a model f̂ .

We will use this model to predict values for future x. It is highly unlikely that f̂ is
the same as f ; assuming that it is involves assuming that we can perfectly estimate
the best model with a finite dataset, which doesn’t happen.

We need to understand the error that will occur when we use f̂ to predict
for some data item that isn’t in the training set. This is the error that we will
encounter in practice. The error at any point x is

E

[

(Y − f̂(X))2
]

where the expectation is taken over P (Y |x). This expectation can be written in an

extremely useful form. Recall var ({U}) = E
[

U2
]

− E[U ]
2
. This means we have

E

[

(Y − f̂(X))2
]

= E
[

Y 2
]

− 2E
[

Y f̂
]

+ E

[

f̂2
]

= var ({Y }) + E[Y ]
2
+ var

({

f̂
})

+ E

[

f̂
]2

− 2E
[

Y f̂
]

.

Now Y = f(X) + ξ, E[ξ] = 0, and ξ is independent of X so we have E[Y ] = E[f ]
and var ({Y }) = var ({ξ}) = σ2

ξ . This yields

E

[

(Y − f̂(X))2
]

= var ({Y }) + E[f ]2 + var
({

f̂
})

+ E

[

f̂
]2

− 2E
[

f f̂
]

= σ2
ξ + E

[

(f − f̂)2
]

+ var
({

f̂
})

= σ2
ξ + (f − E

[

f̂
]

)2 + var
({

f̂
})

(f isn’t random).

The expected error on all future data is the sum of three terms. The irreducible error
is σ2

ξ ; even the true model must produce this error, on average. The best model

to choose would be E

[

f̂
]

(remember, the expectation is over choices of training

data; this model would be the one that best represented all possible attempts to

train). But we don’t have E

[

f̂
]

. Instead, we have f̂ . The variance is var
({

f̂
})

=

E

[

(f̂ − E

[

f̂
]

)2
]

. This term represents the fact that the model we chose (f̂) is

different from the mean model (E
[

f̂
]

). The difference arises because our training

data is a subset of all data, and our model is chosen to be good on the training

data, rather than on every possible training set. The bias is (f −E

[

f̂
]

)2. This term

reflects the fact that even the best choice of model (E
[

f̂
]

) may not be the same as

the true source of data (E[f ] which is the same as f , because f is deterministic).
There is usually a tradeoff between bias and variance. Generally, when a

model comes from a “small” or “simple” family, we expect that (a) we can estimate
the best model in the family reasonably accurately (so the variance will be low)
but (b) the model may have real difficulty reproducing the data (meaning the bias



Section 8.1 Model Selection: Which Model is Best? 180

is large). Similarly, if the model comes from a “large” or “complex” family, the
variance is likely to be high (because it will be hard to estimate the best model in the
family accurately) but the bias will be low (because the model can more accurately
reproduce the data). All modelling involves managing this tradeoff between bias
and variance. I am avoiding being precise about the complexity of a model because
it can be tricky to do. One reasonable proxy is the number of parameters we have
to estimate to determine the model.

You can see a crude version this tradeoff in the perch example of section 7.4.1
and Figure 7.11. Recall that, as I added monomials to the regression of weight
against length, the fitting error went down; but the model that uses length10 as
an explanatory variable makes very odd predictions away from the training data.
When I use low degree monomials, the dominant source of error is bias; and when
I use high degree monomials, the dominant source of error is variance. A common
mistake is to feel that the major difficulty is bias, and so to use extremely com-
plex models. Usually the result is poor estimates of model parameters, and huge
variance. Experienced modellers fear variance far more than they fear bias.

The bias-variance discussion suggests it isn’t a good idea simply to use all
the explanatory variables that you can obtain (or think of). Doing so might lead
to a model with serious variance problems. Instead, we must choose a model that
uses a subset of the explanatory variables that is small enough to control variance,
and large enough that the bias isn’t a problem. We need some strategy to choose
explanatory variables. The simplest (but by no means the best; we’ll see better in
this chapter) approach is to search sets of explanatory variables for a good set. The
main difficulty is knowing when you have a good set.

8.1.2 Choosing a Model using Penalties: AIC and BIC

We would like to choose one of a set of models. We cannot do so using just the
training error, because more complex models will tend to have lower training error,
and so the model with the lowest training error will tend to be the most complex
model. Training error is a poor guide to test error, because lower training error is
evidence of lower bias on the models part; but with lower bias, we expect to see
greater variance, and the training error doesn’t take that into account.

One strategy is to penalize the model for complexity. We add some penalty,
reflecting the complexity of the model, to the training error. We then expect to see
the general behavior of figure 8.1. The training error goes down, and the penalty
goes up as the model gets more complex, so we expect to see a point where the sum
is at a minimum.

There are a variety of ways of constructing penalties. AIC (short for An
Information Criterion) is a method due originally to Akaike, in ****. Rather than
using the training error, AIC uses the maximum value of the log-likelihood of the
model. Write L for this value. Write k for the number of parameters estimated to
fit the model. Then the AIC is

2k − 2L
and a better model has a smaller value of AIC (remember this by remembering
that a larger log-likelihood corresponds to a better model). Estimating AIC is
straightforward for regression models if you assume that the noise is a zero mean
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Number of parameters
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FIGURE 8.1: When we add explanatory variables (and so parameters) to a model,
the value of the negative log-likelihood of the best model can’t go up, and usually goes
down. This means that we cannot use the value as a guide to how many explanatory
variables there should be. Instead, we add a penalty that increases as a function
of the number of parameters, and search for the model that minimizes the sum of
negative long-likelihood and penalty. AIC and BIC grow linearly with the number
of parameters, but I am following the usual convention of plotting the penalty as a
curve rather than a straight line.

normal random variable. You estimate the mean-squared error, which gives the
variance of the noise, and so the log-likelihood of the model. You do have to keep
track of two points. First, k is the total number of parameters estimated to fit the
model. For example, in a linear regression model, where you model y as xTβ + ξ,
you need to estimate d parameters to estimate β̂ and the variance of ξ (to get
the log-likelihood). So in this case k = d + 1. Second, log-likelihood is usually
only known up to a constant, so that different software implementations often use
different constants. This is wildly confusing when you don’t know about it (why
would AIC and extractAIC produce different numbers on the same model?) but
of no real significance – you’re looking for the smallest value of the number, and
the actual value doesn’t mean anything. Just be careful to compare only numbers
computed with the same routine.

An alternative is BIC (Bayes’ Information Criterion), given by

2k logN − 2L

(where N is the size of the training data set). You will often see this written as
2L − 2k logN ; I have given the form above so that one always wants the smaller
value as with AIC. There is a considerable literature comparing AIC and BIC. AIC
has a mild reputation for overestimating the number of parameters required, but is
often argued to have firmer theoretical foundations.
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Worked example 8.1 AIC and BIC

Write Md for the model that predicts weight from length for the perch dataset
as
∑j=d

j=0 βj length
j . Choose an appropriate value of d ∈ [1, 10] using AIC and

BIC.

Solution: I used the R functions AIC and BIC, and got the table below.
1 2 3 4 5 6 7 8 9 10

AIC 677 617 617 613 615 617 617 612 613 614
BIC 683 625 627 625 629 633 635 633 635 638

The best model by AIC has (rather startlingly!) d = 8. One should not take
small differences in AIC too seriously, so models with d = 4 and d = 9 are fairly
plausible, too. BIC suggests d = 2.

8.1.3 Choosing a Model using Cross-Validation

AIC and BIC are estimates of error on future data. An alternative is to measure
this error on held out data, using a cross-validation strategy (as in section 3.1.4).
One splits the training data into F folds, where each data item lies in exactly
one fold. The case F = N is sometimes called “leave-one-out” cross-validation.
One then sets aside one fold in turn, fitting the model to the remaining data, and
evaluating the model error on the left-out fold. The model error is then averaged.
This process gives us an estimate of the performance of a model on held-out data.
Numerous variants are available, particularly when lots of computation and lots of
data are available. For example: one might not average over all folds; one might
use fewer or more folds; and so on.

Worked example 8.2 Cross-validation

Write Md for the model that predicts weight from length for the perch dataset
as
∑j=d

j=0 βj length
j . Choose an appropriate value of d ∈ [1, 10] using leave-one-

out cross validation.

Solution: I used the R functions CVlm, which takes a bit of getting used to.
There is sample code in the exercises section. I found:

1 2 3 4 5 6 7 8 9 10
1.9e4 4.0e3 7.2e3 4.5e3 6.0e3 5.6e4 1.2e6 4.0e6 3.9e6 1.9e8

where the best model is d = 2.

8.1.4 A Search Process: Forward and Backward Stagewise Regression

Assume we have a set of explanatory variables and we wish to build a model,
choosing some of those variables for our model. Our explanatory variables could
be many distinct measurements, or they could be different non-linear functions of
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the same measurement, or a combination of both. We can evaluate models relative
to one another fairly easily (AIC, BIC or cross-validation, your choice). However,
choosing which set of explanatory variables to use can be quite difficult, because
there are so many sets. The problem is that you cannot predict easily what adding
or removing an explanatory variable will do. Instead, when you add (or remove) an
explanatory variable, the errors that the model makes change, and so the usefulness
of all other variables changes too. This means that (at least in principle) you have
to look at every subset of the explanatory variables. Imagine you start with a
set of F possible explanatory variables (including the original measurement, and
a constant). You don’t know how many to use, so you might have to try every
different group, of each size, and there are far too many groups to try. There are
two useful alternatives.

In forward stagewise regression, you start with an empty working set
of explanatory variables. You then iterate the following process. For each of the
explanatory variables not in the working set, you construct a new model using
the working set and that explanatory variable, and compute the model evaluation
score. If the best of these models has a better score than the model based on the
working set, you insert the appropriate variable into the working set and iterate.
If no variable improves the working set, you decide you have the best model and
stop. This is fairly obviously a greedy algorithm.

Backward stagewise regression is pretty similar, but you start with a
working set containing all the variables, and remove variables one-by-one and greed-
ily. As usual, greedy algorithms are very helpful but not capable of exact optimiza-
tion. Each of these strategies can produce rather good models, but neither is
guaranteed to produce the best model.

8.1.5 Significance: What Variables are Important?

Imagine you regress some measure of risk of death against blood pressure, whether
someone smokes or not, and the length of their thumb. Because high blood pressure
and smoking tend to increase risk of death, you would expect to see “large” coeffi-
cients for these explanatory variables. Since changes in the thumb length have no
effect, you would expect to see “small” coefficients for these explanatory variables.
This suggests a regression can be used to determine what effects are important in
building a model.

One difficulty is the result of sampling variance. Imagine that we have an
explanatory variable that has absolutely no relationship to the dependent variable.
If we had an arbitrarily large amount of data, and could exactly identify the correct
model, we’d find that, in the correct model, the coefficient of that variable was zero.
But we don’t have an arbitrarily large amount of data. Instead, we have a sample
of data. Hopefully, our sample is random, so that the reasoning of section 16.5 can
be applied. Using that reasoning, our estimate of the coefficient is the value of a
random variable whose expected value is zero, but whose variance isn’t. As a result,
we are very unlikely to see a zero. This reasoning applies to each coefficient of the
model. To be able to tell which ones are small, we would need to know the standard
deviation of each, so we can tell whether the value we observe is a small number of
standard deviations away from zero. This line of reasoning is very like hypothesis
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testing. It turns out that the sampling variance of regression coefficients can be
estimated in a straightforward way. In turn, we have an estimate of the extent
to which their difference from zero could be a result of random sampling. R will
produce this information routinely; use summary on the output of lm.

A second difficulty has to do with practical significance, and is rather harder.
We could have explanatory variables that are genuinely linked to the independent
variable, but might not matter very much. This is a common phenomenon, particu-
larly in medical statistics. It requires considerable care to disentangle some of these
issues. Here is an example. Bowel cancer is an unpleasant disease, which could kill
you. Being screened for bowel cancer is at best embarrassing and unpleasant, and
involves some startling risks. There is considerable doubt, from reasonable sources,
about whether screening has value and if so, how much (as a start point, you could
look at Ransohoff DF. How Much Does Colonoscopy Reduce Colon Cancer Mor-
tality?. Ann Intern Med. 2009). There is some evidence linking eating red or
processed meat to incidence of bowel cancer. A good practical question is: should
one abstain from eating red or processed meat based on increased bowel cancer
risk?

Coming to an answer is tough; the coefficient in any regression is clearly
not zero, but it’s pretty small as these numbers indicate. The UK population in
2012 was 63.7 million (this is a summary figure from Google, using World Bank
data; there’s no reason to believe that it’s significantly wrong). I obtained the
following figures from the UK cancer research institute website, at http://www.
cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer.
There were 41, 900 new cases of bowel cancer in the UK in 2012. Of these cases,
43% occurred in people aged 75 or over. 57% of people diagnosed with bowel cancer
survive for ten years or more after diagnosis. Of diagnosed cases, an estimated 21%
are linked to eating red or processed meat, and the best current estimate is that
the risk of incidence is between 17% and 30% higher per 100g of red meat eaten
per day (i.e. if you eat 100g of red meat per day, your risk increases by some num-
ber between 17% and 30%; 200g a day gets you twice that number; and – rather
roughly – so on). These numbers are enough to confirm that there is a non-zero
coefficient linking the amount of red or processed meat in your diet with your risk
of bowel cancer (though you’d have a tough time estimating the exact value of
that coefficient from the information here). If you eat more red meat, your risk of
dying of bowel cancer really will go up. But the numbers I gave above suggest that
(a) it won’t go up much and (b) you might well die rather late in life, where the
chances of dying of something are quite strong. The coefficient linking eating red
meat and bowel cancer is clearly pretty small, because the incidence of the disease
is about 1 in 1500 per year. Does it matter? you get to choose, and your choice
has consequences.

8.2 ROBUST REGRESSION

We have seen that outlying data points can result in a poor model. This is caused by
the squared error cost function: squaring a large error yields an enormous number.
One way to resolve this problem is to identify and remove outliers before fitting
a model. This can be difficult, because it can be hard to specify precisely when

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer
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a point is an outlier. Worse, in high dimensions most points will look somewhat
like outliers, and we may end up removing all most all the data. The alternative
solution I offer here is to come up with a cost function that is less susceptible to
problems with outliers. The general term for a regression that can ignore some
outliers is a robust regression.

8.2.1 M-Estimators and Iteratively Reweighted Least Squares

One way to reduce the effect of outliers on a least-squares solution would be to
weight each point in the cost function. We need some method to estimate an
appropriate set of weights. This would use a large weight for errors at points that
are “trustworthy”, and a low weight for errors at “suspicious” points.

We can obtain such weights using an M-estimator, which estimates param-
eters by replacing the negative log-likelihood with a term that is better behaved.
In our examples, the negative log-likelihood has always been squared error. Write
β for the parameters of the model being fitted, and ri(xi, β) for the residual error
of the model on the ith data point. For us, ri will always be yi − xT

i β. So rather
than minimizing

∑

i

(ri(xi, β))
2

as a function of β, we will minimize an expression of the form

∑

i

ρ(ri(xi, β);σ),

for some appropriately chosen function ρ. Clearly, our negative log-likelihood is
one such estimator (use ρ(u;σ) = u2). The trick to M-estimators is to make ρ(u;σ)
look like u2 for smaller values of u, but ensure that it grows more slowly than u2

for larger values of u.
The Huber loss is one important M-estimator. We use

ρ(u;σ) =

{

u2

2 |u | < σ

σ|u | − σ2

2

which is the same as u2 for −σ ≤ u ≤ σ, and then switches to |u | for larger
(or smaller) σ (Figure ??). The Huber loss is convex (meaning that there will
be a unique minimum for our models) and differentiable, but its derivative is not
continuous. The choice of the parameter σ (which is known as scale) has an effect
on the estimate. You should interpret this parameter as the distance that a point
can lie from the fitted function while still being seen as an inlier (anything that
isn’t even partially an outlier).

Generally, M-estimators are discussed in terms of their influence function.
This is

∂ρ

∂u
.

Its importance becomes evidence when we consider algorithms to fit β̂ using an
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FIGURE 8.2: Comparing three different linear regression strategies on the bodyfat
data, regressing weight against height. Notice that using an M-estimator gives an
answer very like that obtained by rejecting outliers by hand. The answer may well be
“better” because it isn’t certain that each of the four points rejected is an outlier, and
the robust method may benefit from some of the information in these points. I tried
a range of scales for the Huber loss (the ’k2’ parameter), but found no difference
in the line resulting over scales varying by a factor of 1e4, which is why I plot only
one scale.

M-estimator. Our minimization criterion is

∇β

(

∑

i

ρ(yi − xT
i β;σ)

)

=
∑

i

[

∂ρ

∂u
(yi − xT

i β;σ)

]

(−xi)

= 0.

Now write wi(β) for
∂ρ
∂u (yi − xT

i β;σ)

yi − xT
i β

.

We can write the minimization criterion as
∑

i

[wi(β)] (yi − xT
i β)(−xi) = 0.

Now write W(β) for the diagonal matrix whose i’th diagonal entry is wi(β) Then
our fitting criterion is equivalent to

X T [W(β)]Y = X T [W(β)]Xβ.

The difficulty in solving this is that wi(β) depend on β, so we can’t just solve a
linear system in β. We could use the following strategy. Use W tries to downweight
points that are suspiciously inconsistent with our current estimate of β, then update
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FIGURE 8.3: A robust linear regression of weight against all variables for the bodyfat
dataset, using the Huber loss and all data points. On the left, residual plotted
against fitted value (the residual is not standardized). Notice that there are some
points with very large residual, but most have much smaller residual; this wouldn’t
happen with a squared error. On the right, a histogram of the residual. If one
ignores the extreme residual values, this looks normal. The robust process has been
able to discount the effect of the outliers, without us needing to identify and reject
outliers by hand.

β using those weights. The strategy is known as iteratively reweighted least

squares, and is very effective.
We assume we have an estimate of the correct parameters β̂(n), and consider

updating it to β̂(n+1). We compute

w
(n)
i = wi(β̂

(n)) =
∂ρ
∂u (yi − xT

i β
(n);σ)

yi − xT
i β̂

(n)
.

We then estimate β̂(n+1) by solving

X TW(n)Y = X TW(n)X β̂(n+1).

The key to this algorithm is finding good start points for the iteration. One
strategy is randomized search. We select a small subset of points uniformly at
random, and fit some β̂ to these points, then use the result as a start point. If
we do this often enough, one of the start points will be an estimate that is not
contaminated by outliers.

8.2.2 Scale for M-Estimators

The estimators require a sensible estimate of σ, which is often referred to as scale.
Typically, the scale estimate is supplied at each iteration of the solution method.
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One reasonable estimate is the MAD or median absolute deviation, given by

σ(n) = 1.4826 mediani|r(n)i (xi; β̂
(n−1)) |.

Another a popular estimate of scale is obtained with Huber’s proposal 2 (that
is what everyone calls it!). Choose some constant k1 > 0, and define Ξ(u) =

min (|u |, k1)2. Now solve the following equation for σ:

∑

i

Ξ(
r
(n)
i (xi; β̂

(n−1))

σ
) = Nk2

where k2 is another constant, usually chosen so that the estimator gives the right
answer for a normal distribution (exercises). This equation needs to be solved with
an iterative method; the MAD estimate is the usual start point. R provides hubers,
which will compute this estimate of scale (and figures out k2 for itself). The choice
of k1 depends somewhat on how contaminated you expect your data to be. As
k1 → ∞, this estimate becomes more like the standard deviation of the data.

8.3 GENERALIZED LINEAR MODELS

We have used a linear regression to predict a value from a feature vector, but
implicitly have assumed that this value is a real number. Other cases are important,
and some of them can be dealt with using quite simple generalizations of linear
regression. When we derived linear regression, I said one way to think about the
model was

y = xTβ + ξ

where ξ was a normal random variable with zero mean and variance σ2
ξ . Another

way to write this is to think of y as the value of a random variable Y . In this case,
Y has mean xTβ and variance σ2

ξ . This can be written as

Y ∼ N(xTβ, σ2
ξ ).

This offers a fruitful way to generalize: we replace the normal distribution with
some other parametric distribution, and predict the parameter using xTβ. Two
examples are particularly important.

8.3.1 Logistic Regression

Assume the y values can be either 0 or 1. You could think of this as a two class clas-
sification problem, and deal with it using an SVM. There are sometimes advantages
to seeing it as a regression problem. One is that we get to see a new classification
method that explicitly models class posteriors, which an SVM doesn’t do.

We build the model by asserting that the y values represent a draw from a
Bernoulli random variable (definition below, for those who have forgotten). The
parameter of this random variable is θ, the probability of getting a one. But
0 ≤ θ ≤ 1, so we can’t just model θ as xTβ. We will choose some link function

g so that we can model g(θ) as xTβ. This means that, in this case, g must map
the interval between 0 and 1 to the whole line, and must be 1-1. The link function
maps θ to xTβ; the direction of the map is chosen by convention. We build our
model by asserting that g(θ) = xTβ.
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Definition: 8.1 Bernoulli random variable

A Bernoulli random variable with parameter θ takes the value 1 with
probability θ and 0 with probability 1 − θ. This is a model for a coin
toss, among other things.

Notice that, for a Bernoulli random variable, we have that

log

[

P (y = 1|θ)
P (y = 0|θ)

]

= log

[

θ

1− θ

]

and the logit function g(u) = log
[

u
1−u

]

meets our needs for a link function (it

maps the interval between 0 and 1 to the whole line, and is 1-1). This means we
can build our model by asserting that

log

[

P (y = 1|x)
P (y = 0|x)

]

= xTβ

then solving for the β that maximizes the log-likelihood of the data. Simple ma-
nipulation yields

P (y = 1|x) = ex
Tβ

1 + exTβ
and P (y = 0|x) = 1

1 + exTβ
.

In turn, this means the log-likelihood of a dataset will be

L(β) =
∑

i

[

I[y=1](yi)x
T
i β − log

(

1 + ex
T
i β
)]

.

You can obtain β from this log-likelihood by gradient ascent (or rather a lot faster
by Newton’s method, if you know that).

A regression of this form is known as a logistic regression. It has the
attractive property that it produces estimates of posterior probabilities. Another
interesting property is that a logistic regression is a lot like an SVM. To see this,
we replace the labels with new ones. Write ŷi = 2yi − 1; this means that ŷi takes
the values −1 and 1, rather than 0 and 1. Now I[y=1](yi) =

ŷi+1
2 , so we can write

−L(β) = −
∑

i

[

ŷi + 1

2
xT
i β − log

(

1 + ex
T
i β
)

]

=
∑

i

[

ŷi + 1

2
xT
i β − log

(

1 + ex
T
i β
)

]

=
∑

i

[

log

(

1 + ex
T
i β

e
ŷi+1

2 xT
i
β

)]

=
∑

i

[

log
(

e
−(ŷi+1)

2 x
T
i β + e

1−ŷi
2 x

T
i β
)]
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and we can interpret the term in square brackets as a loss function. If you plot
it, you will notice that it behaves rather like the hinge loss. When ŷi = 1, if xTβ
is positive the loss is very small, but if xTβ is strongly negative, the loss grows
linearly in xTβ. There is similar behavior when ŷi = −1. The transition is smooth,
unlike the hinge loss. Logistic regression should (and does) behave well for the same
reasons the SVM behaves well.

Be aware that logistic regression has one annoying quirk. When the data
are linearly separable (i.e. there exists some β such that yix

T
i β > 0 for all data

items), logistic regression will behave badly. To see the problem, choose the β that
separates the data. Now it is easy to show that increasing the magnitude of β will
increase the log likelihood of the data; there isn’t any limit. These situations arise
fairly seldom in practical data.

8.3.2 Multiclass Logistic Regression

Imagine y ∈ [0, 1, . . . , C − 1]. Then it is natural to model p(y|x) with a dis-
crete probability distribution on these values. This can be specified by choosing
(θ0, θ1, . . . , θC−1) where each term is between 0 and 1 and

∑

i θi = 1. Our link
function will need to map this constrained vector of θ values to a ℜC−1. We can
do this with a fairly straightforward variant of the logit function, too. Notice that
there are C− 1 probabilities we need to model (the C’th comes from the constraint
∑

i θi = 1). We choose one vector β for each probability, and write βi for the vector
used to model θi. Then we can write

xTβi = log

(

θi
1−∑u θu

)

and this yields the model

P (y = 0|x, β) =
ex

Tβ0

1 +
∑

i e
xTβi

P (y = 1|x, β) =
ex

Tβ1

1 +
∑

i e
xTβi

. . .

P (y = C − 1|x, β) =
1

1 +
∑

i e
xTβi

and we would fit this model using maximum likelihood. The likelihood is easy to
write out, and gradient descent is a good strategy for actually fitting models.

8.3.3 Regressing Count Data

Now imagine that the yi values are counts. For example, yi might have the count
of the number of animals caught in a small square centered on xi in a study region.
As another example, xi might be a set of features that represent a customer, and
yi might be the number of times that customer bought a particular product. The
natural model for count data is a Poisson model, with parameter θ representing the
intensity (reminder below).
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Definition: 8.2 Poisson distribution

A non-negative, integer valued random variable X has a Poisson distri-
bution when its probability distribution takes the form

P ({X = k}) = θke−θ

k!
,

where θ > 0 is a parameter often known as the intensity of the distri-
bution.

Now we need θ > 0. A natural link function is to use

xTβ = log θ

yielding a model

P ({X = k}) = ekx
T βe−ekx

T β

k!
.

Now assume we have a dataset. The negative log-likelihood can be written as

−L(β) = −
∑

i

log





eyix
T
i βe−e

yix
T
i

β

yi!





= −
∑

i

(

yix
T
i β − eyix

T
i β − log(yi!)

)

.

There isn’t a closed form minimum available, but the log-likelihood is convex, and
gradient descent (or Newton’s method) are enough to find a minimum. Notice that
the log(yi!) term isn’t relevant to the minimization, and is usually dropped.

8.3.4 Deviance

Cross-validating a model is done by repeatedly splitting a data set into two pieces,
training on one, evaluating some score on the other, and averaging the score. But
we need to keep track of what to score. For earlier linear regression models (eg
section 16.5), we have used the squared error of predictions. This doesn’t really
make sense for a generalized linear model, because predictions are of quite different
form. It is usual to use the deviance of the model. Write yt for the true prediction
at a point, xp for the independent variables we want to obtain a prediction for, β̂

for our estimated parameters; a generalized linear model yields P (y|xp, β̂). For our
purposes, you should think of the deviance as

−2 logP (yt|xp, β̂)
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(this expression is sometimes adjusted in software to deal with extreme cases, etc.).
Notice that this is quite like the least squares error for the linear regression case,
because there

−2 logP (y|xp, β̂) = (xT
p β̂ − yt)

2/σ2 +K

for K some constant.

8.4 L1 REGULARIZATION AND SPARSE MODELS

Forward and backward stagewise regression were strategies for adding independent
variables to, or removing independent variables from, a model. An alternative, and
very powerful, strategy is to construct a model with a method that forces some
coefficients to be zero. The resulting model ignores the corresponding independent
variables. Models built this way are often called sparse models, because (one
hopes) that many independent variables will have zero coefficients, and so the model
is using a sparse subset of the possible predictors.

In some situations, we are forced to use a sparse model. For example, imagine
there are more independent variables than there are examples. In this case, the
matrix X TX will be rank deficient. We could use a ridge regression (Section 7.4.2)
and the rank deficiency problem will go away, but it would be hard to trust the
resulting model, because it will likely use all the predictors (more detail below).
We really want a model that uses a small subset of the predictors. Then, because
the model ignores the other predictors, there will be more examples than there are
predictors that we use.

There is now quite a strong belief amongst practitioners that using sparse
models is the best way to deal with high dimensional problems (although there are
lively debates about which sparse model to use, etc.). This is sometimes called the
“bet on sparsity” principle: use a sparse model for high dimensional data, because
dense models don’t work well for such problems.

8.4.1 Dropping Variables with L1 Regularization

We have a large set of explanatory variables, and we would like to choose a small
set that explains most of the variance in the independent variable. We could do
this by encouraging β to have many zero entries. In section 7.4.2, we saw we could
regularize a regression by adding a term to the cost function that discouraged large
values of β. Instead of solving for the value of β that minimized

∑

i(yi − xT
i β)

2 =
(y −Xβ)T (y −Xβ) (which I shall call the error cost), we minimized

∑

i

(yi − xT
i β)

2 +
λ

2
βTβ = (y −Xβ)T (y −Xβ) +

λ

2
βTβ

(which I shall call the L2 regularized error). Here λ > 0 was a constant chosen
by cross-validation. Larger values of λ encourage entries of β to be small, but do
not force them to be zero. The reason is worth understanding.

Write βk for the k’th component of β, and write β−k for all the other compo-
nents. Now we can write the L2 regularized error as a function of βk:

(a+ λ)β2
k − 2b(β−k)βk + c(β−k)
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where a is a function of the data and b and c are functions of the data and of β−k.
Now notice that the best value of βk will be

βk =
b(β−k)

(a+ λ)
.

Notice that λ doesn’t appear in the numerator. This means that, to force βk to
zero by increasing λ, we may have to make λ arbitrarily large. This is because the
improvement in the penalty obtained by going from a small βk to βk = 0 is tiny –
the penalty is proportional to β2

k.
To force some components of β to zero, we need a penalty that grows linearly

around zero rather than quadratically. This means we should use the L1 norm of
β, given by

||β ||1 =
∑

k

|βk |.

To choose β, we must now solve

(y −Xβ)T (y −Xβ) + λ||β ||1

for an appropriate choice of λ. An equivalent problem is to solve a constrained
minimization problem, where one minimizes

(y −Xβ)T (y −Xβ) subject to ||β ||1 ≤ t

where t is some value chosen to get a good result, typically by cross-validation.
There is a relationship between the choice of t and the choice of λ (with some
thought, a smaller t will correspond to a bigger λ) but it isn’t worth investigating
in any detail.

Actually solving this system is quite involved, because the cost function is not
differentiable. You should not attempt to use stochastic gradient descent, because
this will not compel zeros to appear in β̂ (exercises). There are several methods,
which are beyond our scope. As the value of λ increases, the number of zeros in
β̂ will increase too. We can choose λ in the same way we used for classification;
split the training set into a training piece and a validation piece, train for different
values of λ, and test the resulting regressions on the validation piece. However, one
consequence of modern methods is that we can generate a very good approximation
to the path β̂(λ) for all values of λ ≥ 0 about as easily as we can choose β̂ for a
particular value of λ.

One way to understand the models that result is to look at the behavior
of cross-validated error as λ changes. The error is a random variable, random
because of the random split. It is a fair model of the error that would occur on
a randomly chosen test example (assuming that the training set is “like” the test
set, in a way that I do not wish to make precise yet). We could use multiple splits,
and average over the splits. Doing so yields both an average error for each value
of λ and an estimate of the standard deviation of error. Figure 8.4 shows the
result of doing so for two datasets. Again, there is no λ that yields the smallest
validation error, because the value of error depends on the random split cross-
validation. A reasonable choice of λ lies between the one that yields the smallest
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FIGURE 8.4: Plots of mean-squared error as a function of log regularization parame-
ter (i.e. logλ) for a regression of weight against all variables for the bodyfat dataset
using an L1 regularizer (i.e. a lasso). These plots show mean-squared error aver-
aged over cross-validation folds with a vertical one standard deviation bar. On the
left, the plot for the dataset with the six outliers identified in Figure 16.5 removed.
On the right, the plot for the whole dataset. Notice how the outliers increase the
variability of the error, and the best error. The top row of numbers gives the number
of non-zero components in β̂. Notice how as λ increases, this number falls (there
are 15 explanatory variables, so the largest model would have 15 variables). The
penalty ensures that explanatory variables with small coefficients are dropped as λ
gets bigger.

error encountered (one vertical line in the plot) and the largest value whose mean
error is within one standard deviation of the minimum (the other vertical line in

the plot). It is informative to keep track of the number of zeros in β̂ as a function
of λ, and this is shown in Figure 8.4.
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Listing 8.1: R code used for the lasso regression example of worked example 8.4

setwd ( ’/us e r s/daf/Current/ cou r s e s/Probcourse/Regres s i on/RCode/HeightWeight ’ ) ;
l ibrary ( gdata )
bfd<−read . x l s ( ’BodyFat . x l s ’ )
l ibrary ( glmnet )
xmat<−as .matrix ( bfd [ ,−c (1 , 5 , 1 8 ) ] )
ymat<−as .matrix ( bfd [ , 5 ] )
# keeping in the o u t l i e r s
dmodel<−cv . glmnet (xmat , ymat , alpha=0)
plot ( dmodel )
# wi thout o u t l i e r s
cbfd<−bfd[−c (216 , 39 , 41 , 42 , 221 , 163 ) , ]
xmat<−as .matrix ( cbfd [ ,−c (1 , 5 , 1 8 ) ] )
ymat<−as .matrix ( cbfd [ , 5 ] )
model<−cv . glmnet (xmat , ymat , alpha=0)
plot (model)

Worked example 8.3 Building an L1 regularized regression

Fit a linear regression to the bodyfat dataset, predicting weight as a function of
all variables, and using the lasso to regularize. How good are the predictions?
Do outliers affect the predictions?

Solution: I used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
∼hastie/glmnet/glmnet alpha.html. You can see from Figure 8.7 that (a) for the
case of outliers removed, the predictions are very good and (b) the outliers
create problems. Note the magnitude of the error, and the low variance, for
good cross validated choices. The main point of this example is to give you a
start on producing R code, and I have put a code snippet in example 8.1.

Another way to understand the models is to look at how β̂ changes as λ
changes. We expect that, as λ gets smaller, more and more coefficients become
non-zero. Figure 8.5 shows plots of coefficient values as a function of logλ for a
regression of weight against all variables for the bodyfat dataset, penalised using
the L1 norm. For different values of λ, one gets different solutions for β̂. When
λ is very large, the penalty dominates, and so the norm of β̂ must be small. In
turn, most components of β̂ are zero. As λ gets smaller, the norm of β̂ falls and
some components of become non-zero. At first glance, the variable whose coefficient
grows very large seems important. Look more carefully; this is the last component
introduced into the model. But Figure 8.4 implies that the right model has 7
components. This means that the right model has logλ ≈ 1.3, the vertical line
shown in the detailed figure. In the best model, that coefficient is in fact zero.

The L1 norm can sometimes produce an impressively small model from a
large number of variables. In the UC Irvine Machine Learning repository, there is
a dataset to do with the geographical origin of music (https://archive.ics.uci.edu/

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
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FIGURE 8.5: Plots of coefficient values as a function of logλ for a regression of
weight against all variables for the bodyfat dataset, penalised using the L1 norm. In
each case, the six outliers identified in Figure 16.5 were removed. On the left, the
plot of the whole path for each coefficient (each curve is one coefficient). On the
right, a detailed version of the plot. The vertical line shows the value of logλ the
produces the model with smallest cross-validated error (look at Figure 8.4). Notice
that the variable that appears to be important, because it would have a large weight
with λ = 0, does not appear in this model.

ml/datasets/Geographical+Original+of+Music). The dataset was prepared by Fang
Zhou, and donors were Fang Zhou, Claire Q, and Ross D. King. Further details
appear on that webpage, and in the paper: “Predicting the Geographical Origin
of Music” by Fang Zhou, Claire Q and Ross. D. King, which appeared at ICDM
in 2014. There are two versions of the dataset. One has 116 explanatory variables
(which are various features representing music), and 2 independent variables (the
latitude and longitude of the location where the music was collected). Figure 8.6
shows the results of a regression of latitude against the independent variables using
L1 regularization. Notice that the model that achieves the lowest cross-validated
prediction error uses only 38 of the 116 variables.

Regularizing a regression with the L1 norm is sometimes known as a lasso. A
nuisance feature of the lasso is that, if several explanatory variables are correlated,
it will tend to choose one for the model and omit the others (example in exercises).
This can lead to models that have worse predictive error than models chosen using
the L2 penalty. One nice feature of good minimization algorithms for the lasso is
that it is easy to use both an L1 penalty and an L2 penalty together. One can form

(

1

N

)

(

∑

i

(yi − xT
i β)

2

)

+ λ

(

(1− α)

2
||β ||22 + α||β ||1

)

Error + Regularizer

https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
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FIGURE 8.6: Mean-squared error as a function of log regularization parame-
ter (i.e. logλ) for a regression of latitude against features describing mu-
sic (details in text), using the dataset at https://archive.ics.uci.edu/ml/datasets/
Geographical+Original+of+Music and penalized with the L1 norm. The plot on the
left shows mean-squared error averaged over cross-validation folds with a vertical
one standard deviation bar. The top row of numbers gives the number of non-zero
components in β̂. Notice how as λ increases, this number falls. The penalty ensures
that explanatory variables with small coefficients are dropped as λ gets bigger. On
the right, a plot of the coefficient values as a function of logλ for the same regres-
sion. The vertical line shows the value of logλ the produces the model with smallest
cross-validated error. Only 38 of 116 explanatory variables are used by this model.

where one usually chooses 0 ≤ α ≤ 1 by hand. Doing so can both discourage large
values in β and encourage zeros. Penalizing a regression with a mixed norm like this
is sometimes known as elastic net. It can be shown that regressions penalized with
elastic net tend to produce models with many zero coefficients, while not omitting
correlated explanatory variables. All the computation can be done by the glmnet

package in R (see exercises for details).

https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
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FIGURE 8.7: Plots of mean-squared error as a function of log regularization parame-
ter (i.e. logλ) for a regression of weight against all variables for the bodyfat dataset
using an elastic net regularizer for various choices of α. The case α = 1 corresponds
to a lasso; α = 0 corresponds to a ridge; and α = 0.5 is one possible choice yielding
an elastic net. These plots show mean-squared error averaged over cross-validation
folds with a vertical one standard deviation bar. On the left, the plot for the dataset
with the six outliers identified in Figure 16.5 removed. On the right, the plot for
the whole dataset. Notice how the outliers increase the variability of the error, and
the best error. The top row of numbers gives the number of non-zero components in
β̂. Notice how as λ increases, this number falls (there are 15 explanatory variables,
so the largest model would have 15 variables). The penalty ensures that explanatory
variables with small coefficients are dropped as λ gets bigger.

Worked example 8.4 Building an elastic net regression

Fit a linear regression to the bodyfat dataset, predicting weight as a function
of all variables, and using the elastic net to regularize. How good are the
predictions? Do outliers affect the predictions?

Solution: I used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
∼hastie/glmnet/glmnet alpha.html. The package will do ridge, lasso and elastic
net regressions. One adjusts a parameter in the function call, α, that balances
the terms; α = 0 is ridge and α = 1 is lasso. You can see from Figure 8.7
that (a) for the case of outliers removed, the predictions are very good and
(b) the outliers create problems. Note the magnitude of the error, and the low
variance, for good cross validated choices. The main point of this example is
to give you a start on producing R code, and I have put a code snippet in
example 8.2.

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
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Listing 8.2: R code used for the elastic net regression example of worked example
8.4

setwd ( ’/us e r s/daf/Current/ cou r s e s/Probcourse/Regres s i on/RCode/HeightWeight ’ ) ;
l ibrary ( gdata )
bfd<−read . x l s ( ’BodyFat . x l s ’ )
l ibrary ( glmnet )
l ibrary ( p l s )
x<−as .matrix ( bfd [ ,−c (1 , 5 , 1 8 ) ] )
y<−as .matrix ( bfd [ , 5 ] )
f o l d i d=sample ( 1 : 10 , s i z e=length ( y ) , replace=TRUE)
cv1=cv . glmnet (x , y , f o l d i d=f o l d i d , alpha=1)
cv .5=cv . glmnet (x , y , f o l d i d=f o l d i d , alpha =.5)
cv0=cv . glmnet (x , y , f o l d i d=f o l d i d , alpha=0)
par (mfrow=c ( 2 , 2 ) )
plot ( cv1 ) ;
legend ( ” top ” , legend=”alpha=1” )
plot ( cv . 5 )
legend ( ” top ” , legend=”alpha=.5” ) ;
plot ( cv0 )
legend ( ” top ” , legend=”alpha=0” )
plot ( log ( cv1$lambda ) , cv1$cvm , pch=19, col=”red ” ,

xlab=” log (Lambda) ” , y lab=cv1$name)
points ( log ( cv . 5$lambda ) , cv . 5$cvm , pch=19, col=”grey” )
points ( log ( cv0$lambda ) , cv0$cvm , pch=19, col=”blue ” )
legend ( ” t o p l e f t ” ,

legend=c ( ” alpha=1” , ” alpha=.5” , ” alpha=0” ) ,
pch=19, col=c ( ” red ” , ” grey” , ” blue ” ) )

8.4.2 Wide Datasets

Now imagine we have more independent variables than examples (this is some-
times referred to as a “wide” dataset). This occurs quite often for a wide range
of datasets; it’s particularly common for biological datasets and natural language
datasets. Unregularized linear regression must fail, because X TX must be rank
deficient. Using an L2 (ridge) regularizer will produce an answer that should seem
untrustworthy. The estimate of β is constrained by the data in some directions,
but in other directions it is constrained only by the regularizer.

An estimate produced by L1 (lasso) regularization should look more reliable to
you. Zeros in the estimate of β mean that the corresponding independent variables
are ignored. Now if there are many zeros in the estimate of β, the model is being
fit with a small subset of the independent variables. If this subset is small enough,
then the number of independent variables that are actually being used is smaller
than the number of examples. If the model gives low enough error, it should seem
trustworthy in this case. There are some hard questions to face here (eg does the
model choose the “right” set of variables?) that we can’t deal with.
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FIGURE 8.8: On the left, a comparison between three values of α in a glmnet

regression predicting octane from NIR spectra (see Example 8.5). The plots show
cross-validated error against log regularization coefficient for α = 1 (lasso) and two
elastic-net cases, α = 0.5 and α = 0.1. I have plotted these curves separately,
with error bars, and on top of each other but without error bars. The values at the
top of each separate plot show the number of independent variables with non-zero
coefficients in the best model with that regularization parameter. On the right, a
ridge regression for comparison. Notice that the error is considerably larger, even
at the best value of the regularization parameter.

Worked example 8.5 L1 regularized regression for a “wide” dataset

The gasoline dataset has 60 examples of near infrared spectra for gasoline of
different octane ratings. The dataset is due to John H. Kalivas, and was origi-
nally described in the article “Two Data Sets of Near Infrared Spectra”, in the
journal Chemometrics and Intelligent Laboratory Systems, vol. 37, pp. 255259,
1997. Each example has measurements at 401 wavelengths. I found this dataset
in the R library pls. Fit a regression of octane against infrared spectrum using
L1 regularized logistic regression.

Solution: I used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
∼hastie/glmnet/glmnet alpha.html. The package will do ridge, lasso and elastic
net regressions. One adjusts a parameter in the function call, α, that balances
the terms; α = 0 is ridge and α = 1 is lasso. Not surprisingly, the ridge isn’t
great. I tried α = 0.1, α = 0.5 and α = 1. Results in Figure 8.8 suggest fairly
strongly that very good predictions should be available with the lasso using
quite a small regularization constant; there’s no reason to believe that the best
ridge models are better than the best elastic net models, or vice versa. The
models are very sparse (look at the number of variables with non-zero weights,
plotted on the top).

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
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FIGURE 8.9: Multiclass logistic regression on the MNIST data set, using a lasso and
elastic net regularizers. On the left, deviance of held out data on the digit data set
(worked example 8.6), for different values of the log regularization parameter in the
lasso case. On the right, deviance of held out data on the digit data set (worked
example 8.6), for different values of the log regularization parameter in the elastic
net case, α = 0.5.

8.4.3 Using Sparsity Penalties with Other Models

A really nice feature of using an L1 penalty to enforce sparsity in a model is that
it applies to a very wide range of models. For example, we can obtain a sparse
SVM by replacing the L2 regularizer with an L1 regularizer. Most SVM packages
will do this for you, although I’m not aware of any compelling evidence that this
produces an improvement in most cases. All of the generalized linear models I
described can be regularized with an L1 regularizer. For these cases, glmnet will
do the computation required. The worked example shows using a multinomial (i.e.
multiclass) logistic regression with an L1 regularizer.
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Worked example 8.6 Multiclass logistic regression with an L1 regularizer

The MNIST dataset consists of a collection of handwritten digits, which must
be classified into 10 classes (0, . . . 9). There is a standard train/test split. This
dataset is often called the zip code dataset because the digits come from zip
codes, and has been quite widely studied. Yann LeCun keeps a record of the per-
formance of different methods on this dataset at http://yann.lecun.com/exdb/
mnist/. Obtain the Zip code dataset from http://statweb.stanford.edu/∼tibs/
ElemStatLearn/, and use a multiclass logistic regression with an L1 regularizer
to classifiy it.

Solution: The dataset is rather large, and on my computer the fitting process
takes a little time. Figure 8.9 shows what happens with the lasso, and with
elasticnet with α = 0.5 on the training set, using glmnet to predict and cross
validation to select λ values. For the lasso, I found an error rate on the held
out data of 8.5%, which is OK, but not great compared to other methods. For
elastic net, I found a slightly better error rate (8.2%); I believe even lower error
rates are possible with these codes.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
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Listing 8.3: R code used for the digit example of worked example 8.6

setwd ( ’/us e r s/daf/Current/ cou r s e s/Probcourse/Regres s i on/RCode/Dig i t s ’ ) ;
l ibrary ( glmnet )
digdat<−read . table ( ’ z i p . t r a i n ’ , sep=’ ’ , header=FALSE)
y<−as . factor ( digdat$V1)
x<−as .matrix ( digdat [ ,−c (1 , 2 5 8 ) ] )
mod<−cv . glmnet (x , y , family=”mult inomial ” , alpha=1)
plot (mod)
# ok now we need to pr ed i c t
d i g t e s t<−read . table ( ’ z i p . t e s t ’ , sep=’ ’ , header=FALSE)
y t e s t<−as . factor ( d i g t e s t $V1)
x t e s t<−as .matrix ( d i g t e s t [ ,−c (1 , 2 5 8 ) ] )
lmpredn<−predict (mod, xtes t , type=’ c l a s s ’ , s=’ lambda . min ’ )
l1predn<−predict (mod, xtes t , type=’ c l a s s ’ , s=’ lambda . 1 se ’ )
nmright<−sum( y t e s t==lmpredn )
err ratem<−(1−nmright/dim( lmpredn ) )
n1r i ght<−sum( y t e s t==lmpredn )
e r r r a t e 1<−(1−n1r i ght/dim( lmpredn ) )
mod . 5<−cv . glmnet (x , y , family=”mult inomial ” , alpha =0.5)
plot (mod . 5 )
# ok now we need to pr ed i c t
d i g t e s t<−read . table ( ’ z i p . t e s t ’ , sep=’ ’ , header=FALSE)
y t e s t<−as . factor ( d i g t e s t $V1)
x t e s t<−as .matrix ( d i g t e s t [ ,−c (1 , 2 5 8 ) ] )
lmpredn . 5<−predict (mod . 5 , xtes t , type=’ c l a s s ’ , s= ’ lambda . min ’ )
l1predn . 5<−predict (mod . 5 , xtes t , type=’ c l a s s ’ , s= ’ lambda . 1 se ’ )
nmright . 5<−sum( y t e s t==lmpredn . 5 )
er r ratem . 5<−(1−nmright . 5/dim( lmpredn . 5 ) )
n1r i ght . 5<−sum( y t e s t==lmpredn . 5 )
e r r r a t e 1 . 5<−(1−n1r i ght . 5/dim( lmpredn . 5 ) )
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C H A P T E R 9

Bumps and Non-Parametric
Regression

For many data sets, we expect that points near a given x will have similar y
values. We can exploit this observation in a variety of ways.

9.1 LINEAR MODELS USING BUMPS

Now think about the function y that we wish to interpolate, and assume that x

is “reasonably” scaled, meaning that distances between points are a good guide to
their similarity. There are several ways to achieve this. We could whiten the points
(section 16.5), or we could use our knowledge of the underlying problem to scale
the different features relative to one another. Once we have done this properly, we
expect the similarity between y(u) and y(v) to depend on the distance between
these points (i.e. ||u− v ||) rather than on the direction of the vector joining them
(i.e. u − v). Furthermore, we expect that the dependency should decline with
increasing ||x− xi ||.

This suggests a general approach. Choose a “bump” function, traditionally
written K(u) in one variable (u). This is called a bump function because it looks
like a bump; it will have a large value at the origin, and fall off reasonably with
distance from the origin. Now we can easily make a bump in d dimensions, by
looking at K(||x− xc ||). This will have its bump centered on xi, and will fall off
with distance from xc. Conveniently, the bump falls off in the same way along each
of the directions leaving xc. We now have a quite general modelling strategy: place
a collection of bumps at a variety of points, and build a model of y by adjusting
the weights of the bumps.

In most problems, we don’t know how quickly the weights should decline with
increasing distance, and it is usual to have a scaling parameter to handle this. The
scaling parameter will need to be selected.

9.1.1 Scattered Data: Smoothing and Interpolation

Imagine we have a set of points xi on the plane, with a measured height value yi for
each point. We would like to reconstruct a surface from this data. There are two
important subcases: interpolation, where we want a surface that passes through
each value; and smoothing, where our surface should be close to the values, but
need not pass through them. This case is easily generalised to a larger number of
dimensions. Particularly common is to have points in 3D, or in space and time.

Although this problem is very like regression, there is an important difference:
we are interested only in the predicted value at each point, rather than in the
conditional distribution. Typical methods for dealing with this problem are very
like regression methods, but typically the probabilistic infrastructure required to

205
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FIGURE 9.1: A dataset recording scores of prawn trawls around the Great Barrier
Reef, from http://www.statsci.org/data/oz/ reef.html . There are two scores; this is
score 1. On the left I have plotted the data as a 3D scatter plot. This form of plot
isn’t usually very successful, though it helps to make it slightly easier to read if one
supplies vertical lines from each value to zero, and a zero surface. On the right, a
heat map of this data, made by constructing a fine grid, then computing the average
score for each grid box (relatively few boxes get one score, and even fewer get two).
The brightest point corresponds to the highest score; mid-grey is zero (most values),
and dark points are negative. Notice that the scale is symmetric; the reason there is
no very dark point is that the smallest value is considerably larger than the negative
of the largest value. The x and y dimensions are longitude and latitude, and I have
ignored the curvature of the earth, which is pretty small at this scale.

predict variances, standard errors, and the like are not developed. Interpolation and
smoothing problems in one dimension have the remarkable property of being very
different to those in two and more dimensions (if you’ve been through a graphics
course, you’ll know that, for example, interpolating splines in 2D are very different
from those in 1D). We will concentrate on the multidimensional case.

We will formalize the idea of a bump function with a kernel function. A
kernel function K(u) is a non-negative function such that (a) K(−u) = K(u) and
(b)

∫∞
−∞ K(u)du = 1. Widely used kernel functions are:

• The Gaussian kernel, K(u) = 1√
2π

exp−u2

2 . Notice this doesn’t have com-
pact support.

• The Epanechnikov kernel, K(u) = 3
4 (1 − u2)I[|u|≤1]. This isn’t differen-

tiable at u = −1 and at u = 1.

http://www.statsci.org/data/oz/reef.html
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interpolated with Gaussian kernel

FIGURE 9.2: The prawn data of figure 9.1, interpolated with radial basis functions
(in this case, a Gaussian kernel) with scale chosen by cross-validation. On the left,
a surface shown with the 3D scatter plot. On the right, a heat map. I ignored the
curvature of the earth, small at this scale, when computing distances between points.
This figure is a good example of why interpolation is usually not what one wants to
do (text).

• The Logistic kernel, K(u) = 1
exp−u+expu+2 . This doesn’t have compact

support, either.

• The Quartic kernel, K(u) = 15
16 (1− u2)2I[|u|≤1].

You should notice that each is a bump function – it’s large at u = 0, and falls away
as |u | increases. It follows from the two properties above that, for h > 0, if K(u)
is a kernel function, then K(u;h) = 1

hK(uh ) is also a kernel function. This means
we can vary the width of the bump at the origin in a natural way by choice of h;
this is usually known as the “scale” of the function.

We choose a kernel function K, then build a function

y(x) =

R
∑

j=1

ajK

( ||x− bj ||
h

)

where bj is a set of R points which don’t have to be training points. These are
sometimes referred to as base points. You can think of this process as placing a
weighted bump at each base point. Consider the values that this function takes at
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FIGURE 9.3: The prawn data of figure 9.1, smoothed with radial basis functions (in
this case, a Gaussian kernel) with scale chosen by cross-validation. On the left,
a surface shown with the 3D scatter plot. On the right, a heat map. I ignored
the curvature of the earth, small at this scale, when computing distances between
points. I used 60 basepoints, constructed by choosing 60 of 155 training points at
random, then adding a small random offset.

the training points xi. We have

y(xi) =

R
∑

j=1

ajK

( ||xi − bj ||
h

)

and we would like to minimize
∑

i (yi − y(xi))
2
. We can rewrite this with the

aid of some linear algebra. Write G for the Gram matrix, whose i, j’th entry

is K
(

||xi−bj||
h

)

; write Y for the vector whose i’th component is yi; and a for the

vector whose j’th component is aj . Then we want to minimize

(Y − Ga)T (Y − Ga).

There are a variety of cases. For interpolation, we choose the base points to be the
same as the training points. A theorem of Micchelli guarantees that for a kernel
function that is (a) a function of distance and (b) monotonically decreasing with
distance, G will have full rank. Then we must solve

Y = Ga (Interpolation)

for a and we will obtain a function that passes through each training point. For
smoothing, we may choose any set of R < N basepoints, though it’s a good idea to
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choose points that are close to the training points. Cluster centers are one useful
choice. We then solve the least-squares problem by solving

GTY = GTGa (Smoothing)

for a. In either case, we choose the scale h by cross-validation. We do this by:
selecting a set of scales; holding out some training points, and interpolating (resp.
smoothing) the values of the others; then computing the error of the predictions
for these held-out points. The error is usually the square of the residual, and it’s
usually a good idea to average over many points when doing this.

Both interpolation and smoothing can present significant numerical chal-
lenges. If the dataset is large, G will be large. For values of h that are large, G
(resp. GTG) is usually very poorly conditioned, so solving the interpolation (resp.
smoothing) system accurately is hard. This problem can usually be alleviated by
adding a small constant (λ) times an identity matrix (I) in the appropriate spot.
So for interpolation, we solve

Y = (G + λI)a (Interpolation)

for a and we will obtain a function that passes through each training point. Simi-
larly, for smoothing, we solve

GTY = (GTG + λI)a (Smoothing)

for a. Usually, we choose λ to be small enough to make the linear algebra work
(1e− 9 usually works for me), and ignore it.

Remember this: Interpolation isn’t as useful as most people think,
because most measurements aren’t exactly right or exactly repeatable.

As Figure 9.2 suggests, interpolation isn’t really as useful as you might think.
Most measurements aren’t exactly right, or exactly repeatable. If you look closely
at the figure, you’ll see one location where there are two scores; this is entirely to
be expected for the score of a prawn trawl at a particular spot in the ocean. This
creates problems for interpolation; G must be rank deficient, because two rows will
be the same. Another difficulty is that the scores look “wiggly” — moving a short
distance can cause the score to change quite markedly. This is likely the effect of
luck in trawling, rather than any real effect. The interpolating method chooses a
very short scale, because this causes the least error in cross-validation, caused by
predicting zero at the held out point (which is more accurate than any prediction
available at any longer scale). The result is an entirely implausible model.

Now look at Figure 9.3. The smoothed surface is a reasonable guide to the
scores; in the section of ocean where scores tend to be large and positive, so is the
smoothed surface; where they tend to be negative, the smoothed surface is negative,
too.
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FIGURE 9.4: The prawn data of figure 9.1, now smoothed with glmnet. On the
left, the plot of held out error vs log regularization weight produced by glmnet for
the prawn data, as described in example 9.1. Notice that the best regression uses
between 20 and 30 of 930 possible features. On the right, a heat map. case, a
Gaussian kernel) with scale chosen by cross-validation.

9.1.2 Model Selection

We have constructed a model of y as a weighted sum of bump functions. We placed
one bump function at each of a set of base points, then solved a linear system to
get the weights that best represent y. You could see this as a version of linear
regression, where we constructed new independent variables (the bump functions)
from the original independent variables (the x). Apart from the bump functions,
we were following the general scheme of linear regression. This is important. It
means that we can apply the material of chapter 16.5 to this idea. For example,
you could choose the number and location of bumps using AIC or BIC and forward
or backward stagewise regression. You could choose the number and location of
bumps using a lasso penalty. You could change the squared error cost function to
a robust cost function. All of these would be relatively routine (and really useful)
combinations of methods we already know. In section 9.2.1, I will show a use of
bump functions that is quite different from what we have seen before.
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Worked example 9.1 Using the lasso to predict prawn catches

One can combine methods, very usefully. It is quite straightforward to persuade
glmnet to apply the lasso to the prawn catch data.

Solution: I chose a set of base points (in this case, all training data points)
and a set of six scales. I then built a bump of each scale at each base point.
Write xi for each training data point, yi for the value at the i’th training point,
bj for the j’th base point, sk for the k’th scale and K(x;bj , sk) for the bump
of scale sk centered at bj , as a function of position x. I then constructed a
vector of training features for the i’th training point consisting of

fi = [K(xi;b1, s1), . . . ,K(xi;b1, sk), . . . ,K(xi;bj , s1), . . . ,K(xi;bj , sk), . . .] .

In this dataset, there are 155 points, and I used 6 scales, so this is a 930
dimensional vector. I then used glmnet to predict the values of yi from fi.
I used an elastic net regression (i.e. a convex combination of lasso and ridge
penalties) because I expected strong correlations between the components of fi;
I used α = 0.5. Figure 9.4 shows the result, which to me seems a better model
than that of Figure 9.3 (there is slightly less wiggling). Notice how good glmnet

is at reducing the number of variables. The best regression uses between 20
and 30 of 930 possible features (depending on precisely what criterion one uses
to choose). This is likely because the method gets to select a scale for each
kernel function, and can use more than one kernel at a base point. I have given
the R code I used to produce Figure 9.4 in listing 9.1, to give some idea of the
procedures involved.

9.2 NON PARAMETRIC BUMP MODELS

All of our regression models to date have been built by choosing some family of
parametric functions of the independent variables, then choosing the parameters
that give the best prediction. Write θ for a vector of parameters, x for the inde-
pendent variables, and f(x; θ) for the function in the family chosen by θ; then we

obtain a “good choice” of parameters (write θ̂ for that choice), and our prediction
is

f(x; θ̂).

As a concrete example, all the regressions we have discussed so far have used the
family of linear functions.

There are tremendous advantages to this approach. By choosing a family of
functions with a “small” set of parameters, we can control the variance of the esti-
mate. We can make predictions for points that are some way away from the training
data, and they are often quite good. We have a collection of strong algorithms for
choosing θ̂, and we can choose algorithms that impose properties on the estimate,
too (eg sparseness; robustness to outliers). A model of this form is usually called a
parametric model.
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Listing 9.1: R code used for the elastic net regression example of worked example
9.4

setwd ( ’˜/Current/Courses/Probcourse/Regres s i on/Matlabcode/ScatteredData/ ’ )
prawns<−read . csv ( ’ c l ean−prawns . csv ’ , header=FALSE)
setwd ( ’˜/Current/Courses/Probcourse/Regres s i on/RCode/Prawns/ ’ )

# now comes the good b i t
ndat<−dim( prawns ) [ 1 ]
s range<− c ( 0 . 1 , 0 . 15 , 0 . 2 , 0 . 25 , 0 . 3 , 0 . 35 )
xmat<−as .matrix ( prawns [ , c (1 , 2 ) ] )
spaces<−d i s t (xmat , method = ” euc l i dean ” , diag = FALSE, upper = FALSE)
msp<−as .matrix ( spaces )
wmat<−exp(−msp/ (2∗ srange [ 1 ] ˆ 2 ) )
for ( i i n 2 : 6 )

{grammmat<−exp(−msp/ (2∗ srange [ i ] ˆ 2 ) )
wmat<−cbind (wmat , grammmat)

}
wmod<−cv . glmnet (wmat , as . vector ( prawns [ , 3 ] ) , alpha =0.5)
xmin<−min(xmat [ , 1 ] )
xmax<−max(xmat [ , 1 ] )
ymin<−min(xmat [ , 2 ] )
ymax<−max(xmat [ , 2 ] )
xvec<−seq ( xmin , xmax , length=100)
yvec<−seq ( ymin , ymax , length=100)
# these are the po in t s
pmat<−matrix (0 , nrow=100∗100 , ncol=2)
ptr<−1
for ( i i n 1 : 100)

{
for ( j i n 1 : 100)

{pmat [ ptr , 1 ]<−xvec [ i ]
pmat [ ptr , 2 ]<−yvec [ j ]
ptr<−ptr+1

}
}

di f f i j <− function ( i , j ) sqrt ( rowSums ( ( pmat [ i , ]−xmat [ j , ] ) ˆ 2 ) )
d i s t sampl etop t s <− outer ( seq l en (10000) , seq l en (dim(xmat ) [ 1 ] ) , di f f i j )
wmat<−exp(−di s t sampl etopt s / (2∗ srange [ 1 ] ˆ 2 ) )
for ( i i n 2 : 6 )

{grammmat<−exp(−di s t sampl etop t s / (2∗ srange [ i ] ˆ 2 ) )
wmat<−cbind (wmat , grammmat)

}
preds<−predict . cv . glmnet (wmod, wmat , s= ’ lambda . min ’ )
zmat<−matrix (0 , nrow=100 , ncol=100)
ptr<−1
for ( i i n 1 : 100)

{ for ( j i n 1 : 100)
{zmat [ i , j ]<−preds [ ptr ]
ptr<−ptr+1

}
}

wscale=max(abs (min( preds ) ) , abs (max( preds ) ) )
image( yvec , xvec , ( t ( zmat)+wscale )/ (2∗wscale ) ,

x lab=’ Longitude ’ , y lab=’ Lati tude ’ ,
col=grey ( seq (0 , 1 , length=256)) , useRaster=TRUE)

# th i s g e t s the heat map
plot (wmod)
# and t h i s the r e g u l a r i z a t i o n r e s u l t s
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There are some disadvantages. By forcing the prediction to come from a
particular family of functions, we are also forced to make inaccurate predictions for
some datasets (those where that family doesn’t encode the prediction well). It is
hard to build a family of functions that is very flexible in regions where there are
lots of data points, and quite inflexible where there are few (you could look at my
lasso example on the prawn data as a step in that direction).

An alternative approach is to use a non-parametric model. The precise
delineation between the classes is difficult to state, but a non-parametric model does
not estimate parameter values. Instead, the model finds useful training examples
and combines them to make predictions.
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FIGURE 9.5: A non-parametric regression using a kernel smoothing method for the
datasets of Figures 7.1 and 7.5. The curve shows the expected value of the inde-
pendent variable for each value of the explanatory variable. The vertical bars show
the standard error of the predicted density for the independent variable, for each
value of the explanatory variable. Notice that, as one would expect, the standard
deviation is smaller closer to data points, and larger further away. On the left, the
perch data. On the right, the cricket data.

9.2.1 Kernel Smoothing

Bump functions offer one way to build a non-parametric regression. In the previous
section, we used a set of bumps, centered on base points, to model a function of
x. The model was a weighted sum of bumps, with the weights adjusted to get the
best prediction. This allowed us to use familiar machinery from linear regression
to control the number of bumps, the scale, and so on. We did not require that the
base points be the same as the example points (but didn’t prevent it, either).

An alternative approach is to build functions W (x,xi) that blend together
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FIGURE 9.6: A non-parametric regression, using kernel smoothing, of weight against
height, using the dataset of Figure 16.5. On the left, a curve showing the expected
value of the independent variable for each value of the explanatory variable, with
axes chosen to show the outlying point. The vertical bars show the standard error of
the predicted density for the independent variable, for each value of the explanatory
variable. Notice the method can make predictions around this point, but that these
predictions have very large standard error as one would expect. On the right, the
same curve, but on axes chosen to display the non-outlying points. The bars are
small, because the standard error is small here (this isn’t the same as the standard
deviation of the predictive distribution).

the values at the training points. Our estimate of y(x) is

N
∑

i=1

yiW (x,xi)

(i.e. we take each yi, and blend with a weight function). We need good choices
of W (x,xi). There are some simple, natural constraints we can impose. We
should like y(x) to be a convex combination of the observed values. This means
we want W (x,xi) to be non-negative (so we can think of them as weights) and
∑

i W (x,xi) = 1. Generally, we want W (x,xi) to fall off smoothly with distance
from xi, but we would need to adjust the rate at which it falls off.

There is a natural construction using a kernel function K(u). We use

W (x,xi;hi) =
K( ||x−xi||

hi
)

∑k
j=1 K(

||x−xj||
hi

)

where I have expanded the notation for the weight function to keep track of the
scaling parameter, hi, which we will need to select. There is one scaling parameter
per training point. This should seem natural to you. If there are few points near a
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FIGURE 9.7: A non-parametric regression, using kernel smoothing, of weight against
all variables, using the bodyfat dataset of Figure 16.5. On the left, a scatterplot
of the predicted value against residual, on axes that show all points. The residual
has not been standardized, because it is unclear how to do so. I have shown a one
standard error bar for the residual as a vertical bar, plotted at the mean predicted
value. For some points, the standard error is very small, so you can only see a
horizontal bar. Notice how some points have a large residual, but most residuals are
in a reasonable range. On the right, the same plot, but on axes chosen to display
the non-outlying points. The bars are small, because the standard error is small
here (this isn’t the same as the standard deviation of the predictive distribution).

given data point, then we should have weights that fall off slowly, so that we can
for a weighted average of those points. But if there are many points nearby, we
can have weights that off fast. The weights are non-negative because we are using
a non-negative kernel function. The weights sum to 1, because we divide at each
point by the sum of all kernels evaluated at that point. For reference, this gives the
expression

y(x) =

N
∑

i=1

yi





K( ||x−xi||
hi

)
∑k

j=1 K(
||x−xj||

hj
)





Changing the hi will change the radius of the bumps, and will cause more (or
fewer) points to have more (or less) influence on the shape of y(x). Selecting the
hi is easy in principle. We search for a set of values that minimizes cross-validation
error. In practice, this takes an extremely extensive search involving a great deal
of computation, particularly if there are lots of points or the dimension is high. For
the examples of this section, I used the R package np.
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Listing 9.2: R code used for the perch example of worked example 9.2

setwd ( ’/us e r s/daf/Current/ cou r s e s/Probcourse/Regres s i on/RCode/FishCatch ’ )
i ns ta l l .packages ( ’ np ’ )
l ibrary (np )
pod<−read . table ( ’ perchonly . txt ’ )
ndat<−dim( pod )
wtab<−matrix (data=NA, nrow=ndat , ncol=2)
wtab [ , 1 ]<−pod [ , c ( 3 ) ]
wtab [ , 2 ]<−pod [ , c ( 6 ) ]
wframe<−as .data . frame (wtab )
colnames(wframe )<−c ( ’Weight ’ , ’ Length ’ )
wm<−npreg (Weight˜Length , data=wframe , ckertype=’ gaus s i an ’ )
plot (wm, plot . e r r o r s . method=’ boots t r ap ’ ,

main=”Weight vs l ength in perch from Lake Laengelmavesi \n Kernel smoothed r e g r e s s i o n ” )
points (wtab [ , 2 ] , wtab [ , 1 ] )

Worked example 9.2 Using kernel smoothing to predict fish weight

Use a kernel smoother to predict the weight of a perch from its length, using the
dataset of http://www.amstat.org/publications/jse/jse data archive.htm (look for
“fishcatch” on that page).

Solution: This is mainly an excuse to show you more code. I used the R code
of listing 9.2 to produce the perch graph in Figure 9.5

A nice feature of this search is that it generates a great deal of information
about the likely accuracy of the model. Each data point is going to be held out
multiple times, so that we can estimate the standard error of the prediction at
each data point. This is the standard deviation of the error in the estimate of the
mean, due to random sampling effects. The details of this estimate are well beyond
the scope of these notes. But np produces it, and I have shown standard error
bars on the plots. You should notice that this is not the standard deviation of the
predictive distribution (which we haven’t computed, and largely haven’t discussed).
You should interpret the bars as the uncertainty in the prediction produced at a
point due to the changes from training set to training set. Large bars indicate
predictions you should not trust, because resampling the training data set produces
large variations in the predictions at that point.

9.2.2 Density Estimation

One specialized application of kernel functions related to smoothing is density

estimation. Here we have a set of N data points xi which we believe to be IID
samples from some p(X), and we wish to estimate the probability density function
p(X). In the case that we have a parametric model for p(X), we could do so by
estimating the parameters with (say) maximum likelihood. But we may not have
such a model, or we may have data that does not comfortably conform to any
model.

http://www.amstat.org/publications/jse/jse_data_archive.htm
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FIGURE 9.8: The prawn data of figure 9.1, now shown on the left as a scatter
plot of locations from which scores were reported. The ’o’s correspond to negative
scores, and the ’+’s to positive scores. On the right, a density estimate of the
probability distribution from which the fishing locations were drawn, where lighter
pixels correspond to larger density values. I ignored the curvature of the earth, small
at this scale, when computing distances between points.

A natural, and important, model is to place probability 1/N at each data
point, and zero elsewhere. This is sometimes called an empirical distribution.
However, this model implies that we can only ever see the values we have already
seen, which is often implausible or incovenient. We should like to “smooth” this
model. If the xi have low enough dimension, we can construct a density estimate
with kernels in a straightforward way.

Recall that a kernel function is non-negative, and has the property that
∫∞
−∞ K(u)du = 1. This means that if

y(x) =

R
∑

j=1

ajK

( ||x− bj ||
h

)

we have
∫ ∞

−∞
y(x)dx =

R
∑

j=1

aj.

Now imagine we choose a basepoint at each data point, and we choose aj = 1/N
for all j. The resulting function is non-negative, and integrates to one, so can be
seen as a probability density function. We are placing a bump function of scale h,
weighted by 1/N on top of each data point. If there are many data points close
together, these bump functions will tend to reinforce one another and the resulting
function will be large in such regions. The function will also be small in gaps
between data points that are large compared to h. The resulting model captures
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FIGURE 9.9: Further plots of the prawn data of figure 9.1. On the left, a den-
sity estimate of the probability distribution from which the fishing locations which
achieved positive values of the first score were drawn, where lighter pixels corre-
spond to larger density values. On the right, a density estimate of the probability
distribution from which the fishing locations which achieved negative values of the
first score were drawn, where lighter pixels correspond to larger density values. I
ignored the curvature of the earth, small at this scale, when computing distances
between points.

the need to (a) represent the data and (b) allow values that have not been observed
to have non-zero probability.

Choosing h using cross-validation is straightforward. We choose the h that
maximises the log-likelihood of omitted “test” data, averaged over folds. There is
one nuisance effect here to be careful of. If you use a kernel that has finite support,
you could find that an omitted test item has zero probability; this leads to trouble
with logarithms, etc. You could avoid this by obtaining an initial scale estimate
with a kernel that has infinite support, then refining this with a kernel with finite
support.

Density estimation techniques using kernels are useful in a variety of applica-
tions. For example, one can build very good naive Bayes classifiers using a kernel
density estimate. This is a good replacement for a normal model of the class-
conditional density of feature values. You should be careful about one point. We
have seen that, for high dimensional data sets, most pairs of points are far apart.
This means that, for high dimensional data sets, kernel density estimates can per-
form very poorly. Whether they give good or bad estimates depends quite a lot
on how the points are distributed in the feature space, and so on the details of the
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FIGURE 9.10: An estimate of the posterior probability of obtaining a positive value
of the first catch score for prawns, as a function of position, from the prawn data
of figure 9.2, using the density estimate of figure ??. Lighter pixels correspond to
larger density values. I ignored the curvature of the earth, small at this scale, when
computing distances between points.

particular problem.

9.3 EXPLOITING YOUR NEIGHBORS FOR REGRESSION

TODO: work in local polynomial stuff
Nearest neighbors can clearly predict a number for a query example — you find
the closest training example, and report its number. This would be one way to
use nearest neighbors for regression, but it isn’t terribly effective. One important
difficulty is that the regression prediction is piecewise constant (Figure 9.11). If
there is an immense amount of data, this may not present major problems, because
the steps in the prediction will be small and close together. But it’s not generally
an effective use of data.

A more effective strategy is to find several nearby training examples, and use
them to produce an estimate. This approach can produce very good regression
estimates, because every prediction is made by training examples that are near to
the query example. However, producing a regression estimate is expensive, because
for every query one must find the nearby training examples.

Write x for the query point, and assume that we have already collected the
N nearest neighbors, which we write xi. Write yi for the value of the dependent
variable for the i’th of these points. Notice that some of these neighbors could be
quite far from the query point. We don’t want distant points to make as much



Section 9.3 Exploiting Your Neighbors for Regression 220

−6 −4 −2 0 2 4 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Explanatory variable

D
ep

en
d
en

t 
v
ar

ia
b
le

Nearest Neighbor Regression

−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Explanatory variable

D
ep

en
d
en

t 
v
ar

ia
b
le

Nearest Neighbor Regression, 40 pts, k=5

 

 
Inverse Dist

Exp si=0.1

Exp si=0.5

Exp si=1

−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Explanatory variable

D
ep

en
d
en

t 
v
ar

ia
b
le

Nearest Neighbor Regression, 40 pts, k=10

 

 
Inverse Dist

Exp si=0.1

Exp si=0.5

Exp si=1

−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Explanatory variable

D
ep

en
d
en

t 
v
ar

ia
b
le

Nearest Neighbor Regression, 40 pts, k=20

 

 
Inverse Dist

Exp si=0.1

Exp si=0.5

Exp si=1

FIGURE 9.11: Different forms of nearest neighbors regression, predicting y from a
one-dimensional x, using a total of 40 training points. Top left: reporting the
nearest neighbor leads to a piecewise constant function. Top right: improvements
are available by forming a weighted average of the five nearest neighbors, using in-
verse distance weighting or exponential weighting with three different scales. Notice
if the scale is small, then the regression looks a lot like nearest neighbors, and if it
is too large, all the weights in the average are nearly the same (which leads to a
piecewise constant structure in the regression). Bottom left and bottom right

show that using more neighbors leads to a smoother regression.

contribution to the model as nearby points. This suggests forming a weighted
average of the predictions of each point. Write wi for the weight at the i’th point.
Then the estimate is

ypred =

∑

i wiyi
∑

i wi
.

A variety of weightings are reasonable choices. Write di = ||(x − xi) || for
the distance between the query point and the i’th nearest neighbor. Then inverse
distance weighting uses wi = 1/di. Alternatively, we could use an exponential
function to strongly weight down more distant points, using

wi = exp

(−d2i
2σ2

)

.

We will need to choose a scale σ, which can be done by cross-validation. Hold out
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some examples, make predictions at the held out examples using a variety of dif-
ferent scales, and choose the scale that gives the best held-out error. Alternatively,
if there are enough nearest neighbors, we could form a distance weighted linear
regression, then predict the value at the query point from that regression.

Each of these strategies presents some difficulties when x has high dimension.
In that case, it is usual that the nearest neighbor is a lot closer than the second
nearest neighbor. If this happens, then each of these weighted averages will boil
down to evaluating the dependent variable at the nearest neighbor (because all the
others will have very small weight in the average).

Remember this: Nearest neighbors can be used for regression. In the
simplest approach, you find the nearest neighbor to your feature vector, and
take that neighbor’s number as your prediction. More complex approaches
smooth predictions over multiple neighbors.

9.3.1 Local Polynomial Regression

Imagine wish to predict a value at a point x0. Write y0 for the value we predict.
A reasonable choice would be to choose a number that minimizes a least squares
difference to the training values, weighted in some way. We would like weights to
be large for training points that are close to the test point, and small for points
that are far away. We could achieve this using a kernel function, and choose the yo
to be the value of α0 that minimizes

∑

i

(yi − α0)
2 K(

||x0 − xi ||
hi

).

If you differentiate and set to zero, etc., you will find you have the familiar expression
for kernel regression

y0 =

N
∑

i=1

yi

(

K( ||x0−xi||
hi

)
∑k

j=1 K(
||x0−xj||

hi
)

)

.

You can read the K( ||x0−xi||
hi

) terms in the equation

∑

i

[yi − α0]
2
K(

||x0 − xi ||
hi

)

as weights linking each training point to the test point x0. Then minimizing this
expression in α0 is equivalent to choosing a single value α0 such that the weighted
errors (the terms [yi − α0]

2) are minimized. There is a new function α0 for each x0,
because when x0 changes all the weights change. This suggests something really
fruitful. Rather than thinking of α0 as a constant placed at each training point, we
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should think of it as a function (that takes a constant value) and is placed at each
training point. This is fruitful, because it suggests a way to generalize the model:
place more complicated functions at each training point.

I will describe only the case of linear functions, but the others follow fairly
naturally. Some, rather fussy, people may prefer me to describe these functions as
“affine”. I won’t do this, because if I do, few people will know what I am talking
about. We write a linear function around the point xi as α0 + (x− xi)

Tα1, where
α1 is a vector of coefficients. You should notice the analogy with a Taylor series.

Now to compute the value of y0 corresponding to a test point x0, we first
minimize

∑

i

[

yi −
(

α0 + (x0 − xi)
Tα1

)]2
K(

||x0 − xi ||
hi

)

as a function of α0 and α1. You can think about the resulting α0, α1 as the (local)
polynomial function of degree d that best approximates the function we are trying
to represent. In particular, the weighted errors of trying to predict yi at xi are
minimized. We can use this function to predict y0 at x0; but (x0 − x0) = 0, so our
predicted value is α0.

9.3.2 Using your Neighbors to Predict More than a Number

Linear regression takes some features and predicts a number. But in practice, one
often wants to predict something more complex than a number. For example, I
might want to predict a parse tree (which has combinatorial structure) from a
sentence (the explanatory variables). As another example, I might want to predict
a map of the shadows in an image (which has spatial structure) against an image
(the explanatory variables). As yet another example, I might want to predict which
direction to move the controls on a radio-controlled helicopter (which have to be
moved together) against a path plan and the current state of the helicopter (the
explanatory variables).

Looking at neighbors is a very good way to solve such problems. The general
strategy is relatively simple. We find a large collection of pairs of training data.
Write xi for the explanatory variables for the i’th example, and yi for the dependent
variable in the i’th example. This dependent variable could be anything — it
doesn’t need to be a single number. It might be a tree, or a shadow map, or a
word, or anything at all. I wrote it as a vector because I needed to choose some
notation.

In the simplest, and most general, approach, we obtain a prediction for a new
set of explanatory variables x by (a) finding the nearest neighbor and then (b)
producing the dependent variable for that neighbor. We might vary the strategy
slightly by using an approximate nearest neighbor. If the dependent variables
have enough structure that it is possible to summarize a collection of different
dependent variables, then we might recover the k nearest neighbors and summarize
their dependent variables. How we summarize rather depends on the dependent
variables. For example, it is a bit difficult to imagine the average of a set of
trees, but quite straightforward to average images. If the dependent variable was
a word, we might not be able to average words, but we can vote and choose the
most popular word. If the dependent variable is a vector, we can compute either
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distance weighted averages or a distance weighted linear regression.

Initial image

Patch to be replaced

Matched

Images

Final 

composited

image

FIGURE 9.12: We can fill large holes in images by matching the image to a collection,
choosing one element of the collection, then cutting out an appropriate block of pixels
and putting them into the hole in the query image. In this case, the hole has been
made by an artist, who wishes to remove the roofline from the view. Notice how
there are a range of objects (boats, water) that have been inserted into the hole.
These objects are a reasonable choice, because the overall structures of the query
and matched image are largely similar — getting an image that matches most of
the query image supplies enough context to ensure that the rest “makes sense”.

Example: Filling Large Holes with Whole Images Many different
kinds of user want to remove things from images or from video. Art directors
might like to remove unattractive telephone wires; restorers might want to remove
scratches or marks; there’s a long history of government officials removing people
with embarrassing politics from publicity pictures (see the fascinating examples
in ?); and home users might wish to remove a relative they dislike from a family
picture. All these users must then find something to put in place of the pixels that
were removed.

If one has a large hole in a large image, we may not be able to just extend
a texture to fill the hole. Instead, entire objects might need to appear in the hole
(Figure 9.12). There is a straightforward, and extremely effective, way to achieve
this. We match the image to a large collection of images, to find the nearest
neighbors (the details of the distance function are below). This yields a set of
example images where all the pixels we didn’t want to replace are close to those of
the query image. From these, we choose one, and fill in the pixels from that image.

There are several ways to choose. If we wish to do so automatically, we could
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use the example with the smallest distance to the image. Very often, an artist is
involved, and then we could prepare a series of alternatives — using, perhaps, the
k closest examples — then show them to the artist, who will choose one. This
method, which is very simple to describe, is extremely effective in practice.

It is straightforward to get a useful distance between images. We have an
image with some missing pixels, and we wish to find nearby images. We will
assume that all images are the same size. If this isn’t in fact the case, we could
either crop or resize the example images. A good measure of similarity between two
images A and B can be measured by forming the sum of squared differences (or
SSD) of corresponding pixel values. You should think of an image as an array of
pixels. If the images are grey-level images, then each pixel contains a single number,
encoding the grey-level. If the images are color images, then each pixel (usually!)
contains three values, one encoding the red-level, one encoding the green-level, and
one encoding the blue-level. The SSD is computed as

∑

(i,j)

(Aij − Bij)
2

where i and j range over all pixels. If the images are grey-level images, then by
(Aij − Bij)

2, I mean the squared difference between grey levels; if they are color
images, then this means the sum of squared differences between red, green and blue
values. This distance is small when the images are similar, and large when they are
different (it is essentially the length of the difference vector).

Now we don’t know some of the pixels in the query image. Write K for the
set of pixels around a point whose values are known, and ♯K for the size of this set.
We can now use

1

♯K
∑

(i,j)∈K
(Aij − Bij)

2.

Filling in the pixels requires some care. One does not usually get the best
results by just copying the missing pixels from the matched image into the hole.
Instead, it is better to look for a good seam. We search for a curve enclosing the
missing pixels which (a) is reasonably close to the boundary of the missing pixels
and (b) gives a good boundary between the two images. A good boundary is one
where the query image (on one side) is “similar to” the matched image (on the
other side). A good sense of similarity requires that pixels match well, and that
image gradients crossing the boundary tend to match too.

Remember this: Nearest neighbors can be used to predict more than
numbers. Examples include parse trees, blocks of pixels, and so on.
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Neural Networks

10.1 UNITS AND CLASSIFICATION

We will build complex classification systems out of simple units. A unit takes a
vector x of inputs and uses a vector w of parameters (known as the weights), a
scalar b (known as the bias), and a nonlinear function F to form its output, which
is

F (wTx+ b).

Over the years, a wide variety of nonlinear functions have been tried. Current best
practice is to use the RELU (for rectified linear unit), where

F (u) = max (0, u).

For example, if x was a point on the plane, then a single unit would represent a
line, chosen by the choice of w and w0. The output for all points on one side of
the line would be zero. The output for points on the other side would be a positive
number that is larger for points that are further from the line.

Units are sometimes referred to as neurons, and there is a large and rather
misty body of vague speculative analogy linking devices built out of units to neu-
roscience. I deprecate this practice; what we are doing here is quite useful and
interesting enough to stand on its own without invoking biological authority. Also,
if you want to see a real neuroscientist laugh, explain to them how your neural
network is really based on some gobbet of brain tissue or other.

10.1.1 Building a Classifier out of Units: The Cost Function

We will build a multiclass classifier out of units by modelling the class posterior
probabilities using the outputs of the units. Each class will get the output of a
single unit. Write oi for the output of the i’th unit, and θ for all the parameters in
all the units. We will organize these units into a vector o, whose i’th component
is oi. We want to use that unit to model the probability that the input is of class
j, which I will write p(class = j|x, θ). To build this model, I will use the softmax

function. This is a function that takes a C dimensional vector and returns a C
dimensional vector. I will write s(u) for the softmax function, and the dimension
C will always be the number of classes. We have

s(u) =

(

1
∑

k e
uk

)









eu1

eu2

. . .
euC









(recall ui is the i’th component of u). We then use the model

p(class = i|x, θ) = si(o(x, θ)).
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Notice that this expression passes important tests for a probability model. Each
value is between 0 and 1, and the sum over classes is 1.

In this form, the classifier is not super interesting. For example, imagine that
the features x are points on the plane, and we have two classes. Then we have two
units, one for each class. There is a line corresponding to each unit; on one side
of the line, the unit produces a zero, and on the other side, the unit produces a
positive number that increases as with perpendicular distance from the line. We
can get a sense of what the decision boundary will be like from this. When a point
is on the 0 side of both lines, the class probabilities will be equal (and so both 1

2
– two classes, remember). When a point is on the positive side of the i’th line,

but the zero side of the other, the class probability for class i will be eoi(x,θ)

1+eoi(x,θ) ,
and the point will always be classified in the i’th class. Finally, when a point is
on the positive side of both lines, the classifier boils down to choosing the i that
has the largest value of oi(x, θ). All this leads to the decision boundary shown in
figure ??. Notice that this is piecewise linear, and somewhat more complex than
the boundary of an SVM. It’s quite helpful to try and draw what would happen for
three or more classes.

The essential difficulty here is to choose θ that results in the best behavior.
We will do so by writing a cost function that measures the “goodness” of the
classification. We have a set of N examples xi and for each example we know the
class. There are a total of C classes. We encode the class of an example using a
one hot vector yi, which is C dimensional. If the i’th example is from class j,
then the j’th component of yi is 1, and all other components in the vector are 0. I
will write yij for the j’th component of yi. A natural cost function looks at the log
likelihood of the data under probability model produced from the outputs of the
units. If the i’th example is from class j, we would like − log p(class = j|xi, θ) to
be small (notice the sign here; it’s usual to minimize negative log likelihood). This
yields a loss function

1

N

∑

i∈data





∑

j∈classes

{

−yT
i log s(xi, θ)

}



 .

Notice that this cost function is written in a clean way that will lead to a poor
implementation. I have used the yij values as “switches”, as in the discussion of
EM. This leads to clean notation, but hides fairly obvious computational efficiencies
(when taking the gradient, you need to deal with only one term in the sum over
classes). As in the case of the linear SVM (section 16.5), we would like to achieve
a low cost with a “small” θ, and so form an overall cost function that will have loss
and penalty terms.

There are a variety of possible penalties. We will penalize large sets of weights.
Remember, we have C units (one per class) and so there are C distinct sets of
weights. Write the weights for the u’th unit wu. Our penalty becomes

∑

u∈units

wT
uwu.

As in the case of the linear SVM (section 16.5), we write λ for a weight applied to
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the penalty. Our cost function is then

S(θ,x;λ) =
1

N

∑

i∈data





∑

j∈classes

{

−yT
i log s(xi, θ)

}



 +
λ

2

∑

u∈units

wT
uwu

(misclassification loss) (penalty)

10.1.2 Building a Classifier out of Units: Training

I have described a simple classifier built out of units. We must now train this
classifier. We use stochastic gradient descent, because we have seen it before;
because it is effective; and because it is the algorithm of choice when training more
complex classifiers built out of units.

For the SVM, we selected one example at random, computed the gradient
at that example, updated the parameters, and went again. For neural nets, it
is more usual to use minibatch training, where we select a subset of the data
uniformly and at random, compute a gradient using that subset, update and go
again. This is because in the best implementations many operations are vectorized,
and using a minibatch can provide a gradient estimate that is clearly better than
that obtained using only one example, but doesn’t take longer to compute. The size
of the minibatch is usually determined by memory or architectural considerations.
It is often a power of two, for this reason.

Now imagine we have chosen a minibatch of M examples. We must compute
the gradient. This is mainly an exercise in notation. Write θu for a vector containing
all the parameters for the u’th unit, so that θu = [wu, bu]

T
. Recall sk(xi, θk) is

the output of the softmax function for the k’th unit for input xi. This represents
the probability that example is of class k under the current model. Then we must
compute

∇θu

1

M

∑

i∈minibatch





∑

j∈classes

{

−yT
i log s(xi, θ)

}



+
λ

2

∑

j∈classes

wT
j wj .

The gradient is easily computed using the chain rule. I will write c(i) for the class
of example i, and I[u=c(i)](u) for an indicator function that takes the value 1 when
u = c(i), and 0 otherwise. We have that

∇θu log sj(xi, θj) = [−∇θuou(xi, θu)] I[u=c(i)](u) +

su(xi, θu)∇θuou(xi, θu)

and

∇θuou(xi, θu) =







0 if wT
uxi + bu ≤ 0

[

xi

0

]

otherwise
.

The gradient computed for a minibatch is

[

∇θ1(misclassification loss + penalty)
. . .∇θC (misclassification loss + penalty)

]
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where

∇θu(misclassification loss) =
∑

i∈minibatch

[−∇θuou(xi, θu)] I[u=c(i)](u)+su(xi, θu)∇θuou(xi, θu)

and

∇θu(penalty) = λ

[

wu

0

]

.

10.2 LAYERS AND NETWORKS

We have built a multiclass classifier out of units by using one unit per class, then
interpreting the outputs of the units as probabilities using a softmax function.
This classifier is at best only mildly interesting. The way to get something really
interesting is to ask what the features for this classifier should be. To date, we
have not looked closely at features. Instead, we’ve assumed they “come with the
dataset” or should be constructed from domain knowledge. Remember that, in the
case of regression, we could improve predictions by forming non-linear functions of
features. We can do better than that; we could learn what non-linear functions to
apply, by using the output of one set of units to form the inputs of the next set.

We will focus on systems built by organizing the units into layers; these layers
form a neural network (a term I dislike, for the reasons above, but use because
everybody else does). There is an input layer, consisting of the units that receive
feature inputs from outside the network. There is an output layer, consisting of
units whose outputs are passed outside the network. These two might be the same,
as they were in the previous section. The most interesting cases occur when they
are not the same. There may be hidden layers, whose inputs come from other
layers and whose outputs go to other layers. In our case, the layers are ordered, and
outputs of a given layer act as inputs to the next layer only (as in Figure 16.5 - we
don’t allow connections to wander all over the network). For the moment, assume
that each unit in a layer receives an input from every unit in the previous layer;
this means that our network is fully connected. Other architectures are possible,
but right now the most important question is how to train the resulting object.

10.2.1 Notation

The main issue here is training this object. Inevitably, we need yet more notation.
There will be L layers. The input layer is layer 1, and the output layer is L. I will
write ul

i for the i’th unit in the l’th layer. This unit has output oli and parameters
wl

i and bli, which I will stack into a vector θli. I write θ
l to refer to all the parameters

of layer l. If I do not need to identify the layer in which a unit sits (for example,
if I am summing over all units) I will drop the superscript. The vector of inputs
to this unit is xl

i. These inputs are formed by choosing from the outputs of layer
l − 1. I will write ol for all the outputs of the l’th layer, stacked into a vector. I
will represent the connections by a matrix Cl

i, so that xl
i = Cl

io
l−1. The matrix

Cl
i contains only 1 or 0 entries, and in the case of fully connected layers, it is the

identity.
I will write L(yi, s(o

L(xi, θ))) for the loss of classifying the i’th example using
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softmax. We will continue to use

L(yi, s(o
L(xi, θ))) = − logyT

i s(o
L(xi, θ)))

but in other applications, other losses might arise.
Generally, we will train by mini batch gradient descent, though I will describe

some tricks that can speed up training and improve results. But we must compute
the gradient. The output layer of our network has C units, one per class. We will
apply the softmax to these outputs, as before. Writing E for the cost of error on
training examples and R for the regularization term, we can write the cost of using
the network as

cost = E +R = (1/N)
∑

i∈examples

L(yi, s(o
L(xi, θ))) +

λ

2

∑

k∈units

wT
k wk.

You should not let this compactified notation let you lose track of the fact that oL

depends on xi through oL−1, . . . ,o1. What we really should write is

oL(oL−1(. . . (o1(x, θ1), θ2), . . .), θL).

Equivalently, we could stack all the Cl
i into one linear operator Cl and write

oL(xL, θL) where

xL = CLoL−1(xL−1, θL−1)

. . . = . . .

x2 = C2o1(x1, θ1)

x1 = C1x

This is important, because it allows us to write an expression for the gradient.

10.2.2 Training, Gradients and Backpropagation

Now consider ∇θE. You can think of this as a vector of stacked vectors, one per
layer. There is a trick for computing these vectors. We have, using the chain rule,

∇θLE =
∑

u

(

∂E

∂oLu

)

∇θLoLu (x
L, θL).

Yet more notation; I will write #(L) for the number of parameters in layer L. You
should think of this as

vTJ =







∂E
∂oL1
. . .
∂E
∂oL

C







T








∂oL1 (xL,θL)

∂θL
1

. . .
∂oL1 (xL,θL)

∂θL
#(L)

. . . . . . . . .
∂oLC(xL,θL)

∂θL
1

. . .
∂oLC(xL,θL)

∂θL
#(L)









The matrix of first partials is clearly important. I will write Jol;θl to mean









∂ol1(x
l,θl)

∂θl
1

. . .
∂ol1(x

l,θl)

∂θl
#(l)

. . . . . . . . .
∂olC(xl,θl)

∂θl
1

. . .
∂olC(xl,θl)

∂θl
#(l)
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and Jol;xl to mean








∂ol1(x
l,θl)

∂xl
1

. . .
∂ol1(x

l,θl)

∂xl
#(l)

. . . . . . . . .
∂olC(xl,θl)

∂xl
1

. . .
∂olC(xl,θl)

∂xl
#(l)









.

We can now get to the point. We have

∇θLE = (∇oLE)JoL;θL

∇θL−1E = (∇oLE)JoL;xLJoL−1;θL−1)

∇θL−2E = (∇oLE)JoL;xLJoL−1;xL−1)JoL−2;θL−2)

. . .

We can make the recursion more obvious with some notation. We have

vL =
(

∇L
o
E
)

∇θLE = vLJoL;θL

vL−1 = vLJoL;xL

∇θL−1E = vL−1JoL−1;θL−1)

. . .

vi−1 = viJoi;xi

∇θi−1E = vi−1Joi−1;θi−1)

. . .

** ISSUE with C ** computing efficiently; up, then down

10.2.3 Training Multiple Layers

A multilayer network represents an extremely complex, highly non-linear function,
with an immense number of parameters. Training such networks is not easy. Neural
networks are quite an old idea, but have only relatively recently had impact in
practical applications. Hindsight suggests the problem is that networks are hard to
train successfully. There is now a collection of quite successful tricks — I’ll try to
describe the most important — but the situation is still not completely clear.

The simplest training strategy is minibatch gradient descent. At round r, we
have the set of weights θ(r). We form the gradient for a minibatch ∇θE, and update
the weights by taking a small step η(r) (usually referred to as the learning rate)
backwards along the gradient, yielding

θ(r+1) = θ(r) − η(r)∇θE.

The most immediate difficulties are where to start, and what is η(r).
Starting: Starting with θ(0) = 0 is a truly terrible idea. You should check

that every gradient in this case will also be zero, meaning that your method will
never move away from this point. It is usual to start with θ(0) a small random
vector. Different practitioners use slightly different approaches ** FAN IN/FAN
OUT

The Learning Rate: *** Learning curves and spotting trouble *** examples
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10.2.4 Gradient Scaling Tricks

Everyone is surprised the first time they learn that the best direction to travel in
when you want to minimize a function is not, in fact, backwards down the gradi-
ent. The gradient is uphill, but repeated downhill steps are often not particularly
efficient. An example can help, and we will look at this point several ways because
different people have different ways of understanding this point.

We can look at the problem with algebra. Consider f(x, y) = (1/2)(x2+ ǫy2),
where ǫ is a small positive number. The gradient at (x, y) is [x, ǫy]. For simplicity,
use a fixed learning rate η, so we have

[

x(r), y(r)
]

=
[

(1 − η)x(r−1), (1− ǫη)y(r−1)
]

.

If you start at, say, (x(0), y(0)) and repeatedly go downhill along the gradient,
you will travel very slowly to your destination. You can show that

[

x(r), y(r)
]

=
[

(1 − η)rx(0), (1 − ǫη)ry(0)
]

. The problem is that the gradient in x is quite large
(so x must change quickly) and the gradient in y is small (so y changes slowly).
In turn, for steps in x to converge we must have |1− η | < 1; but for steps in y
to converge, we require only the much weaker constraint |1− ǫη | < 1. Imagine we
choose the largest η we dare for the x constraint. The x value will very quickly
have small magnitude, though its sign will change with each step. But the y steps
will move you closer to the right spot only extremely slowly.

Another way to see this problem is to reason geometrically. Figure ?? shows
this effect for this function. The gradient is at right angles to the level curves of
the function. But when the level curves form a narrow valley, the gradient points
across the valley rather than down it. The effect isn’t changed by rotating and
translating the function (Figure ??).

You may have learned that Newton’s method resolves this problem. This is
all very well, but to apply Newton’s method we would need to know the matrix
of second partial derivatives. A network can easily have thousands to millions
of parameters, and we simply can’t form, store, or work with matrices of these
dimensions. Instead, we will need to think more qualitatively about what is causing
trouble.

One useful insight into the problem is that fast changes in the gradient vector
are worrying. For example, consider f(x) = (1/2)(x2 + y2). Imagine you start
far away from the origin. The gradient won’t change much along reasonably sized
steps. But now imagine yourself on one side of a valley like the function f(x) =
(1/2)(x2+ǫy2); as you move along the gradient, the gradient in the x direction gets
smaller very quickly, then points back in the direction you came from. You are not
justified in taking a large step in this direction, because if you do you will end up
at a point with a very different gradient. Similarly, the gradient in the y direction
is small, and stays small for quite large changes in y value. You would like to take
a small step in the x direction and a large step in the y direction.

You can see that this is the impact of the second derivative of the function
(which is what Newton’s method is all about). But we can’t do Newton’s method.
We would like to travel further in directions where the gradient doesn’t change
much, and less far in directions where it changes a lot. There are several methods
for doing so.

Adagrad: We will keep track of the size of each component of the gradient.
In particular, we have a running cache c which is initialized at zero. We choose a
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small number α (typically 1e-6), and a fixed η. Write g
(r)
i for the i’th component

of the gradient ∇θE computed at the r’th iteration.Then we iterate

c
(r+1)
i = c

(r)
i + (g

(r)
i )2

θ
(r+1)
i = θ

(r)
i − η

g
(r)
i

(c
(r+1)
i )

1
2 + α

Notice that each component of the gradient has its own learning rate, set by the
history of previous gradients.

RMSprop: This is a modification of Adagrad, to allow it to “forget” large
gradients that occurred far in the past. We choose another number, ∆, (the decay
rate; typical values might be 0.9, 0.99 or 0.999), and iterate

c
(r+1)
i = ∆c

(r)
i + (1−∆)(g

(r)
i )2

θ
(r+1)
i = θ

(r)
i − η

g
(r)
i

(c
(r+1)
i )

1
2 + α

10.3 CONVOLUTION AND ORIENTATION FEATURES FOR IMAGES

10.4 CONVOLUTIONAL NEURAL NETWORKS
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Background: First Tools for Looking
at Data

The single most important question for a working scientist — perhaps the
single most useful question anyone can ask— is: “what’s going on here?” Answering
this question requires creative use of different ways to make pictures of datasets,
to summarize them, and to expose whatever structure might be there. This is an
activity that is sometimes known as “Descriptive Statistics”. There isn’t any fixed
recipe for understanding a dataset, but there is a rich variety of tools we can use
to get insights.

13.1 DATASETS

A dataset is a collection of descriptions of different instances of the same phe-
nomenon. These descriptions could take a variety of forms, but it is important that
they are descriptions of the same thing. For example, my grandfather collected
the daily rainfall in his garden for many years; we could collect the height of each
person in a room; or the number of children in each family on a block; or whether
10 classmates would prefer to be “rich” or “famous”. There could be more than
one description recorded for each item. For example, when he recorded the con-
tents of the rain gauge each morning, my grandfather could have recorded (say)
the temperature and barometric pressure. As another example, one might record
the height, weight, blood pressure and body temperature of every patient visiting
a doctor’s office.

The descriptions in a dataset can take a variety of forms. A description could
be categorical, meaning that each data item can take a small set of prescribed
values. For example, we might record whether each of 100 passers-by preferred to
be “Rich” or “Famous”. As another example, we could record whether the passers-
by are “Male” or “Female”. Categorical data could be ordinal, meaning that we
can tell whether one data item is larger than another. For example, a dataset giving
the number of children in a family for some set of families is categorical, because it
uses only non-negative integers, but it is also ordinal, because we can tell whether
one family is larger than another.

Some ordinal categorical data appears not to be numerical, but can be as-
signed a number in a reasonably sensible fashion. For example, many readers will
recall being asked by a doctor to rate their pain on a scale of 1 to 10 — a question
that is usually relatively easy to answer, but is quite strange when you think about
it carefully. As another example, we could ask a set of users to rate the usability
of an interface in a range from “very bad” to “very good”, and then record that
using -2 for “very bad”, -1 for “bad”, 0 for “neutral”, 1 for “good”, and 2 for “very
good”.

Many interesting datasets involve continuous variables (like, for example,

235
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height or weight or body temperature) when you could reasonably expect to en-
counter any value in a particular range. For example, we might have the heights of
all people in a particular room; or the rainfall at a particular place for each day of
the year; or the number of children in each family on a list.

You should think of a dataset as a collection of d-tuples (a d-tuple is an
ordered list of d elements). Tuples differ from vectors, because we can always add
and subtract vectors, but we cannot necessarily add or subtract tuples. We will
always write N for the number of tuples in the dataset, and d for the number of
elements in each tuple. The number of elements will be the same for every tuple,
though sometimes we may not know the value of some elements in some tuples
(which means we must figure out how to predict their values, which we will do
much later).

Index net worth
1 100, 360
2 109, 770
3 96, 860
4 97, 860
5 108, 930
6 124, 330
7 101, 300
8 112, 710
9 106, 740
10 120, 170

Index Taste score Index Taste score
1 12.3 11 34.9
2 20.9 12 57.2
3 39 13 0.7
4 47.9 14 25.9
5 5.6 15 54.9
6 25.9 16 40.9
7 37.3 17 15.9
8 21.9 18 6.4
9 18.1 19 18
10 21 20 38.9

TABLE 13.1: On the left, net worths of people you meet in a bar, in US $; I made
this data up, using some information from the US Census. The index column,
which tells you which data item is being referred to, is usually not displayed in a
table because you can usually assume that the first line is the first item, and so
on. On the right, the taste score (I’m not making this up; higher is better) for 20
different cheeses. This data is real (i.e. not made up), and it comes from http://
lib.stat.cmu.edu/DASL/Datafiles/Cheese.html .

Each element of a tuple has its own type. Some elements might be categorical.
For example, one dataset we shall see several times has entries for Gender; Grade;
Age; Race; Urban/Rural; School; Goals; Grades; Sports; Looks; and Money for
478 children, so d = 11 and N = 478. In this dataset, each entry is categorical
data. Clearly, these tuples are not vectors because one cannot add or subtract (say)
Gender, or add Age to Grades.

Most of our data will be vectors. We use the same notation for a tuple and
for a vector. We write a vector in bold, so x could represent a vector or a tuple
(the context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out
of them; we write the dataset made out of these items as {xi} (the i is to suggest
you are taking a set of items and making a dataset out of them).

In this chapter, we will work mainly with continuous data. We will see a

http://lib.stat.cmu.edu/DASL/Datafiles/Cheese.html
http://lib.stat.cmu.edu/DASL/Datafiles/Cheese.html
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variety of methods for plotting and summarizing 1-tuples. We can build these
plots from a dataset of d-tuples by extracting the r’th element of each d-tuple.
All through the book, we will see many datasets downloaded from various web
sources, because people are so generous about publishing interesting datasets on
the web. In the next chapter, we will look at 2-dimensional data, and we look at
high dimensional data in chapter 4.

13.2 WHAT’S HAPPENING? - PLOTTING DATA

The very simplest way to present or visualize a dataset is to produce a table. Tables
can be helpful, but aren’t much use for large datasets, because it is difficult to get
any sense of what the data means from a table. As a continuous example, table 13.1
gives a table of the net worth of a set of people you might meet in a bar (I made
this data up). You can scan the table and have a rough sense of what is going on;
net worths are quite close to $ 100, 000, and there aren’t any very big or very small
numbers. This sort of information might be useful, for example, in choosing a bar.

People would like to measure, record, and reason about an extraordinary
variety of phenomena. Apparently, one can score the goodness of the flavor of
cheese with a number (bigger is better); table 13.1 gives a score for each of thirty
cheeses (I did not make up this data, but downloaded it from http://lib.stat.cmu.
edu/DASL/Datafiles/Cheese.html). You should notice that a few cheeses have very
high scores, and most have moderate scores. It’s difficult to draw more significant
conclusions from the table, though.

Gender Goal Gender Goal
boy Sports girl Sports
boy Popular girl Grades
girl Popular boy Popular
girl Popular boy Popular
girl Popular boy Popular
girl Popular girl Grades
girl Popular girl Sports
girl Grades girl Popular
girl Sports girl Grades
girl Sports girl Sports

TABLE 13.2: Chase and Dunner (?) collected data on what students thought made
other students popular. As part of this effort, they collected information on (a) the
gender and (b) the goal of students. This table gives the gender (“boy” or “girl”)
and the goal (to make good grades —“Grades”; to be popular — “Popular”; or to
be good at sports — “Sports”). The table gives this information for the first 20
of 478 students; the rest can be found at http:// lib.stat.cmu.edu/DASL/Datafiles/
PopularKids.html. This data is clearly categorical, and not ordinal.

Table 13.2 shows a table for a set of categorical data. Psychologists collected
data from students in grades 4-6 in three school districts to understand what fac-
tors students thought made other students popular. This fascinating data set can
be found at http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html, and was pre-

http://lib.stat.cmu.edu/DASL/Datafiles/Cheese.html
http://lib.stat.cmu.edu/DASL/Datafiles/Cheese.html
http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html
http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html
http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html


Section 13.2 What’s Happening? - Plotting Data 238

pared by Chase and Dunner (?). Among other things, for each student they asked
whether the student’s goal was to make good grades (“Grades”, for short); to be
popular (“Popular”); or to be good at sports (“Sports”). They have this informa-
tion for 478 students, so a table would be very hard to read. Table 13.2 shows the
gender and the goal for the first 20 students in this group. It’s rather harder to
draw any serious conclusion from this data, because the full table would be so big.
We need a more effective tool than eyeballing the table.

boy girl
0
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300
Number of children of each gender

Sports Grades Popular
0
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Number of children choosing each goal

FIGURE 13.1: On the left, a bar chart of the number of children of each gender in
the Chase and Dunner study (). Notice that there are about the same number of
boys and girls (the bars are about the same height). On the right, a bar chart of
the number of children selecting each of three goals. You can tell, at a glance, that
different goals are more or less popular by looking at the height of the bars.

13.2.1 Bar Charts

A bar chart is a set of bars, one per category, where the height of each bar is
proportional to the number of items in that category. A glance at a bar chart often
exposes important structure in data, for example, which categories are common, and
which are rare. Bar charts are particularly useful for categorical data. Figure 13.1
shows such bar charts for the genders and the goals in the student dataset of Chase
and Dunner (). You can see at a glance that there are about as many boys as girls,
and that there are more students who think grades are important than students
who think sports or popularity is important. You couldn’t draw either conclusion
from Table 13.2, because I showed only the first 20 items; but a 478 item table is
very difficult to read.

13.2.2 Histograms

Data is continuous when a data item could take any value in some range or set of
ranges. In turn, this means that we can reasonably expect a continuous dataset
contains few or no pairs of items that have exactly the same value. Drawing a bar
chart in the obvious way — one bar per value — produces a mess of unit height
bars, and seldom leads to a good plot. Instead, we would like to have fewer bars,
each representing more data items. We need a procedure to decide which data
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FIGURE 13.2: On the left, a histogram of net worths from the dataset described in
the text and shown in table 13.1. On the right, a histogram of cheese goodness
scores from the dataset described in the text and shown in table 13.1.

items count in which bar.
A simple generalization of a bar chart is a histogram. We divide the range

of the data into intervals, which do not need to be equal in length. We think of
each interval as having an associated pigeonhole, and choose one pigeonhole for
each data item. We then build a set of boxes, one per interval. Each box sits on its
interval on the horizontal axis, and its height is determined by the number of data
items in the corresponding pigeonhole. In the simplest histogram, the intervals that
form the bases of the boxes are equally sized. In this case, the height of the box is
given by the number of data items in the box.

Figure 13.2 shows a histogram of the data in table 13.1. There are five bars —
by my choice; I could have plotted ten bars — and the height of each bar gives the
number of data items that fall into its interval. For example, there is one net worth
in the range between $102, 500 and $107, 500. Notice that one bar is invisible,
because there is no data in that range. This picture suggests conclusions consistent
with the ones we had from eyeballing the table — the net worths tend to be quite
similar, and around $100, 000.

Figure 13.2 also shows a histogram of the data in table 13.1. There are six
bars (0-10, 10-20, and so on), and the height of each bar gives the number of data
items that fall into its interval — so that, for example, there are 9 cheeses in this
dataset whose score is greater than or equal to 10 and less than 20. You can also use
the bars to estimate other properties. So, for example, there are 14 cheeses whose
score is less than 20, and 3 cheeses with a score of 50 or greater. This picture is
much more helpful than the table; you can see at a glance that quite a lot of cheeses
have relatively low scores, and few have high scores.

13.2.3 How to Make Histograms

Usually, one makes a histogram by finding the appropriate command or routine in
your programming environment. I use Matlab, and chapter ?? sketches some useful
Matlab commands. However, it is useful to understand the procedures used.
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FIGURE 13.3: On top, a histogram of body temperatures, from the dataset pub-
lished at http://www2.stetson.edu/∼jrasp/data.htm. These seem to be clustered
fairly tightly around one value. The bottom row shows histograms for each gen-
der (I don’t know which is which). It looks as though one gender runs slightly cooler
than the other.

Histograms with Even Intervals: The easiest histogram to build uses
equally sized intervals. Write xi for the i’th number in the dataset, xmin for the
smallest value, and xmax for the largest value. We divide the range between the
smallest and largest values into n intervals of even width (xmax−xmin)/n. In this
case, the height of each box is given by the number of items in that interval. We
could represent the histogram with an n-dimensional vector of counts. Each entry
represents the count of the number of data items that lie in that interval. Notice
we need to be careful to ensure that each point in the range of values is claimed by
exactly one interval. For example, we could have intervals of [0− 1) and [1− 2), or
we could have intervals of (0− 1] and (1− 2]. We could not have intervals of [0− 1]
and [1− 2], because then a data item with the value 1 would appear in two boxes.
Similarly, we could not have intervals of (0 − 1) and (1 − 2), because then a data
item with the value 1 would not appear in any box.

Histograms with Uneven Intervals: For a histogram with even intervals,
it is natural that the height of each box is the number of data items in that box.

http://www2.stetson.edu/~jrasp/data.htm
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But a histogram with even intervals can have empty boxes (see figure 13.2). In
this case, it can be more informative to have some larger intervals to ensure that
each interval has some data items in it. But how high should we plot the box?
Imagine taking two consecutive intervals in a histogram with even intervals, and
fusing them. It is natural that the height of the fused box should be the average
height of the two boxes. This observation gives us a rule.

Write dx for the width of the intervals; n1 for the height of the box over the
first interval (which is the number of elements in the first box); and n2 for the
height of the box over the second interval. The height of the fused box will be
(n1 + n2)/2. Now the area of the first box is n1dx; of the second box is n2dx; and
of the fused box is (n1 + n2)dx. For each of these boxes, the area of the box is
proportional to the number of elements in the box. This gives the correct rule: plot
boxes such that the area of the box is proportional to the number of elements in
the box.

13.2.4 Conditional Histograms

Most people believe that normal body temperature is 98.4o in Fahrenheit. If you
take other people’s temperatures often (for example, you might have children), you
know that some individuals tend to run a little warmer or a little cooler than this
number. I found data giving the body temperature of a set of individuals at http://
www2.stetson.edu/∼jrasp/data.htm. As you can see from the histogram (figure 13.3),
the body temperatures cluster around a small set of numbers. But what causes the
variation?

One possibility is gender. We can investigate this possibility by compar-
ing a histogram of temperatures for males with histogram of temperatures for fe-
males. Such histograms are sometimes called conditional histograms or class-
conditional histograms, because each histogram is conditioned on something (in
this case, the histogram uses only data that comes from gender).

The dataset gives genders (as 1 or 2 - I don’t know which is male and which
female). Figure 13.3 gives the class conditional histograms. It does seem like
individuals of one gender run a little cooler than individuals of the other, although
we don’t yet have mechanisms to test this possibility in detail (chapter 16.5).

13.3 SUMMARIZING 1D DATA

For the rest of this chapter, we will assume that data items take values that are
continuous real numbers. Furthermore, we will assume that values can be added,
subtracted, and multiplied by constants in a meaningful way. Human heights are
one example of such data; you can add two heights, and interpret the result as a
height (perhaps one person is standing on the head of the other). You can subtract
one height from another, and the result is meaningful. You can multiply a height
by a constant — say, 1/2 — and interpret the result (A is half as high as B).

13.3.1 The Mean

One simple and effective summary of a set of data is its mean. This is sometimes
known as the average of the data.

http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
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Definition: 13.1 Mean

Assume we have a dataset {x} of N data items, x1, . . . , xN . Their mean
is

mean ({x}) = 1

N

i=N
∑

i=1

xi.

For example, assume you’re in a bar, in a group of ten people who like to talk
about money. They’re average people, and their net worth is given in table 13.1
(you can choose who you want to be in this story). The mean of this data is $107,
903.

Properties of the Mean The mean has several important properties you
should remember:

• Scaling data scales the mean: or mean ({kxi}) = kmean ({xi}).

• Translating data translates the mean: or mean ({xi + c}) = mean ({xi}) + c.

• The sum of signed differences from the mean is zero. This means that

N
∑

i=1

(xi −mean ({xi})) = 0.

• Choose the number µ such that the sum of squared distances of data points
to µ is minimized. That number is the mean. In notation

arg min
µ

∑

i

(xi − µ)2 = mean ({xi})

These properties are easy to prove (and so easy to remember). I have broken
these out into a box of useful facts below, to emphasize them. All but one proof is
relegated to the exercises.
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Proposition:
arg min

µ

∑

i(xi − µ)2 = mean ({x})

Proof: Choose the number µ such that the sum of squared distances of data
points to µ is minimized. That number is the mean. In notation:

arg min
µ

∑

i

(xi − µ)2 = mean ({x})

We can show this by actually minimizing the expression. We must have that the
derivative of the expression we are minimizing is zero at the value of µ we are
seeking. So we have

d

dµ

N
∑

i=1

(xi − µ)2 =

N
∑

i=1

2(xi − µ)

= 2

N
∑

i=1

(xi − µ)

= 0

so that 2Nmean ({x})− 2Nµ = 0, which means that µ = mean ({x}).
Property 13.1: The Average Squared Distance to the Mean is Minimized

Now this result means that the mean is the single number that is closest to
all the data items. The mean tells you where the overall blob of data lies. For this
reason, it is often referred to as a “location parameter”. If you choose to summarize
the dataset with a number that is as close as possible to each data item, the mean
is the number to choose. The mean is also a guide to what new values will look
like, if you have no other information. For example, in the case of the bar, a new
person walks in, and I must guess that person’s net worth. Then the mean is the
best guess, because it is closest to all the data items we have already seen. In the
case of the bar, if a new person walked into this bar, and you had to guess that
person’s net worth, you should choose $107, 903.
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Useful Facts: 13.1 Mean

• mean ({kxi}) = kmean ({xi}).

• mean ({xi + c}) = mean ({xi}) + c.

• [
∑N

i=1(xi −mean ({xi})) = 0.

•
arg min

µ

∑

i

(xi − µ)2 = mean ({xi})

The mean is a location parameter; it tells you where the data lies along
a number line.

13.3.2 Standard Deviation and Variance

We would also like to know the extent to which data items are close to the mean.
This information is given by the standard deviation, which is the root mean
square of the offsets of data from the mean.

Definition: 13.2 Standard deviation

Assume we have a dataset {x} of N data items, x1, . . . , xN . The stan-
dard deviation of this dataset is is:

std ({xi}) =

√

√

√

√

1

N

i=N
∑

i=1

(xi −mean ({x}))2 =
√

mean ({(xi −mean ({x}))2}).

You should think of the standard deviation as a scale. It measures the size of
the average deviation from the mean for a dataset, or how wide the spread of data
is. For this reason, it is often referred to as a scale parameter. When the standard
deviation of a dataset is large, there are many items with values much larger than,
or much smaller than, the mean. When the standard deviation is small, most data
items have values close to the mean. This means it is helpful to talk about how
many standard devations away from the mean a particular data item is. Saying
that data item xj is “within k standard deviations from the mean” means that

abs (xj −mean ({x})) ≤ kstd ({xi}).
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Similarly, saying that data item xj is “more than k standard deviations from the
mean” means that

abs (xi −mean ({x})) > kstd ({x}).
As I will show below, there must be some data at least one standard deviation
away from the mean, and there can be very few data items that are many standard
deviations away from the mean.

Properties of the Standard Deviation Standard deviation has very im-
portant properties:

• Translating data does not change the standard deviation, i.e. std ({xi + c}) =
std ({xi}).

• Scaling data scales the standard deviation, i.e. std ({kxi}) = kstd ({xi}).

• For any dataset, there can be only a few items that are many standard devi-
ations away from the mean. In particular, assume we have N data items, xi,
whose standard deviation is σ. Then there are at most 1

k2 data points lying
k or more standard deviations away from the mean.

• For any dataset, there must be at least one data item that is at least one
standard deviation away from the mean.

The first two properties are easy to prove, and are relegated to the exercises. I
prove the others below. Again, for emphasis, I have broken these properties out in
a box below.
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Proposition: Assume we have a dataset {x} of N data items, x1, . . . , xN .
Assume the standard deviation of this dataset is std ({x}) = σ. Then there are at
most 1

k2 data points lying k or more standard deviations away from the mean.

Proof: Assume the mean is zero. There is no loss of generality here, because
translating data translates the mean, but doesn’t change the standard deviation.
Now we must construct a dataset with the largest possible fraction r of data
points lying k or more standard deviations from the mean. To achieve this, our
data should have N(1 − r) data points each with the value 0, because these
contribute 0 to the standard deviation. It should have Nr data points with the
value kσ; if they are further from zero than this, each will contribute more to
the standard deviation, so the fraction of such points will be fewer. Because

std ({x}) = σ =

√

∑

i x
2
i

N

we have that, for this rather specially constructed dataset,

σ =

√

Nrk2σ2

N

so that

r =
1

k2
.

We constructed the dataset so that r would be as large as possible, so

r ≤ 1

k2

for any kind of data at all.

Property 13.2: For any dataset, it is hard for data items to get many standard
deviations away from the mean.

This bound (box 13.2) is true for any kind of data. This bound implies that,
for example, at most 100% of any dataset could be one standard deviation away
from the mean, 25% of any dataset is 2 standard deviations away from the mean
and at most 11% of any dataset could be 3 standard deviations away from the
mean. But the configuration of data that achieves this bound is very unusual. This
means the bound tends to wildly overstate how much data is far from the mean
for most practical datasets. Most data has more random structure, meaning that
we expect to see very much less data far from the mean than the bound predicts.
For example, much data can reasonably be modelled as coming from a normal
distribution (a topic we’ll go into later). For such data, we expect that about
68% of the data is within one standard deviation of the mean, 95% is within two
standard deviations of the mean, and 99.7% is within three standard deviations
of the mean, and the percentage of data that is within ten standard deviations of
the mean is essentially indistinguishable from 100%. This kind of behavior is quite
common; the crucial point about the standard deviation is that you won’t see much
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data that lies many standard deviations from the mean, because you can’t.

Proposition:

(std ({x}))2 ≤ max
i

(xi −mean ({x}))2.

Proof: You can see this by looking at the expression for standard deviation.
We have

std ({x}) =

√

√

√

√

1

N

i=N
∑

i=1

(xi −mean ({x}))2.

Now, this means that

N(std ({x}))2 =
i=N
∑

i=1

(xi −mean ({x}))2.

But
i=N
∑

i=1

(xi −mean ({x}))2 ≤ N max
i

(xi −mean ({x}))2

so
(std ({x}))2 ≤ max

i
(xi −mean ({x}))2.

Property 13.3: For any dataset, there must be at least one data item that is
at least one standard deviation away from the mean.

Boxes 13.2 and 13.3 mean that the standard deviation is quite informative.
Very little data is many standard deviations away from the mean; similarly, at least
some of the data should be one or more standard deviations away from the mean.
So the standard deviation tells us how data points are scattered about the mean.

Useful Facts: 13.2 Standard deviation

• std ({x+ c}) = std ({x}).

• std ({kx}) = kstd ({x}).

• For N data items, xi, whose standard deviation is σ, there are
at most 1

k2 data points lying k or more standard deviations away
from the mean.

• (std ({x}))2 ≤ maxi(xi −mean ({x}))2.

The standard deviation is often referred to as a scale parameter; it tells
you how broadly the data spreads about the mean.
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There is an ambiguity that comes up often here because two (very slightly)
different numbers are called the standard deviation of a dataset. One — the one
we use in this chapter — is an estimate of the scale of the data, as we describe it.
The other differs from our expression very slightly; one computes

√

∑

i(xi −mean ({x}))2
N − 1

(notice the N −1 for our N). If N is large, this number is basically the same as the
number we compute, but for smaller N there is a difference that can be significant.
Irritatingly, this number is also called the standard deviation; even more irritatingly,
we will have to deal with it, but not yet. I mention it now because you may look
up terms I have used, find this definition, and wonder whether I know what I’m
talking about. In this case, I do (although I would say that).

The confusion arises because sometimes the datasets we see are actually sam-
ples of larger datasets. For example, in some circumstances you could think of the
net worth dataset as a sample of all the net worths in the USA. In such cases, we
are often interested in the standard deviation of the dataset that was sampled. The
second number is a slightly better way to estimate this standard deviation than the
definition we have been working with. Don’t worry - the N in our expressions is
the right thing to use for what we’re doing.

13.3.3 Variance

It turns out that thinking in terms of the square of the standard deviation, which
is known as the variance, will allow us to generalize our summaries to apply to
higher dimensional data.

Definition: 13.3 Variance

Assume we have a dataset {x} of N data items, x1, . . . , xN . where
N > 1. Their variance is:

var ({x}) = 1

N

(

i=N
∑

i=1

(xi −mean ({x}))2
)

= mean
({

(xi −mean ({x}))2
})

.

One good way to think of the variance is as the mean-square error you would
incur if you replaced each data item with the mean. Another is that it is the square
of the standard deviation.

Properties of the Variance The properties of the variance follow from
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the fact that it is the square of the standard deviation. I have broken these out in
a box, for emphasis.

Useful Facts: 13.3 Variance

• var ({x+ c}) = var ({x}).

• var ({kx}) = k2var ({x}).

While one could restate the other two properties of the standard deviation in
terms of the variance, it isn’t really natural to do so. The standard deviation is in
the same units as the original data, and should be thought of as a scale. Because
the variance is the square of the standard deviation, it isn’t a natural scale (unless
you take its square root!).

13.3.4 The Median

One problem with the mean is that it can be affected strongly by extreme values.
Go back to the bar example, of section 13.3.1. Now Warren Buffett (or Bill Gates,
or your favorite billionaire) walks in. What happened to the average net worth?

Assume your billionaire has net worth $ 1, 000, 000, 000. Then the mean net
worth suddenly has become

10× $107, 903+ $1, 000, 000, 000

11
= $91, 007, 184

But this mean isn’t a very helpful summary of the people in the bar. It is prob-
ably more useful to think of the net worth data as ten people together with one
billionaire. The billionaire is known as an outlier.

One way to get outliers is that a small number of data items are very dif-
ferent, due to minor effects you don’t want to model. Another is that the data
was misrecorded, or mistranscribed. Another possibility is that there is just too
much variation in the data to summarize it well. For example, a small number
of extremely wealthy people could change the average net worth of US residents
dramatically, as the example shows. An alternative to using a mean is to use a
median.
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Definition: 13.4 Median

The median of a set of data points is obtained by sorting the data
points, and finding the point halfway along the list. If the list is of
even length, it’s usual to average the two numbers on either side of the
middle. We write

median ({xi})
for the operator that returns the median.

For example,
median ({3, 5, 7}) = 5,

median ({3, 4, 5, 6, 7}) = 5,

and
median ({3, 4, 5, 6}) = 4.5.

For much, but not all, data, you can expect that roughly half the data is smaller
than the median, and roughly half is larger than the median. Sometimes this
property fails. For example,

median ({1, 2, 2, 2, 2, 2, 2, 2, 3}) = 2.

With this definition, the median of our list of net worths is $107, 835. If we insert
the billionaire, the median becomes $108, 930. Notice by how little the number has
changed — it remains an effective summary of the data.

Properties of the median You can think of the median of a dataset as
giving the “middle” or “center” value. It is another way of estimating where the
dataset lies on a number line (and so is another location parameter). This means
it is rather like the mean, which also gives a (slightly differently defined) “middle”
or “center” value. The mean has the important properties that if you translate the
dataset, the mean translates, and if you scale the dataset, the mean scales. The
median has these properties, too, which I have broken out in a box. Each is easily
proved, and proofs are relegated to the exercises.

Useful Facts: 13.4 Median

• median ({x+ c}) = median ({x}) + c.

• median ({kx}) = kmedian ({x}).
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13.3.5 Interquartile Range

Outliers are a nuisance in all sorts of ways. Plotting the histogram of the net worth
data with the billionaire included will be tricky. Either you leave the billionaire out
of the plot, or all the histogram bars are tiny. Visualizing this plot shows outliers
can affect standard deviations severely, too. For our net worth data, the standard
deviation without the billionaire is $9265, but if we put the billionaire in there, it
is $3.014 × 108. When the billionaire is in the dataset, the mean is about 91M$
and the standard deviation is about 300M$ — so all but one of the data items lie
about a third of a standard deviation away from the mean on the small side. The
other data item (the billionaire) is about three standard deviations away from the
mean on the large side. In this case, the standard deviation has done its work of
informing us that there are huge changes in the data, but isn’t really helpful as a
description of the data.

The problem is this: describing the net worth data with billionaire as a having
a mean of $9.101×107 with a standard deviation of $3.014×108 really isn’t terribly
helpful. Instead, the data really should be seen as a clump of values that are
near $100, 000 and moderately close to one another, and one massive number (the
billionaire outlier).

One thing we could do is simply remove the billionaire and compute mean
and standard deviation. This isn’t always easy to do, because it’s often less obvious
which points are outliers. An alternative is to follow the strategy we did when we
used the median. Find a summary that describes scale, but is less affected by
outliers than the standard deviation. This is the interquartile range; to define
it, we need to define percentiles and quartiles, which are useful anyway.

Definition: 13.5 Percentile

The k’th percentile is the value such that k% of the data is less than or
equal to that value. We write percentile({x}, k) for the k’th percentile
of dataset {x}.

Definition: 13.6 Quartiles

The first quartile of the data is the value such that 25% of the data is less
than or equal to that value (i.e. percentile({x}, 25)). The second quar-
tile of the data is the value such that 50% of the data is less than or equal
to that value, which is usually the median (i.e. percentile({x}, 50)). The
third quartile of the data is the value such that 75% of the data is less
than or equal to that value (i.e. percentile({x}, 75)).
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Definition: 13.7 Interquartile Range

The interquartile range of a dataset {x} is iqr{x} = percentile({x}, 75)−
percentile({x}, 25).

Like the standard deviation, the interquartile range gives an estimate of how
widely the data is spread out. But it is quite well-behaved in the presence of
outliers. For our net worth data without the billionaire, the interquartile range is
$12350; with the billionaire, it is $17710.

Properties of the interquartile range You can think of the interquartile
range of a dataset as giving an estimate of the scale of the difference from the mean.
This means it is rather like the standard deviation, which also gives a (slightly
differently defined) scale. The standard deviation has the important properties
that if you translate the dataset, the standard deviation translates, and if you
scale the dataset, the standard deviation scales. The interquartile range has these
properties, too, which I have broken out into a box. Each is easily proved, and
proofs are relegated to the exercises.

Useful Facts: 13.5 Interquartile range

• iqr{x+ c} = iqr{x}.

• iqr{kx} = k2iqr{x}.

For most datasets, interquartile ranges tend to be somewhat larger than stan-
dard deviations. This isn’t really a problem. Each is a method for estimating the
scale of the data — the range of values above and below the mean that you are likely
to see. It is neither here nor there if one method yields slightly larger estimates
than another, as long as you don’t compare estimates across methods.

13.3.6 Using Summaries Sensibly

One should be careful how one summarizes data. For example, the statement
that “the average US family has 2.6 children” invites mockery (the example is from
Andrew Vickers’ bookWhat is a p-value anyway?), because you can’t have fractions
of a child — no family has 2.6 children. A more accurate way to say things might
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be “the average of the number of children in a US family is 2.6”, but this is clumsy.
What is going wrong here is the 2.6 is a mean, but the number of children in a
family is a categorical variable. Reporting the mean of a categorical variable is
often a bad idea, because you may never encounter this value (the 2.6 children).
For a categorical variable, giving the median value and perhaps the interquartile
range often makes much more sense than reporting the mean.

For continuous variables, reporting the mean is reasonable because you could
expect to encounter a data item with this value, even if you haven’t seen one in
the particular data set you have. It is sensible to look at both mean and median;
if they’re significantly different, then there is probably something going on that is
worth understanding. You’d want to plot the data using the methods of the next
section before you decided what to report.

You should also be careful about how precisely numbers are reported (equiv-
alently, the number of significant figures). Numerical and statistical software will
produce very large numbers of digits freely, but not all are always useful. This is a
particular nuisance in the case of the mean, because you might add many numbers,
then divide by a large number; in this case, you will get many digits, but some
might not be meaningful. For example, Vickers (ibid) describes a paper reporting
the mean length of pregnancy as 32.833 weeks. That fifth digit suggests we know
the mean length of pregnancy to about 0.001 weeks, or roughly 10 minutes. Neither
medical interviewing nor people’s memory for past events is that detailed. Further-
more, when you interview them about embarrassing topics, people quite often lie.
There is no prospect of knowing this number with this precision.

People regularly report silly numbers of digits because it is easy to miss the
harm caused by doing so. But the harm is there: you are implying to other people,
and to yourself, that you know something more accurately than you do. At some
point, someone will suffer for it.

13.4 PLOTS AND SUMMARIES

Knowing the mean, standard deviation, median and interquartile range of a dataset
gives us some information about what its histogram might look like. In fact, the
summaries give us a language in which to describe a variety of characteristic prop-
erties of histograms that are worth knowing about (Section 13.4.1). Quite remark-
ably, many different datasets have histograms that have about the same shape
(Section 13.4.2). For such data, we know roughly what percentage of data items
are how far from the mean.

Complex datasets can be difficult to interpret with histograms alone, because
it is hard to compare many histograms by eye. Section 13.4.3 describes a clever
plot of various summaries of datasets that makes it easier to compare many cases.

13.4.1 Some Properties of Histograms

The tails of a histogram are the relatively uncommon values that are significantly
larger (resp. smaller) than the value at the peak (which is sometimes called the
mode). A histogram is unimodal if there is only one peak; if there are more than
one, it is multimodal, with the special term bimodal sometimes being used for
the case where there are two peaks (Figure 13.4). The histograms we have seen
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FIGURE 13.4: Many histograms are unimodal, like the example on the top; there is
one peak, or mode. Some are bimodal (two peaks; bottom left) or even multimodal
(two or more peaks; bottom right). One common reason (but not the only reason)
is that there are actually two populations being conflated in the histograms. For
example, measuring adult heights might result in a bimodal histogram, if male and
female heights were slightly different. As another example, measuring the weight
of dogs might result in a multimodal histogram if you did not distinguish between
breeds (eg chihauhau, terrier, german shepherd, pyranean mountain dog, etc.).

have been relatively symmetric, where the left and right tails are about as long as
one another. Another way to think about this is that values a lot larger than the
mean are about as common as values a lot smaller than the mean. Not all data is
symmetric. In some datasets, one or another tail is longer (figure 13.5). This effect
is called skew.

Skew appears often in real data. SOCR (the Statistics Online Computational
Resource) publishes a number of datasets. Here we discuss a dataset of citations
to faculty publications. For each of five UCLA faculty members, SOCR collected
the number of times each of the papers they had authored had been cited by
other authors (data at http://wiki.stat.ucla.edu/socr/index.php/SOCR Data Dinov
072108 H Index Pubs). Generally, a small number of papers get many citations, and
many papers get few citations. We see this pattern in the histograms of citation
numbers (figure 13.6). These are very different from (say) the body temperature
pictures. In the citation histograms, there are many data items that have very few
citations, and few that have many citations. This means that the right tail of the
histogram is longer, so the histogram is skewed to the right.

One way to check for skewness is to look at the histogram; another is to

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_072108_H_Index_Pubs
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_072108_H_Index_Pubs
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FIGURE 13.5: On the top, an example of a symmetric histogram, showing its tails
(relatively uncommon values that are significantly larger or smaller than the peak
or mode). Lower left, a sketch of a left-skewed histogram. Here there are few
large values, but some very small values that occur with significant frequency. We
say the left tail is “long”, and that the histogram is left skewed. You may find
this confusing, because the main bump is to the right — one way to remember this
is that the left tail has been stretched. Lower right, a sketch of a right-skewed
histogram. Here there are few small values, but some very large values that occur
with significant frequency. We say the right tail is “long”, and that the histogram
is right skewed.

compare mean and median (though this is not foolproof). For the first citation
histogram, the mean is 24.7 and the median is 7.5; for the second, the mean is 24.4,
and the median is 11. In each case, the mean is a lot bigger than the median. Recall
the definition of the median (form a ranked list of the data points, and find the
point halfway along the list). For much data, the result is larger than about half
of the data set and smaller than about half the dataset. So if the median is quite
small compared to the mean, then there are many small data items and a small
number of data items that are large — the right tail is longer, so the histogram is
skewed to the right.

Left-skewed data also occurs; figure 13.6 shows a histogram of the birth
weights of 44 babies born in Brisbane, in 1997 (from http://www.amstat.org/publications/
jse/jse data archive.htm). This data appears to be somewhat left-skewed, as birth
weights can be a lot smaller than the mean, but tend not to be much larger than
the mean.

Skewed data is often, but not always, the result of constraints. For example,
good obstetrical practice tries to ensure that very large birth weights are rare (birth

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
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FIGURE 13.6: On the left, a histogram of citations for a fac-
ulty member, from data at http://wiki.stat.ucla.edu/socr/ index.php/
SOCR Data Dinov 072108 H Index Pubs. Very few publications have many
citations, and many publications have few. This means the histogram is strongly
right-skewed. On the right, a histogram of birth weights for 44 babies borne in
Brisbane in 1997. This histogram looks slightly left-skewed.

is typically induced before the baby gets too heavy), but it may be quite hard to
avoid some small birth weights. This could could skew birth weights to the left
(because large babies will get born, but will not be as heavy as they could be if
obstetricians had not interfered). Similarly, income data can be skewed to the right
by the fact that income is always positive. Test mark data is often skewed —
whether to right or left depends on the circumstances — by the fact that there is
a largest possible mark and a smallest possible mark.

13.4.2 Standard Coordinates and Normal Data

It is useful to look at lots of histograms, because it is often possible to get some
useful insights about data. However, in their current form, histograms are hard to
compare. This is because each is in a different set of units. A histogram for length
data will consist of boxes whose horizontal units are, say, metres; a histogram
for mass data will consist of boxes whose horizontal units are in, say, kilograms.
Furthermore, these histograms typically span different ranges.

We can make histograms comparable by (a) estimating the “location” of the
plot on the horizontal axis and (b) estimating the “scale” of the plot. The location
is given by the mean, and the scale by the standard deviation. We could then
normalize the data by subtracting the location (mean) and dividing by the standard
deviation (scale). The resulting values are unitless, and have zero mean. They are
often known as standard coordinates.

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_072108_H_Index_Pubs
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_072108_H_Index_Pubs
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Definition: 13.8 Standard coordinates

Assume we have a dataset {x} of N data items, x1, . . . , xN . We repre-
sent these data items in standard coordinates by computing

x̂i =
(xi −mean ({x}))

std ({x}) .

We write {x̂} for a dataset that happens to be in standard coordinates.

Standard coordinates have some important properties. Assume we have N
data items. Write xi for the i’th data item, and x̂i for the i’th data item in standard
coordinates (I sometimes refer to these as “normalized data items”). Then we have

mean ({x̂}) = 0.

We also have that
std ({x̂}) = 1.

An extremely important fact about data is that, for many kinds of data,
histograms of these standard coordinates look the same. Many completely different
datasets produce a histogram that, in standard coordinates, has a very specific
appearance. It is symmetric, unimodal; it looks like a narrow bump. If there were
enough data points and the histogram boxes were small enough, the curve would
look like the curve in figure 13.7. This phenomenon is so important that data of
this form has a special name.

Definition: 13.9 Standard normal data

Data is standard normal data if, when we have a great deal of data,
the histogram is a close approximation to the standard normal curve.
This curve is given by

y(x) =
1√
2π

e(−x2/2)

(which is shown in figure 13.7).
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FIGURE 13.7: Data is standard normal data when its histogram takes a stylized,
bell-shaped form, plotted above. One usually requires a lot of data and very small
histogram boxes for this form to be reproduced closely. Nonetheless, the histogram
for normal data is unimodal (has a single bump) and is symmetric; the tails fall
off fairly fast, and there are few data items that are many standard deviations from
the mean. Many quite different data sets have histograms that are similar to the
normal curve; I show three such datasets here.

Definition: 13.10 Normal data

Data is normal data if, when we subtract the mean and divide by
the standard deviation (i.e. compute standard coordinates), it becomes
standard normal data.

It is not always easy to tell whether data is normal or not, and there are
a variety of tests one can use, which we discuss later. However, there are many
examples of normal data. Figure 13.7 shows a diverse variety of data sets, plotted
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as histograms in standard coordinates. These include: the volumes of 30 oysters
(from http://www.amstat.org/publications/jse/jse data archive.htm; look for 30oys-
ters.dat.txt); human heights (from http://www2.stetson.edu/∼jrasp/data.htm; look
for bodyfat.xls, with two outliers removed); and human weights (from http://www2.
stetson.edu/∼jrasp/data.htm; look for bodyfat.xls, with two outliers removed).

Properties of normal data For the moment, assume we know that a
dataset is normal. Then we expect it to have the following properties:

• If we normalize it, its histogram will be close to the standard normal curve.
This means, among other things, that the data is not significantly skewed.

• About 68% of the data lie within one standard deviation of the mean. We
will prove this later.

• About 95% of the data lie within two standard deviations of the mean. We
will prove this later.

• About 99% of the data lie within three standard deviations of the mean. We
will prove this later.

In turn, these properties imply that data that contains outliers (points many stan-
dard deviations away from the mean) is not normal. This is usually a very safe
assumption. It is quite common to model a dataset by excluding a small number
of outliers, then modelling the remaining data as normal. For example, if I exclude
two outliers from the height and weight data from http://www2.stetson.edu/∼jrasp/
data.htm, the data looks pretty close to normal.

13.4.3 Boxplots

It is usually hard to compare multiple histograms by eye. One problem with com-
paring histograms is the amount of space they take up on a plot, because each
histogram involves multiple vertical bars. This means it is hard to plot multiple
overlapping histograms cleanly. If you plot each one on a separate figure, you have
to handle a large number of separate figures; either you print them too small to see
enough detail, or you have to keep flipping over pages.

A boxplot is a way to plot data that simplifies comparison. A boxplot dis-
plays a dataset as a vertical picture. There is a vertical box whose height corre-
sponds to the interquartile range of the data (the width is just to make the figure
easy to interpret). Then there is a horizontal line for the median; and the behavior
of the rest of the data is indicated with whiskers and/or outlier markers. This
means that each dataset makes is represented by a vertical structure, making it
easy to show multiple datasets on one plot and interpret the plot (Figure 13.8).

To build a boxplot, we first plot a box that runs from the first to the third
quartile. We then show the median with a horizontal line. We then decide which
data items should be outliers. A variety of rules are possible; for the plots I show, I
used the rule that data items that are larger than q3 + 1.5(q3 − q1) or smaller than
q1 − 1.5(q3 − q1), are outliers. This criterion looks for data items that are more
than one and a half interquartile ranges above the third quartile, or more than one
and a half interquartile ranges below the first quartile.

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
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FIGURE 13.8: A boxplot showing the box, the median, the whiskers and two outliers.
Notice that we can compare the two datasets rather easily; the next section explains
the comparison.

Once we have identified outliers, we plot these with a special symbol (crosses
in the plots I show). We then plot whiskers, which show the range of non-outlier
data. We draw a whisker from q1 to the smallest data item that is not an outlier,
and from q3 to the largest data item that is not an outlier. While all this sounds
complicated, any reasonable programming environment will have a function that
will do it for you. Figure 13.8 shows an example boxplot. Notice that the rich
graphical structure means it is quite straightforward to compare two histograms.

13.5 WHOSE IS BIGGER? INVESTIGATING AUSTRALIAN PIZZAS

At http://www.amstat.org/publications/jse/jse data archive.htm), you will find a dataset
giving the diameter of pizzas, measured in Australia (search for the word “pizza”).
This website also gives the backstory for this dataset. Apparently, EagleBoys pizza
claims that their pizzas are always bigger than Dominos pizzas, and published a set
of measurements to support this claim (the measurements were available at http://
www.eagleboys.com.au/realsizepizza as of Feb 2012, but seem not to be there any-
more).

Whose pizzas are bigger? and why? A histogram of all the pizza sizes appears

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.eagleboys.com.au/realsizepizza
http://www.eagleboys.com.au/realsizepizza
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FIGURE 13.9: A histogram of pizza diameters from the dataset described in the text.
Notice that there seem to be two populations.
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FIGURE 13.10: On the left, the class-conditional histogram of Dominos pizza di-
ameters from the pizza data set; on the right, the class-conditional histogram of
EagleBoys pizza diameters. Notice that EagleBoys pizzas seem to follow the pat-
tern we expect — the diameters are clustered tightly around a mean, and there is a
small standard deviation — but Dominos pizzas do not seem to be like that. There
is more to understand about this data.

in figure 13.9. We would not expect every pizza produced by a restaurant to have
exactly the same diameter, but the diameters are probably pretty close to one
another, and pretty close to some standard value. This would suggest that we’d
expect to see a histogram which looks like a single, rather narrow, bump about a
mean. This is not what we see in figure 13.9 — instead, there are two bumps, which
suggests two populations of pizzas. This isn’t particularly surprising, because we
know that some pizzas come from EagleBoys and some from Dominos.

If you look more closely at the data in the dataset, you will notice that each
data item is tagged with the company it comes from. We can now easily plot con-
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FIGURE 13.11: Boxplots of the pizza data, comparing EagleBoys and Dominos pizza.
There are several curiosities here: why is the range for Dominos so large (25.5-29)?
EagleBoys has a smaller range, but has several substantial outliers; why? One would
expect pizza manufacturers to try and control diameter fairly closely, because pizzas
that are too small present risks (annoying customers; publicity; hostile advertising)
and pizzas that are too large should affect profits.

ditional histograms, conditioning on the company that the pizza came from. These
appear in figure 13.10. Notice that EagleBoys pizzas seem to follow the pattern
we expect — the diameters are clustered tightly around one value — but Dominos
pizzas do not seem to be like that. This is reflected in a boxplot (figure 13.11),
which shows the range of Dominos pizza sizes is surprisingly large, and that Ea-
gleBoys pizza sizes have several large outliers. There is more to understand about
this data. The dataset contains labels for the type of crust and the type of topping
— perhaps these properties affect the size of the pizza?

EagleBoys produces DeepPan, MidCrust and ThinCrust pizzas, and Dominos
produces DeepPan, ClassicCrust and ThinNCrispy pizzas. This may have some-
thing to do with the observed patterns, but comparing six histograms by eye is
unattractive. A boxplot is the right way to compare these cases (figure 13.12). The
boxplot gives some more insight into the data. Dominos thin crust appear to have a
narrow range of diameters (with several outliers), where the median pizza is rather
larger than either the deep pan or the classic crust pizza. EagleBoys pizzas all have
a range of diameters that is (a) rather similar across the types and (b) rather a lot
like the Dominos thin crust. There are outliers, but few for each type.

Another possibility is that the variation in size is explained by the topping.
We can compare types and toppings by producing a set of conditional boxplots (i.e.
the diameters for each type and each topping). This leads to rather a lot of boxes
(figure 13.13), but they’re still easy to compare by eye. The main difficulty is that
the labels on the plot have to be shortened. I made labels using the first letter
from the manufacturer (“D” or “E”); the first letter from the crust type (previous
paragraph); and the first and last letter of the topping. Toppings for Dominos are:
Hawaiian; Supreme; BBQMeatlovers. For EagleBoys, toppings are: Hawaiian; Su-
perSupremo; and BBQMeatlovers. This gives the labels: ’DCBs’; (Dominos; Clas-
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FIGURE 13.12: Boxplots for the pizza data, broken out by type (thin crust, etc.).

sicCrust; BBQMeatlovers); ’DCHn’; ’DCSe’; ’DDBs’; ’DDHn’; ’DDSe’; ’DTBs’;
’DTHn’; ’DTSe’; ’EDBs’; ’EDHn’; ’EDSo’; ’EMBs’; ’EMHn’; ’EMSo’; ’ETBs’;
’ETHn’; ’ETSo’. Figure 13.13 suggests that the topping isn’t what is important,
but the crust (group the boxplots by eye).

What could be going on here? One possible explanation is that Eagleboys
have tighter control over the size of the final pizza. One way this could happen is
that all EagleBoys pizzas start the same size and shrink the same amount in baking,
whereas all Dominos pizzas start a standard diameter, but different Dominos crusts
shrink differently in baking. Another way is that Dominos makes different size
crusts for different types, but that the cooks sometimes get confused. Yet another
possibility is that Dominos controls portions by the mass of dough (so thin crust
diameters tend to be larger), but Eagleboys controls by the diameter of the crust.

You should notice that this is more than just a fun story. If you were a manager
at a pizza firm, you’d need to make choices about how to control costs. Labor costs,
rent, and portion control (i.e. how much pizza, topping, etc. a customer gets for
their money) are the main thing to worry about. If the same kind of pizza has a wide
range of diameters, you have a problem, because some customers are getting too
much (which affects your profit) or too little (which means they might call someone
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FIGURE 13.13: The pizzas are now broken up by topping as well as crust type (look at
the source for the meaning of the names). I have separated Dominos from Eagleboys
with a vertical line, and grouped each crust type with a box. It looks as though the
issue is not the type of topping, but the crust. Eagleboys seems to have tighter
control over the size of the final pizza.

else next time). But making more regular pizzas might require more skilled (and so
more expensive) labor. The fact that Dominos and EagleBoys seem to be following
different strategies successfully suggests that more than one strategy might work.
But you can’t choose if you don’t know what’s happening. As I said at the start,
“what’s going on here?” is perhaps the single most useful question anyone can ask.
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13.6 YOU SHOULD

13.6.1 be able to:

• Plot a bar chart for a dataset.

• Plot a histogram for a dataset.

• Tell whether the histogram is skewed or not, and in which direction.

• Plot a box plot for one or several datasets.

• Interpret a box plot.

13.6.2 remember:

New term: categorical . . . . . . . . . . . . . . . . . . . . . . . . . . 235
New term: ordinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
New term: continuous . . . . . . . . . . . . . . . . . . . . . . . . . . 235
New term: bar chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
New term: histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
New term: conditional histograms . . . . . . . . . . . . . . . . . . . 241
New term: class-conditional histograms . . . . . . . . . . . . . . . . 241
New term: mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Definition: Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Useful facts: Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
New term: standard deviation . . . . . . . . . . . . . . . . . . . . . . 244
Definition: Standard deviation . . . . . . . . . . . . . . . . . . . . . 244
Useful facts: Standard deviation . . . . . . . . . . . . . . . . . . . . 247
New term: variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Definition: Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Useful facts: Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 249
New term: outlier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
New term: median . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Definition: Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Useful facts: Median . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
New term: interquartile range . . . . . . . . . . . . . . . . . . . . . . 251
Definition: Percentile . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Definition: Quartiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Definition: Interquartile Range . . . . . . . . . . . . . . . . . . . . . 252
Useful facts: Interquartile range . . . . . . . . . . . . . . . . . . . . . 252
New term: tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
New term: mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
New term: unimodal . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
New term: multimodal . . . . . . . . . . . . . . . . . . . . . . . . . . 253
New term: bimodal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
New term: skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
New term: standard coordinates . . . . . . . . . . . . . . . . . . . . 256
Definition: Standard coordinates . . . . . . . . . . . . . . . . . . . . 257
New term: standard normal data . . . . . . . . . . . . . . . . . . . . 257
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New term: standard normal curve . . . . . . . . . . . . . . . . . . . 257
Definition: Standard normal data . . . . . . . . . . . . . . . . . . . . 257
New term: normal data . . . . . . . . . . . . . . . . . . . . . . . . . 258
Definition: Normal data . . . . . . . . . . . . . . . . . . . . . . . . . 258
New term: boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259



C H A P T E R 14

Background:Looking at
Relationships

We think of a dataset as a collection of d-tuples (a d-tuple is an ordered list of
d elements). For example, the Chase and Dunner dataset had entries for Gender;
Grade; Age; Race; Urban/Rural; School; Goals; Grades; Sports; Looks; and Money
(so it consisted of 11-tuples). The previous chapter explored methods to visualize
and summarize a set of values obtained by extracting a single element from each
tuple. For example, I could visualize the heights or the weights of a population (as
in Figure 13.7). But I could say nothing about the relationship between the height
and weight. In this chapter, we will look at methods to visualize and summarize
the relationships between pairs of elements of a dataset.

14.1 PLOTTING 2D DATA

We take a dataset, choose two different entries, and extract the corresponding
elements from each tuple. The result is a dataset consisting of 2-tuples, and we
think of this as a two dimensional dataset. The first step is to plot this dataset in a
way that reveals relationships. The topic of how best to plot data fills many books,
and we can only scratch the surface here. Categorical data can be particularly
tricky, because there are a variety of choices we can make, and the usefulness of
each tends to depend on the dataset and to some extent on one’s cleverness in
graphic design (section 14.1.1).

For some continuous data, we can plot the one entry as a function of the other
(so, for example, our tuples might consist of the date and the number of robberies;
or the year and the price of lynx pelts; and so on, section 14.1.2).

Mostly, we use a simple device, called a scatter plot. Using and thinking about
scatter plots will reveal a great deal about the relationships between our data items
(section 14.1.3).

14.1.1 Categorical Data, Counts, and Charts

Categorical data is a bit special. Assume we have a dataset with several cate-
gorical descriptions of each data item. One way to plot this data is to think of
it as belonging to a richer set of categories. Assume the dataset has categorical
descriptions, which are not ordinal. Then we can construct a new set of categories
by looking at each of the cases for each of the descriptions. For example, in the
Chase and Dunner data of table 13.2, our new categories would be: “boy-sports”;
“girl-sports”; “boy-popular”; “girl-popular”; “boy-grades”; and “girl-grades”. A
large set of categories like this can result in a poor bar chart, though, because there
may be too many bars to group the bars successfully. Figure 14.1 shows such a bar
chart. Notice that it is hard to group categories by eye to compare; for example,

267
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FIGURE 14.1: I sorted the children in the Chase and Dunner study into six categories
(two genders by three goals), and counted the number of children that fell into each
cell. I then produced the bar chart on the left, which shows the number of children
of each gender, selecting each goal. On the right, a pie chart of this information.
I have organized the pie chart so it is easy to compare boys and girls by eye — start
at the top; going down on the left side are boy goals, and on the right side are girl
goals. Comparing the size of the corresponding wedges allows you to tell what goals
boys (resp. girls) identify with more or less often.

you can see that slightly more girls think grades are important than boys do, but
to do so you need to compare two bars that are separated by two other bars. An
alternative is a pie chart, where a circle is divided into sections whose angle is
proportional to the size of the data item. You can think of the circle as a pie, and
each section as a slice of pie. Figure 14.1 shows a pie chart, where each section is
proportional to the number of students in its category. In this case, I’ve used my
judgement to lay the categories out in a way that makes comparisons easy. I’m not
aware of any tight algorithm for doing this, though.

Pie charts have problems, because it is hard to judge small differences in area
accurately by eye. For example, from the pie chart in figure 14.1, it’s hard to tell
that the “boy-sports” category is slightly bigger than the “boy-popular” category
(try it; check using the bar chart). For either kind of chart, it is quite important
to think about what you plot. For example, the plot of figure 14.1 shows the total
number of respondents, and if you refer to figure 13.1, you will notice that there
are slightly more girls in the study. Is the percentage of boys who think grades are
important smaller (or larger) than the percentage of girls who think so? you can’t
tell from these plots, and you’d have to plot the percentages instead.

An alternative is to use a stacked bar chart. You can (say) regard the data
as of two types, “Boys” and “Girls”. Within those types, there are subtypes (“Pop-
ularity”, “Grades” and “Sport”). The height of the bar is given by the number of
elements in the type, and the bar is divided into sections corresponding to the num-
ber of elements of that subtype. Alternatively, if you want the plot to show relative
frequencies, the bars could all be the same height, but the shading corresponds to
the fraction of elements of that subtype. This is all much harder to say than to see
or to do (Figure 14.2).
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FIGURE 14.2: These bar charts use stacked bars. In the top row, the overall height
of the bar is given by the number of elements of that type but each different subtype is
identified by shading, so you can tell by eye, for example, how many of the “Grades”
in the study were “Boys”. This layout makes it hard to tell what fraction of, say,
“Boys” aspire to “Popularity”. In the bottom row, all bars have the same height,
but the shading of the bar identifies the fraction of that type that has a corresponding
subtype. This means you can tell by eye what fraction of “Girls” aspire to “Sports”.

An alternative to a pie chart that is very useful for two dimensional data is
a heat map. This is a method of displaying a matrix as an image. Each entry of
the matrix is mapped to a color, and the matrix is represented as an image. For
the Chase and Dunner study, I constructed a matrix where each row corresponds
to a choice of “sports”, “grades”, or “popular”, and each column corresponds to a
choice of “boy” or “girl”. Each entry contains the count of data items of that type.
Zero values are represented as white; the largest values as red; and as the value
increases, we use an increasingly saturated pink. This plot is shown in figure 14.3

If the categorical data is ordinal, the ordering offers some hints for making
a good plot. For example, imagine we are building a user interface. We build an
initial version, and collect some users, asking each to rate the interface on scales for
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FIGURE 14.3: A heat map of the Chase and Dunner data. The color of each cell
corresponds to the count of the number of elements of that type. The colorbar at
the side gives the correspondence between color and count. You can see at a glance
that the number of boys and girls who prefer grades is about the same; that about
the same number of boys prefer sports and popularity, with sports showing a mild
lead; and that more girls prefer popularity to sports.

-2 -1 0 1 2
-2 24 5 0 0 1
-1 6 12 3 0 0
0 2 4 13 6 0
1 0 0 3 13 2
2 0 0 0 1 5

TABLE 14.1: I simulated data representing user evaluations of a user interface.
Each cell in the table on the left contains the count of users rating “ease of use”
(horizontal, on a scale of -2 -very bad- to 2 -very good) vs. “enjoyability” (vertical,
same scale). Users who found the interface hard to use did not like using it either.
While this data is categorical, it’s also ordinal, so that the order of the cells is
determined. It wouldn’t make sense, for example, to reorder the columns of the
table or the rows of the table.

“ease of use” (-2, -1, 0, 1, 2, running from bad to good) and “enjoyability” (again,
-2, -1, 0, 1, 2, running from bad to good). It is natural to build a 5x5 table, where
each cell represents a pair of “ease of use” and “enjoyability” values. We then count
the number of users in each cell, and build graphical representations of this table.
One natural representation is a 3D bar chart, where each bar sits on its cell in the
2D table, and the height of the bars is given by the number of elements in the cell.
Table 14.1 shows a table and figure 14.4 shows a 3D bar chart for some simulated
data. The main difficulty with a 3D bar chart is that some bars are hidden behind
others. This is a regular nuisance. You can improve things by using an interactive
tool to rotate the chart to get a nice view, but this doesn’t always work. Heatmaps
don’t suffer from this problem (Figure 14.4), another reason they are a good choice.
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FIGURE 14.4: On the left, a 3D bar chart of the data. The height of each bar is
given by the number of users in each cell. This figure immediately reveals that users
who found the interface hard to use did not like using it either. However, some of
the bars at the back are hidden, so some structure might be hard to infer. On the
right, a heat map of this data. Again, this figure immediately reveals that users
who found the interface hard to use did not like using it either. It’s more apparent
that everyone disliked the interface, though, and it’s clear that there is no important
hidden structure.

Remember this: There are a variety of tools for plotting categorical
data. It’s difficult to give strict rules for which to use when, but usually
one tries to avoid pie charts (angles are hard to judge by eye) and 3D bar
charts (where occlusion can hide important effects).

14.1.2 Series

Sometimes one component of a dataset gives a natural ordering to the data. For
example, we might have a dataset giving the maximum rainfall for each day of
the year. We could record this either by using a two-dimensional representation,
where one dimension is the number of the day and the other is the temperature,
or with a convention where the i’th data item is the rainfall on the i’th day. For
example, at http://lib.stat.cmu.edu/DASL/Datafiles/timeseriesdat.html, you can find
four datasets indexed in this way. It is natural to plot data like this as a function
of time. From this dataset, I extracted data giving the number of burglaries each
month in a Chicago suburb, Hyde Park. I have plotted part this data in Figure 14.5
(I left out the data to do with treatment effects). It is natural to plot a graph of
the burglaries as a function of time (in this case, the number of the month). The
plot shows each data point explicitly. I also told the plotting software to draw
lines joining data points, because burglaries do not all happen on a specific day.

http://lib.stat.cmu.edu/DASL/Datafiles/timeseriesdat.html
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FIGURE 14.5: Left, the number of burglaries in Hyde Park, by month. Right, a
plot of the number of lynx pelts traded at Hudson Bay and of the price paid per pelt,
as a function of the year. Notice the scale, and the legend box (the number of pelts
is scaled by 100).

The lines suggest, reasonably enough, the rate at which burglaries are happening
between data points.

FIGURE 14.6: Snow’s scatter plot of cholera deaths on the left. Each cholera death
is plotted as a small bar on the house in which the bar occurred (for example, the
black arrow points to one stack of these bars, indicating many deaths, in the detail
on the right). Notice the fairly clear pattern of many deaths close to the Broad
street pump (grey arrow in the detail), and fewer deaths further away (where it was
harder to get water from the pump).

As another example, at http://lib.stat.cmu.edu/datasets/Andrews/ you can

http://lib.stat.cmu.edu/datasets/Andrews/
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FIGURE 14.7: Left, a scatter plot of arsenic levels in US groundwater, prepared
by the US Geological Survey (you can find the data at http://water.usgs.gov/GIS/
metadata/usgswrd/XML/arsenic map.xml . Here the shape and color of each marker
shows the amount of arsenic, and the spatial distribution of the markers shows where
the wells were sampled. Right, the usage of Nitrogen (a component of fertilizer)
by US county in 1991, prepared by the US Geological Survey (you can find the data
at http://water.usgs.gov/GIS/metadata/usgswrd/XML/nit91.xml). In this variant
of a scatter plot (which usually takes specialized software to prepare) one fills each
region with a color indicating the data in that region.

find a dataset that records the number of lynx pelts traded to the Hudson’s Bay
company and the price paid for each pelt. This version of the dataset appeared first
in table 3.2 of Data: a Collection of Problems from many Fields for the Student
and Research Worker by D.F. Andrews and A.M. Herzberg, published by Springer
in 1985. I have plotted it in figure 14.5. The dataset is famous, because it shows
a periodic behavior in the number of pelts (which is a good proxy for the number
of lynx), which is interpreted as a result of predator-prey interactions. Lynx eat
rabbits. When there are many rabbits, lynx kittens thrive, and soon there will
be many lynx; but then they eat most of the rabbits, and starve, at which point
the rabbit population rockets. You should also notice that after about 1900, prices
seem to have gone up rather quickly. I don’t know why this is. There is also some
suggestion, as there should be, that prices are low when there are many pelts, and
high when there are few.

14.1.3 Scatter Plots for Spatial Data

It isn’t always natural to plot data as a function. For example, in a dataset con-
taining the temperature and blood pressure of a set of patients, there is no reason
to believe that temperature is a function of blood pressure, or the other way round.
Two people could have the same temperature, and different blood pressures, or
vice-versa. As another example, we could be interested in what causes people to
die of cholera. We have data indicating where each person died in a particular
outbreak. It isn’t helpful to try and plot such data as a function.

The scatter plot is a powerful way to deal with this situation. In the first

http://water.usgs.gov/GIS/metadata/usgswrd/XML/arsenic_map.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/arsenic_map.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/nit91.xml
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FIGURE 14.8: A scatter plot of body temperature against heart rate, from the dataset
at http://www2.stetson.edu/∼jrasp/data.htm; normtemp.xls. I have separated the
two genders by plotting a different symbol for each (though I don’t know which
gender is indicated by which letter); if you view this in color, the differences in color
makes for a greater separation of the scatter. This picture suggests, but doesn’t
conclusively establish, that there isn’t much dependence between temperature and
heart rate, and any dependence between temperature and heart rate isn’t affected by
gender.

instance, assume that our data points actually describe points on the a real map.
Then, to make a scatter plot, we make a mark on the map at a place indicated by
each data point. What the mark looks like, and how we place it, depends on the
particular dataset, what we are looking for, how much we are willing to work with
complex tools, and our sense of graphic design.

Figure 14.6 is an extremely famous scatter plot, due to John Snow. Snow —
one of the founders of epidemiology — used a scatter plot to reason about a cholera
outbreak centered on the Broad Street pump in London in 1854. At that time,
the mechanism that causes cholera was not known. Snow plotted cholera deaths as
little bars (more bars, more deaths) on the location of the house where the death
occurred. More bars means more deaths, fewer bars means fewer deaths. There
are more bars per block close to the pump, and few far away. This plot offers quite
strong evidence of an association between the pump and death from cholera. Snow
used this scatter plot as evidence that cholera was associated with water, and that
the Broad Street pump was the source of the tainted water.

Figure 14.7 shows a scatter plot of arsenic levels in groundwater for the United
States, prepared by the US Geological Survey. The data set was collected by Focazio
and others in 2000; by Welch and others in 2000; and then updated by Ryker 2001.
It can be found at http://water.usgs.gov/GIS/metadata/usgswrd/XML/arsenic map.
xml. One variant of a scatter plot that is particularly useful for geographic data
occurs when one fills regions on a map with different colors, following the data in
that region. Figure 14.7 shows the nitrogen usage by US county in 1991; again,
this figure was prepared by the US Geological Survey.

http://www2.stetson.edu/~jrasp/data.htm
http://water.usgs.gov/GIS/metadata/usgswrd/XML/arsenic_map.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/arsenic_map.xml
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FIGURE 14.9: A scatter plots of weight against height, from the dataset at http://
www2.stetson.edu/∼jrasp/data.htm. Left: Notice how two outliers dominate the
picture, and to show the outliers, the rest of the data has had to be bunched up.
Right shows the data with the outliers removed. The structure is now somewhat
clearer.
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FIGURE 14.10: Scatter plots of weight against height, from the dataset at http://
www2.stetson.edu/∼jrasp/data.htm. Left: data with two outliers removed, as in
figure 14.9. Right: this data, rescaled slightly. Notice how the data looks less
spread out. But there is no difference between the datasets. Instead, your eye is
easily confused by a change of scale.

Remember this: Scatter plots are a most effective tool for geographic
data and 2D data in general. A scatter plot should be your first step with a
new 2D dataset.

http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm


Section 14.1 Plotting 2D Data 276

0 2 4 6 8
x 10

4

0

500

1000

1500

number of pelts traded

pr
ic

e 
of

 p
el

ts
, i

n 
pe

nn
ie

s

FIGURE 14.11: A scatter plot of the price of lynx pelts against the number of pelts.
I have plotted data for 1901 to the end of the series as circles, and the rest of the
data as *’s. It is quite hard to draw any conclusion from this data, because the scale
is confusing. Furthermore, the data from 1900 on behaves quite differently from the
other data.

14.1.4 Exposing Relationships with Scatter Plots

Scatter plots are natural for geographic data, but a scatter plot is a useful, simple
tool for ferreting out associations in other kinds of data as well. Now we need
some notation. Assume we have a dataset {x} of N data items, x1, . . . , xN . Each
data item is a d dimensional vector (so its components are numbers). We wish to
investigate the relationship between two components of the dataset. For example,
we might be interested in the 7’th and the 13’th component of the dataset. We
will produce a two-dimensional plot, one dimension for each component. It does
not really matter which component is plotted on the x-coordinate and which on
the y-coordinate (though it will be some pages before this is clear). But it is very
difficult to write sensibly without talking about the x and y coordinates.

We will make a two-dimensional dataset out of the components that interest
us. We must choose which component goes first in the resulting 2-vector. We will
plot this component on the x-coordinate (and we refer to it as the x-coordinate),
and to the other component as the y-coordinate. This is just to make it easier to
describe what is going on; there’s no important idea here. It really will not matter
which is x and which is y. The two components make a dataset {xi} = {(xi, yi)}.
To produce a scatter plot of this data, we plot a small shape at the location of each
data item.

Such scatter plots are very revealing. For example, figure 14.8 shows a scatter
plot of body temperature against heart rate for humans. In this dataset, the gender
of the subject was recorded (as “1” or “2” — I don’t know which is which), and
so I have plotted a “1” at each data point with gender “1”, and so on. Looking
at the data suggests there isn’t much difference between the blob of “1” labels and
the blob of “2” labels, which suggests that females and males are about the same
in this respect.

The scale used for a scatter plot matters. For example, plotting lengths in
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meters gives a very different scatter from plotting lengths in millimeters. Fig-
ure 14.9 shows two scatter plots of weight against height. Each plot is from the
same dataset, but one is scaled so as to show two outliers. Keeping these outliers
means that the rest of the data looks quite concentrated, just because the axes
are in large units. In the other plot, the axis scale has changed (so you can’t see
the outliers), but the data looks more scattered. This may or may not be a mis-
representation. Figure 14.10 compares the data with outliers removed, with the
same plot on a somewhat different set of axes. One plot looks as though increasing
height corresponds to increasing weight; the other looks as though it doesn’t. This
is purely due to deceptive scaling — each plot shows the same dataset.

Dubious data can also contribute to scaling problems. Recall that, in fig-
ure 14.5, price data before and after 1900 appeared to behave differently. Fig-
ure 14.11 shows a scatter plot of the lynx data, where I have plotted number of
pelts against price. I plotted the post-1900 data as circles, and the rest as aster-
isks. Notice how the circles seem to form a quite different figure, which supports the
suggestion that something interesting happened around 1900. We can reasonably
choose to analyze data after 1900 separately from before 1900. A choice like this
should be made with care. If you exclude every data point that might disagree with
your hypothesis, you may miss the fact that you are wrong. Leaving out data is
an essential component of many kinds of fraud. You should always reveal whether
you have excluded data, and why, to allow the reader to judge the evidence.

When you look at Figure 14.11, you should notice the scatter plot does not
seem to support the idea that prices go up when supply goes down. This is puzzling
because it’s generally a pretty reliable idea. In fact, the plot is just hard to interpret
because it is poorly scaled. Scale is an important nuisance, and it’s easy to get
misled by scale effects.
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FIGURE 14.12: A normalized scatter plot of weight against height, from the dataset
at http://www2.stetson.edu/∼jrasp/data.htm. Now you can see that someone who
is a standard deviation taller than the mean will tend to be somewhat heavier than
the mean too.

The way to avoid the problem is to plot in standard coordinates. We can
normalize without worrying about the dimension of the data — we normalize each

http://www2.stetson.edu/~jrasp/data.htm
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FIGURE 14.13: Left: A scatter plot of body temperature against heart rate, from the
dataset at http://www2.stetson.edu/∼jrasp/data.htm; normtemp.xls. I have sepa-
rated the two genders by plotting a different symbol for each (though I don’t know
which gender is indicated by which letter); if you view this in color, the differences
in color makes for a greater separation of the scatter. This picture suggests, but
doesn’t conclusively establish, that there isn’t much dependence between temperature
and heart rate, and any dependence between temperature and heart rate isn’t affected
by gender. The scatter plot of the normalized data, in standard coordinates, on the
right supports this view.
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FIGURE 14.14: Left: A scatter plot of the price of lynx pelts against the number of
pelts (this is a repeat of figure 14.11 for reference). I have plotted data for 1901
to the end of the series as circles, and the rest of the data as *’s. It is quite hard
to draw any conclusion from this data, because the scale is confusing. Right: A
scatter plot of the price of pelts against the number of pelts for lynx pelts. I excluded
data for 1901 to the end of the series, and then normalized both price and number
of pelts. Notice that there is now a distinct trend; when there are fewer pelts, they
are more expensive, and when there are more, they are cheaper.

http://www2.stetson.edu/~jrasp/data.htm
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dimension independently by subtracting the mean of that dimension and dividing
by the standard deviation of that dimension. This means we can normalize the
x and y coordinates of the two-dimensional data separately. We continue to use
the convention of writing the normalized x coordinate as x̂ and the normalized y
coordinate as ŷ. So, for example, we can write x̂j = (xj−mean ({x}))/std ({x})) for
the x̂ value of the j’th data item in normalized coordinates. Normalizing shows us
the dataset on a standard scale. Once we have done this, it is quite straightforward
to read off simple relationships between variables from a scatter plot.

Remember this: The plot scale can mask effects in scatter plots, and
it’s usually a good idea to plot in standard coordinates.

14.2 CORRELATION
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FIGURE 14.15: On the left, a normalized scatter plot of weight (y-coordinate) against
height (x-coordinate). On the right, a scatter plot of height (y-coordinate) against
weight (x-coordinate). I’ve put these plots next to one another so you don’t have to
mentally rotate (which is what you should usually do).

The simplest, and most important, relationship to look for in a scatter plot is
this: when x̂ increases, does ŷ tend to increase, decrease, or stay the same? This is
straightforward to spot in a normalized scatter plot, because each case produces a
very clear shape on the scatter plot. Any relationship is called correlation (we will
see later how to measure this), and the three cases are: positive correlation, which
means that larger x̂ values tend to appear with larger ŷ values; zero correlation,
which means no relationship; and negative correlation, which means that larger x̂
values tend to appear with smaller ŷ values. I have shown these cases together
in one figure using a real data example (Figure 14.16), so you can compare the
appearance of the plots.
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FIGURE 14.16: The three kinds of scatter plot are less clean for real data than for
our idealized examples. Here I used the body temperature vs heart rate data for the
zero correlation; the height-weight data for positive correlation; and the lynx data
for negative correlation. The pictures aren’t idealized — real data tends to be messy
— but you can still see the basic structures.

Positive correlation occurs when larger x̂ values tend to appear with larger
ŷ values. This means that data points with with small (i.e. negative with large
magnitude) x̂ values must have small ŷ values, otherwise the mean of x̂ (resp.
ŷ) would be too big. In turn, this means that the scatter plot should look like a
“smear” of data from the bottom left of the graph to the top right. The smear might
be broad or narrow, depending on some details we’ll discuss below. Figure 14.12
shows normalized scatter plots of weight against height, and of body temperature
against heart rate. In the weight-height plot, you can clearly see that individuals
who are higher tend to weigh more. The important word here is “tend” — taller
people could be lighter, but mostly they tend not to be. Notice, also, that I did
NOT say that they weighed more because they were taller, but only that they tend
to be heavier.

Negative correlation occurs when larger x̂ values tend to appear with
smaller ŷ values. This means that data points with with small x̂ values must
have large ŷ values, otherwise the mean of x̂ (resp. ŷ) would be too big. In turn,
this means that the scatter plot should look like a “smear” of data from the top left
of the graph to the bottom right. The smear might be broad or narrow, depending
on some details we’ll discuss below. Figure 14.14 shows a normalized scatter plot
of the lynx pelt-price data, where I have excluded the data from 1901 on. I did so
because there seemed to be some other effect operating to drive prices up, which
was inconsistent with the rest of the series. This plot suggests that when there were
more pelts, prices were lower, as one would expect.

Zero correlation occurs when there is no relationship. This produces a
characteristic shape in a scatter plot, but it takes a moment to understand why. If
there really is no relationship, then knowing x̂ will tell you nothing about ŷ. All
we know is that mean ({ŷ}) = 0, and var ({ŷ}) = 1. This is enough information to
predict what the plot will look like. We know thatmean ({x̂}) = 0 and var ({x̂}) = 1;
so there will be many data points with x̂ value close to zero, and few with a much
larger or much smaller x̂ value. The same applies to ŷ. Now consider the data
points in a strip of x̂ values. If this strip is far away from the origin, there will
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be few data points in the strip, because there aren’t many big x̂ values. If there
is no relationship, we don’t expect to see large or small ŷ values in this strip,
because there are few data points in the strip and because large or small ŷ values
are uncommon — we see them only if there are many data points, and then seldom.
So for a strip with x̂ close to zero, we might see some ŷ values that are far from
zero because we will see many ŷ values. For a strip with x̂ that is far from zero,
we expect to see few ŷ values that are far from zero, because we see few points in
this strip. This reasoning means the data should form a round blob, centered at
the origin. In the temperature-heart rate plot of figure 14.13, it looks as though
nothing of much significance is happening. The average heart rate seems to be
about the same for people who run warm or who run cool. There is probably not
much relationship here.

The correlation is not affected by which variable is plotted on the x-axis and
which is plotted on the y-axis. Figure 14.15 compares a plot of height against
weight to one of weight against height. Usually, one just does this by rotating the
page, or by imagining the new picture. The left plot tells you that data points
with higher height value tend to have higher weight value; the right plot tells you
that data points with higher weight value tend to have higher height value — i.e.
the plots tell you the same thing. It doesn’t really matter which one you look at.
Again, the important word is “tend” — the plot doesn’t tell you anything about
why, it just tells you that when one variable is larger the other tends to be, too.

14.2.1 The Correlation Coefficient

Consider a normalized data set of N two-dimensional vectors. We can write the
i’th data point in standard coordinates (x̂i, ŷi). We already know many important
summaries of this data, because it is in standard coordinates. We havemean ({x̂}) =
0; mean ({ŷ}) = 0; std ({x̂}) = 1; and std ({ŷ}) = 1. Each of these summaries is

itself the mean of some monomial. So std ({x̂})2 = mean
({

x̂2
})

= 1; std ({ŷ})2 =

mean
({

ŷ2
})

(the other two are easy). We can rewrite this information in terms

of means of monomials, giving mean ({x̂}) = 0; mean ({ŷ}) = 0; mean
({

x̂2
})

= 1;

and mean
({

ŷ2
})

= 1. There is one monomial missing here, which is x̂ŷ.
The term mean ({x̂ŷ}) captures correlation between x and y. The term is

known as the correlation coefficient or correlation.
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Definition: 14.1 Correlation coefficient

Assume we have N data items which are 2-vectors
(x1, y1), . . . , (xN , yN ), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. We
compute the correlation coefficient by first normalizing the x and y

coordinates to obtain x̂i = (xi−mean({x}))
std(x) , ŷi = (yi−mean({y}))

std(y) . The

correlation coefficient is the mean value of x̂ŷ, and can be computed
as:

corr ({(x, y)}) =
∑

i x̂iŷi
N

Correlation is a measure of our ability to predict one value from another.
The correlation coefficient takes values between −1 and 1 (we’ll prove this below).
If the correlation coefficient is close to 1, then we are likely to predict very well.
Small correlation coefficients (under about 0.5, say, but this rather depends on
what you are trying to achieve) tend not to be all that interesting, because (as
we shall see) they result in rather poor predictions. Figure 14.17 gives a set of
scatter plots of different real data sets with different correlation coefficients. These
all come from data set of age-height-weight, which you can find at http://www2.
stetson.edu/∼jrasp/data.htm (look for bodyfat.xls). In each case, two outliers have
been removed. Age and height are hardly correlated, as you can see from the figure.
Younger people do tend to be slightly taller, and so the correlation coefficient is
-0.25. You should interpret this as a small correlation. However, the variable
called “adiposity” (which isn’t defined, but is presumably some measure of the
amount of fatty tissue) is quite strongly correlated with weight, with a correlation
coefficient is 0.86. Average tissue density is quite strongly negatively correlated with
adiposity, because muscle is much denser than fat, so these variables are negatively
correlated — we expect high density to appear with low adiposity, and vice versa.
The correlation coefficient is -0.86. Finally, density is very strongly correlated with
body weight. The correlation coefficient is -0.98.

It’s not always convenient or a good idea to produce scatter plots in standard
coordinates (among other things, doing so hides the units of the data, which can
be a nuisance). Fortunately, scaling or translating data does not change the value
of the correlation coefficient (though it can change the sign if one scale is negative).
This means that it’s worth being able to spot correlation in a scatter plot that isn’t
in standard coordinates (even though correlation is always defined in standard co-
ordinates). Figure 14.18 shows different correlated datasets plotted in their original
units. These data sets are the same as those used in figure 14.17

Properties of the Correlation Coefficient

You should memorize the following properties of the correlation coefficient:

http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm


Section 14.2 Correlation 283

−4 −2 0 2 4
−4

−2

0

2

4

Age, normalized

H
ei

gh
t, 

no
rm

al
iz

ed
Age and height, correlation=−0.25

−4 −2 0 2 4
−4

−2

0

2

4

Adiposity, normalized

W
ei

gh
ts

, n
or

m
al

iz
ed

Adiposity and weight, correlation=0.86

−4 −2 0 2 4
−4

−2

0

2

4

6

Density, normalized

A
di

po
si

ty
, n

or
m

al
iz

ed

Density and Adiposity, correlation=−0.73

−4 −2 0 2 4
−4

−2

0

2

4

Density, normalized

B
od

yf
at

, n
or

m
al

iz
ed

Density and Body Fat, correlation=−0.98

FIGURE 14.17: Scatter plots for various pairs of variables for the age-height-weight
dataset from http://www2.stetson.edu/∼jrasp/data.htm; bodyfat.xls. In each case,
two outliers have been removed, and the plots are in standard coordinates (compare
to figure 14.18, which shows these data sets plotted in their original units). The
legend names the variables.

• The correlation coefficient is symmetric (it doesn’t depend on the order of its
arguments), so

corr ({(x, y)}) = corr ({(y, x)})

• The value of the correlation coefficient is not changed by translating the data.
Scaling the data can change the sign, but not the absolute value. For constants
a 6= 0, b, c 6= 0, d we have

corr ({(ax+ b, cx+ d)}) = sign(ab)corr ({(x, y)})

• If ŷ tends to be large (resp. small) for large (resp. small) values of x̂, then
the correlation coefficient will be positive.

• If ŷ tends to be small (resp. large) for large (resp. small) values of x̂, then
the correlation coefficient will be negative.

http://www2.stetson.edu/~jrasp/data.htm
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FIGURE 14.18: Scatter plots for various pairs of variables for the age-height-weight
dataset from http://www2.stetson.edu/∼jrasp/data.htm; bodyfat.xls. In each case,
two outliers have been removed, and the plots are NOT in standard coordinates
(compare to figure 14.17, which shows these data sets plotted in normalized coordi-
nates). The legend names the variables.

• If ŷ doesn’t depend on x̂, then the correlation coefficient is zero (or close to
zero).

• The largest possible value is 1, which happens when x̂ = ŷ.

• The smallest possible value is -1, which happens when x̂ = −ŷ.

The first property is easy, and we relegate that to the exercises. One way to
see that the correlation coefficient isn’t changed by translation or scale is to notice
that it is defined in standard coordinates, and scaling or translating data doesn’t
change those. Another way to see this is to scale and translate data, then write out
the equations; notice that taking standard coordinates removes the effects of the
scale and translation. In each case, notice that if the scale is negative, the sign of
the correlation coefficient changes.

The property that, if ŷ tends to be large (resp. small) for large (resp. small)
values of x̂, then the correlation coefficient will be positive, doesn’t really admit

http://www2.stetson.edu/~jrasp/data.htm
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a formal statement. But it’s relatively straightforward to see what’s going on.
Because mean ({x̂}) = 0, small values of mean ({x̂}) must be negative and large

values must be positive. But corr ({(x, y)}) =

∑

i
x̂iŷi

N ; and for this sum to be
positive, it should contain mostly positive terms. It can contain few or no hugely
positive (or hugely negative) terms, because std (x̂) = std (ŷ) = 1 so there aren’t
many large (or small) numbers. For the sum to contain mostly positive terms, then
the sign of x̂i should be the same as the sign ŷi for most data items. Small changes
to this argument work to show that if if ŷ tends to be small (resp. large) for large
(resp. small) values of x̂, then the correlation coefficient will be negative.

Showing that no relationship means zero correlation requires slightly more
work. Divide the scatter plot of the dataset up into thin vertical strips. There
are S strips. Each strip is narrow, so the x̂ value does not change much for the
data points in a particular strip. For the s’th strip, write N(s) for the number of
data points in the strip, x̂(s) for the x̂ value at the center of the strip, and ŷ(s)
for the mean of the ŷ values within that strip. Now the strips are narrow, so we
can approximate all data points within a strip as having the same value of x̂. This
yields

mean ({x̂ŷ}) ≈ 1

S

∑

s∈strips

x̂(s)
[

N(s)ŷ(s)
]

(where you could replace ≈ with = if the strips were narrow enough). Now assume
that ŷ(s) does not change from strip to strip, meaning that there is no relation-
ship between x̂ and ŷ in this dataset (so the picture is like the left hand side in
figure 14.16). Then each value of ŷ(s) is the same — we write ŷ — and we can
rearrange to get

mean ({x̂ŷ}) ≈ ŷ
1

S

∑

s∈strips

x̂(s).

Now notice that

0 = mean ({ŷ}) ≈ 1

S

∑

s∈strips

N(s)ŷ(s)

(where again you could replace ≈ with = if the strips were narrow enough). This
means that if every strip has the same value of ŷ(s), then that value must be zero.
In turn, if there is no relationship between x̂ and ŷ, we must have mean ({x̂ŷ}) = 0.
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Proposition:

−1 ≤ corr ({(x, y)}) ≤ 1

Proof: Writing x̂, ŷ for the normalized coefficients, we have

corr ({(x, y)}) =
∑

i x̂iŷi
N

and you can think of the value as the inner product of two vectors. We write

x =
1√
N

[x̂1, x̂2, . . . x̂N ] and y =
1√
N

[ŷ1, ŷ2, . . . ŷN ]

and we have corr ({(x, y)}) = xTy. Notice xTx = std (x)
2
= 1, and similarly

for y. But the inner product of two vectors is at its maximum when the two
vectors are the same, and this maximum is 1. This argument is also sufficient to
show that smallest possible value of the correlation is −1, and this occurs when
x̂i = −ŷi for all i.

Property 14.1: The largest possible value of the correlation is 1, and this occurs
when x̂i = ŷi for all i. The smallest possible value of the correlation is −1, and
this occurs when x̂i = −ŷi for all i.

14.2.2 Using Correlation to Predict

Assume we have N data items which are 2-vectors (x1, y1), . . . , (xN , yN), where
N > 1. These could be obtained, for example, by extracting components from
larger vectors. As usual, we will write x̂i for xi in normalized coordinates, and so
on. Now assume that we know the correlation coefficient is r (this is an important,
traditional notation). What does this mean?

One (very useful) interpretation is in terms of prediction. Assume we have a
data point (x0, ?) where we know the x-coordinate, but not the y-coordinate. We
can use the correlation coefficient to predict the y-coordinate. First, we transform
to standard coordinates. Now we must obtain the best ŷ0 value to predict, using
the x̂0 value we have.

We want to construct a prediction function which gives a prediction for any
value of x̂. This predictor should behave as well as possible on our existing data.
For each of the (x̂i, ŷi) pairs in our data set, the predictor should take x̂i and
produce a result as close to ŷi as possible. We can choose the predictor by looking
at the errors it makes at each data point.

We write ŷpi for the value of ŷi predicted at x̂i. The simplest form of predictor
is linear. If we predict using a linear function, then we have, for some unknown
a, b, that ŷpi = ax̂i + b. Now think about ui = ŷi − ŷpi , which is the error in our
prediction. We would like to have mean ({u}) = 0 (otherwise, we could reduce the
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error of the prediction just by subtracting a constant).

mean ({u}) = mean ({ŷ − ŷp})
= mean ({ŷ})−mean ({ax̂i + b})
= mean ({ŷ})− amean ({x̂}) + b

= 0− a0 + b

= 0.

This means that we must have b = 0.
To estimate a, we need to think about var ({u}). We should like var ({u}) to

be as small as possible, so that the errors are as close to zero as possible (remember,
small variance means small standard deviation which means the data is close to the
mean). We have

var ({u}) = var ({ŷ − ŷp})
= mean

({

(ŷ − ax̂)2
})

because mean ({u}) = 0

= mean
({

(ŷ)2 − 2ax̂ŷ + a2(x̂)2
})

= mean
({

(ŷ)2
})

− 2amean ({x̂ŷ}) + a2mean
({

(x̂)2
})

= 1− 2ar + a2,

which we want to minimize by choice of a. At the minimum, we must have

dvar ({ui})
da

= 0 = −2r + 2a

so that a = r and the correct prediction is

ŷp0 = rx̂0

You can use a version of this argument to establish that if we have (?, ŷ0), then
the best prediction for x̂0 (which is in standard coordinates) is rŷ0. It is important
to notice that the coefficient of ŷi is NOT 1/r; you should work this example, which
appears in the exercises. We now have a prediction procedure, outlined below.



Section 14.2 Correlation 288

Procedure: 14.1 Predicting a value using correlation

Assume we have N data items which are 2-vectors
(x1, y1), . . . , (xN , yN ), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. Assume
we have an x value x0 for which we want to give the best prediction of
a y value, based on this data. The following procedure will produce a
prediction:

• Transform the data set into standard coordinates, to get

x̂i =
1

std (x)
(xi −mean ({x}))

ŷi =
1

std (y)
(yi −mean ({y}))

x̂0 =
1

std (x)
(x0 −mean ({x})).

• Compute the correlation

r = corr ({(x, y)}) = mean ({x̂ŷ}).

• Predict ŷ0 = rx̂0.

• Transform this prediction into the original coordinate system, to
get

y0 = std (y)rx̂0 +mean ({y})

Now assume we have a y value y0, for which we want to give the best
prediction of an x value, based on this data. The following procedure
will produce a prediction:

• Transform the data set into standard coordinates.

• Compute the correlation.

• Predict x̂0 = rŷ0.

• Transform this prediction into the original coordinate system, to
get

x0 = std (x)rŷ0 +mean ({x})

There is another way of thinking about this prediction procedure, which is
often helpful. Assume we need to predict a value for x0. In normalized coordinates,
our prediction is ŷp = rx̂0; if we revert back to the original coordinate system, the
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prediction becomes

(yp −mean ({y}))
std (y)

= r

(

(x0 −mean ({x}))
std (x)

)

.

This gives a really useful rule of thumb, which I have broken out in the box below.

Procedure: 14.2 Predicting a value using correlation: Rule of thumb -
1

If x0 is k standard deviations from the mean of x, then the predicted
value of y will be rk standard deviations away from the mean of y, and
the sign of r tells whether y increases or decreases.

An even more compact version of the rule of thumb is in the following box.

Procedure: 14.3 Predicting a value using correlation: Rule of thumb -
2

The predicted value of y goes up by r standard deviations when the
value of x goes up by one standard deviation.

We can compute the average root mean square error that this prediction
procedure will make. The square of this error must be

mean
({

u2
})

= mean
({

y2
})

− 2rmean ({xy}) + r2mean
({

x2
})

= 1− 2r2 + r2

= 1− r2

so the root mean square error will be
√
1− r2. This is yet another interpretation of

correlation; if x and y have correlation close to one, then predictions could have very
small root mean square error, and so might be very accurate. In this case, knowing
one variable is about as good as knowing the other. If they have correlation close
to zero, then the root mean square error in a prediction might be as large as the
root mean square error in ŷ — which means the prediction is nearly a pure guess.

The prediction argument means that we can spot correlations for data in
other kinds of plots — one doesn’t have to make a scatter plot. For example, if
we were to observe a child’s height from birth to their 10’th year (you can often
find these observations in ballpen strokes, on kitchen walls), we could plot height
as a function of year. If we also had their weight (less easily found), we could plot
weight as a function of year, too. The prediction argument above say that, if you
can predict the weight from the height (or vice versa) then they’re correlated. One
way to spot this is to look and see if one curve goes up when the other does (or
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FIGURE 14.19: This figure, from Vickers (ibid, p184) shows a plot of the stork
population as a function of time, and the human birth rate as a function of time, for
some years in Germany. The correlation is fairly clear; but this does not mean that
reducing the number of storks means there are fewer able to bring babies. Instead,
this is the impact of the first world war — a hidden or latent variable.

goes down when the other goes up). You can see this effect in figure 14.5, where
(before 19h00), prices go down when the number of pelts goes up, and vice versa.
These two variables are negatively correlated.

14.2.3 Confusion caused by correlation

There is one very rich source of potential (often hilarious) mistakes in correlation.
When two variables are correlated, they change together. If the correlation is
positive, that means that, in typical data, if one is large then the other is large,
and if one is small the other is small. In turn, this means that one can make
a reasonable prediction of one from the other. However, correlation DOES NOT
mean that changing one variable causes the other to change (sometimes known as
causation).

Two variables in a dataset could be correlated for a variety of reasons. One
important reason is pure accident. If you look at enough pairs of variables, you
may well find a pair that appears to be correlated just because you have a small
set of observations. Imagine, for example, you have a dataset consisting of only
two vectors — there is a pretty good chance that there is some correlation between
the coefficients. Such accidents can occur in large datasets, particularly if the
dimensions are high.

Another reason variables could be correlated is that there is some causal
relationship — for example, pressing the accelerator tends to make the car go
faster, and so there will be some correlation between accelerator position and car
acceleration. As another example, adding fertilizer does tend to make a plant grow
bigger. Imagine you record the amount of fertilizer you add to each pot, and the
size of the resulting potplant. There should be some correlation.

Yet another reason variables could be correlated is that there is some other
background variable — often called a latent variable — linked causally to each of
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the observed variables. For example, in children (as Freedman, Pisani and Purves
note in their excellent Statistics), shoe size is correlated with reading skills. This
DOES NOT mean that making your feet grow will make you read faster, or that
you can make your feet shrink by forgetting how to read. The real issue here is
the age of the child. Young children tend to have small feet, and tend to have
weaker reading skills (because they’ve had less practice). Older children tend to
have larger feet, and tend to have stronger reading skills (because they’ve had more
practice). You can make a reasonable prediction of reading skills from foot size,
because they’re correlated, even though there is no direct connection.

This kind of effect can mask correlations, too. Imagine you want to study the
effect of fertilizer on potplants. You collect a set of pots, put one plant in each,
and add different amounts of fertilizer. After some time, you record the size of each
plant. You expect to see correlation between fertilizer amount and plant size. But
you might not if you had used a different species of plant in each pot. Different
species of plant can react quite differently to the same fertilizer (some plants just
die if over-fertilized), so the species could act as a latent variable. With an unlucky
choice of the different species, you might even conclude that there was a negative
correlation between fertilizer and plant size. This example illustrates why you need
to take great care in setting up experiments and interpreting their results.

This sort of thing happens often, and it’s an effect you should look for. An-
other nice example comes from Vickers (ibid). The graph, shown in Figure 14.19,
shows a plot of (a) a dataset of the stork population in Europe over a period of
years and (b) a dataset of the birth rate over those years. This isn’t a scatter plot;
instead, the data has been plotted on a graph. You can see by eye that these two
datasets are quite strongly correlated . Even more disturbing, the stork popula-
tion dropped somewhat before the birth rate dropped. Is this evidence that storks
brought babies in Europe during those years? No (the usual arrangement seems
to have applied). For a more sensible explanation, look at the dates. The war
disturbed both stork and human breeding arrangements. Storks were disturbed
immediately by bombs, etc., and the human birth rate dropped because men died
at the front.

14.3 STERILE MALES IN WILD HORSE HERDS

Large herds of wild horses are (apparently) a nuisance, but keeping down numbers
by simply shooting surplus animals would provoke outrage. One strategy that
has been adopted is to sterilize males in the herd; if a herd contains sufficient
sterile males, fewer foals should result. But catching stallions, sterilizing them, and
reinserting them into a herd is a performance — does this strategy work?

We can get some insight by plotting data. At http://lib.stat.cmu.edu/DASL/
Datafiles/WildHorses.html, you can find a dataset covering herd management in wild
horses. I have plotted part of this dataset in figure 14.20. In this dataset, there
are counts of all horses, sterile males, and foals made on each of a small number
of days in 1986, 1987, and 1988 for each of two herds. I extracted data for one
herd. I have plotted this data as a function of the count of days since the first data
point, because this makes it clear that some measurements were taken at about
the same time, but there are big gaps in the measurements. In this plot, the data

http://lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html
http://lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html
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FIGURE 14.20: A plot of the number of adult horses, sterile males, and foals in horse
herds over a period of three years. The plot suggests that introducing sterile males
might cause the number of foals to go down. Data from http:// lib.stat.cmu.edu/
DASL/Datafiles/WildHorses.html .

points are shown with a marker. Joining them leads to a confusing plot because
the data points vary quite strongly. However, notice that the size of the herd drifts
down slowly (you could hold a ruler against the plot to see the trend), as does the
number of foals, when there is a (roughly) constant number of sterile males.

Does sterilizing males result in fewer foals? This is likely hard to answer for
this dataset, but we could ask whether herds with more sterile males have fewer
foals. A scatter plot is a natural tool to attack this question. However, the scatter
plots of figure 14.21 suggest, rather surprisingly, that when there are more sterile
males there are more adults (and vice versa), and when there are more sterile
males there are more foals (and vice versa). This is borne out by a correlation
analysis. The correlation coefficient between foals and sterile males is 0.74, and
the correlation coefficient between adults and sterile males is 0.68. You should find
this very surprising — how do the horses know how many sterile males there are
in the herd? You might think that this is an effect of scaling the plot, but there is
a scatter plot in normalized coordinates in figure 14.21 that is entirely consistent
with the conclusions suggested by the unnormalized plot. What is going on here?

The answer is revealed by the scatter plots of figure 14.22. Here, rather than
plotting a ’*’ at each data point, I have plotted the day number of the observation.
This is in days from the first observation. You can see that the whole herd is
shrinking — observations where there are many adults (resp. sterile adults, foals)
occur with small day numbers, and observations where there are few have large day
numbers. Because the whole herd is shrinking, it is true that when there are more
adults and more sterile males, there are also more foals. Alternatively, you can see
the plots of figure 14.20 as a scatter plot of herd size (resp. number of foals, number
of sterile males) against day number. Then it becomes clear that the whole herd is
shrinking, as is the size of each group. To drive this point home, we can look at the
correlation coefficient between adults and days (-0.24), between sterile adults and
days (-0.37), and between foals and days (-0.61). We can use the rule of thumb in

http://lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html
http://lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html
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FIGURE 14.21: Scatter plots of the number of sterile males in a horse herd against
the number of adults, and the number of foals against the number of sterile males,
from data of http:// lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html . Top: un-
normalized; bottom: standard coordinates.

box 14.3 to interpret this. This means that every 282 days, the herd loses about
three adults; about one sterile adult; and about three foals. For the herd to have
a stable size, it needs to gain by birth as many foals as it loses both to growing up
and to death. If the herd is losing three foals every 282 days, then if they all grow
up to replace the missing adults, the herd will be shrinking slightly (because it is
losing four adults in this time); but if it loses foals to natural accidents, etc., then
it is shrinking rather fast.

The message of this example is important. To understand a simple dataset,
you might need to plot it several ways. You should make a plot, look at it and ask
what it says, and then try to use another type of plot to confirm or refute what
you think might be going on.

http://lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html
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FIGURE 14.22: Scatter plots of the number of foals vs. the number of adults and
the number of adults vs. the number of sterile adults for the wild horse herd,
from http:// lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html. Rather than plot
data points as dots, I have plotted the day on which the observation was made.
Notice how the herd starts large, and then shrinks.

14.4 YOU SHOULD

14.4.1 be able to:

• Plot a bar chart, a heat map, and a pie chart for a categorical dataset.

• Plot a dataset as a graph, making sensible choices about markers, lines and
the like.

• Plot a scatter plot for a dataset.

• Plot a normalized scatter plot for a dataset.

• Interpret the scatter plot to tell the sign of the correlation between two vari-
ables, and estimate the size of the correlation coefficient.

• Compute a correlation coefficient.

• Interpret a correlation coefficient.

• Use correlation to make predictions.

14.4.2 remember:

New term: pie chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
New term: stacked bar chart . . . . . . . . . . . . . . . . . . . . . . 268
New term: heat map . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
New term: 3D bar chart . . . . . . . . . . . . . . . . . . . . . . . . . 270
There are a variety of tools for plotting categorical data. . . . . . . . 271
New term: scatter plot . . . . . . . . . . . . . . . . . . . . . . . . . . 273
A scatter plot should be your first step with a new 2D dataset. . . . 275

http://lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html
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It’s usually a good idea to plot in standard coordinates. . . . . . . . 279
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C H A P T E R 15

Background: Useful Probability
Distributions

We will use probability as a tool to resolve practical questions about data.
I describe some forms these questions take below, for concreteness. Generally,
resolving these questions requires some form of model. This model gives an abstract
representation of the problem that is useful for problem solving, and (typically)
comes with recipes for attacking the major types of problem.

We could ask what process produced the data? For example, I observe a
set of independent coin flips. I would now like to know the probability of observing
a head when the coin is flipped. This might seem a bit empty as a problem, but an
analogous problem is: are male children or female children more frequent? Notice
that the answers to these questions are typically not exact. Instead, they are
estimates. We will see a variety of methods to estimate the probability of observing
a head from a sequence of independent coin flips, but none is guaranteed to return
the “right” answer (because you can’t). Instead, we have to live with information
about how accurate the estimate is.

We could ask what sort of data can we expect in the future? For
example, we could ask: is gender assigned independently? equivalently, can you
predict the gender of the next child born to a couple more accurately if you look at
the genders of the previous children? In reliability engineering, one asks: how long
will it be until this product fails? One version of this question that occupies many
people is: how long until I die? By the way, the best answer seems to be subtract
your age from a number that seems to be close to 85. Again, these are questions
which don’t lend themselves to the “right” answer, as opposed to the best possible
estimate. You might get hit by a truck tomorrow.

We could ask what labels should we attach to unlabelled data? For
example, we might see a large number of credit card transactions, some known to be
legitimate and others known to be fraudulent. We now see a new transaction: is it
legitimate? You can see that versions of this question appear in many applications.
As another example, you see many programs downloaded from the web, some known
to be legitimate and others known to be malware. You now see a new program:
is it safe to run? It may be possible in some circumstances to know the “right”
answer to this question, but we are usually stuck with the best answer.

We could ask is an effect easily explained by chance variations, or is

it real? For example, you believe that the average weight of a mouse is 15 grams.
You could test this by catching 100 mice (a sample) and weighing them; but, when
you do this, the answer won’t be 15 grams even if the average weight of a mouse
is 15 grams. This is because you have a random selection of mice. But we will be
able to build a model of the random variations in the sample average. We can use

296
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this model to tell whether the difference between sample average and 15 grams is
easily explained by random variations in the sample, or is significant. This allows
us to tell how forcefully the evidence contradicts your original belief.

Building a model requires understanding the specific problem you want to
solve, then choosing from a vocabulary of many different models that might apply
to the problem. Long experience shows that even if the model you choose does not
match the problem exactly, it can still be useful. In this chapter, I describe the
properties of some probability distributions that are used again and again in model
building.

15.1 DISCRETE DISTRIBUTIONS

15.1.1 The Discrete Uniform Distribution

If every value of a discrete random variable has the same probability, then the
probability distribution is the discrete uniform distribution. We have seen this
distribution before, numerous times. For example, I define a random variable by
the number that shows face-up on the throw of a fair die. This has a uniform
distribution. As another example, write the numbers 1-52 on the face of each card
of a standard deck of playing cards. The number on the face of the first card drawn
from a well-shuffled deck is a random variable with a uniform distribution.

One can construct expressions for the mean and variance of a discrete uniform
distribution, but they’re not usually much use (too many terms, not often used).
Keep in mind that if two random variables have a uniform distribution, their sum
and difference will not (recall example ??).

15.1.2 Bernoulli Random Variables

A Bernoulli random variable models a biased coin with probability p of coming up
heads in any one flip.

Definition: 15.1 Bernoulli random variable

A Bernoulli random variable takes the value 1 with probability p and
0 with probability 1 − p. This is a model for a coin toss, among other
things
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Useful Facts: 15.1 Bernoulli random variable

1. A Bernoulli random variable has mean p.

2. A Bernoulli random variable has variance p(1− p).

Proofs are easy, and in the exercises.

15.1.3 The Geometric Distribution

We have a biased coin. The probability it will land heads up, P ({H}) is given by
p. We flip this coin until the first head appears. The number of flips required is a
discrete random variable which takes integer values greater than or equal to one,
which we shall call X . To get n flips, we must have n− 1 tails followed by 1 head.
This event has probability (1 − p)(n−1)p. We can now write out the probability
distribution that n flips are required.

Definition: 15.2 Geometric distribution

We have an experiment with a binary outcome (i.e. heads or tails; 0
or 1; and so on), with P (H) = p and P (T ) = 1 − p. We repeat this
experiment until the first head occurs. The probability distribution for
n, the number of repetitions, is the geometric distribution. It has the
form

P ({X = n}) = (1− p)(n−1)p.

for 0 ≤ p ≤ 1 and n ≥ 1; for other n it is zero. p is called the parameter

of the distribution.

Notice that the geometric distribution is non-negative everywhere. It is straight-
forward to show that it sums to one, and so is a probability distribution (exercises).

Useful Facts: 15.2 Geometric distribution

1. The mean of the geometric distribution is 1
p .

2. The variance of the geometric distribution is 1−p
p2 .

The proof of these facts requires some work with series, and is relegated
to the exercises.
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It should be clear that this model isn’t really about coins, but about repeated
trials. The trial could be anything that has some probability of failing. Each
trial is independent, and the rule for repeating is that you keep trying until the
first success. Textbooks often set exercises involving missiles and aircraft; I’ll omit
these on the grounds of taste.

15.1.4 The Binomial Probability Distribution

Assume we have a biased coin with probability p of coming up heads in any one
flip. The binomial probability distribution gives the probability that it comes up
heads h times in N flips.

Worked example ?? yields one way of deriving this distribution. In that
example, I showed that there are

N !/(h!(N − h)!)

outcomes of N coin flips that have h heads. These outcomes are disjoint, and
each has probability ph(1 − p)(N−h). As a result, we must have the probability
distribution below.

Definition: 15.3 Binomial distribution

In N independent repetitions of an experiment with a binary outcome
(ie heads or tails; 0 or 1; and so on) with P (H) = p and P (T ) = 1− p,
the probability of observing a total of h H ’s and N − h T ’s is

Pb(h;N, p) =

(

N
h

)

ph(1− p)(N−h)

as long as 0 ≤ h ≤ N ; in any other case, the probability is zero.
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Useful Fact: 15.3 Binomial distribution

Write Pb(i;N, p) for the binomial distribution that one observes i H ’s
in N trials.

N
∑

i=0

Pb(i;N, p) = (p+ (1− p))N = (1)N = 1

by pattern matching to the binomial theorem. As a result,

N
∑

i=0

Pb(i;N, p) = 1

The binomial distribution satisfies a recurrence relation. We must have that

Pb(h;N, p) = pPb(h− 1;N − 1, p) + (1 − p)Pb(h;N − 1, p).

This is because can get h heads in N flips either by having h − 1 heads in N − 1
flips, then flipping another, or by having h heads in N flips then flipping a tail.
You can verify by induction that the binomial distribution satisfies this recurrence
relation.

Useful Facts: 15.4 Binomial distribution

1. The mean of Pb(i;N, p) is Np.

2. The variance of Pb(i;N, p) is Np(1− p)

The proofs are informative, and so are not banished to the exercises.
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Proof: 15.1 The binomial distribution

Notice that the number of heads in N coin tosses is can be obtained
by adding the number of heads in each toss. Write Yi for the Bernoulli
random variable representing the i’th toss. If the coin comes up heads,
Yi = 1, otherwise Yi = 0. The Yi are independent. Now

E[X ] = E





N
∑

j=1

Yi





=

N
∑

j=1

E[Yi]

= NE[Y1] because the Yi are independent

= Np.

The variance is easy, too. Each coin toss is independent, so the variance
of the sum of coin tosses is the sum of the variances. This gives

var[X ] = var





N
∑

j=1

Yi





= Nvar[Y1]

= Np(1− p)

15.1.5 Multinomial probabilities

The binomial distribution describes what happens when a coin is flipped multiple
times. But we could toss a die multiple times too. Assume this die has k sides, and
we toss it N times. The distribution of outcomes is known as the multinomial

distribution.
We can guess the form of the multinomial distribution in rather a straightfor-

ward way. The die has k sides. We toss the die N times. This gives us a sequence
of N numbers. Each toss of the die is independent. Assume that side 1 appears n1

times, side 2 appears n2 times, ... side k appears nk times. Any single sequence
with this property will appear with probability pn1

1 pn2
2 ...pnk

k , because the tosses are
independent. However, there are

N !

n1!n2!...nk!

such sequences. Using this reasoning, we arrive at the distribution below
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Definition: 15.4 Multinomial distribution

I perform N independent repetitions of an experiment with k possible
outcomes. The i’th such outcome has probability pi. I see outcome 1 n1

times, outcome 2 n2 times, etc. Notice that n1+n2+n3+ . . .+nk = N .
The probability of observing this set of outcomes is

Pm(n1, . . . , nk;N, p1, . . . , pk) =
N !

n1!n2!...nk!
pn1
1 pn2

2 . . . pnk

k .

Worked example 15.1 Dice

I throw five fair dice. What is the probability of getting two 2’s and three 3’s?

Solution: 5!
2!3! (

1
6 )

2(16 )
3

15.1.6 The Poisson Distribution

Assume we are interested in counts that occur in an interval of time (e.g. within
a particular hour). Because they are counts, they are non-negative and integer
valued. We know these counts have two important properties. First, they occur
with some fixed average rate. Second, an observation occurs independent of the
interval since the last observation. Then the Poisson distribution is an appropriate
model.

There are numerous such cases. For example, the marketing phone calls you
receive during the day time are likely to be well modelled by a Poisson distribution.
They come at some average rate — perhaps 5 a day as I write, during the last
phases of an election year — and the probability of getting one clearly doesn’t
depend on the time since the last one arrived. Classic examples include the number
of Prussian soldiers killed by horse-kicks each year; the number of calls arriving at
a call center each minute; the number of insurance claims occurring in a given time
interval (outside of a special event like a hurricane, etc.).
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Definition: 15.5 Poisson distribution

A non-negative, integer valued random variable X has a Poisson distri-
bution when its probability distribution takes the form

P ({X = k}) = λke−λ

k!
,

where λ > 0 is a parameter often known as the intensity of the distri-
bution.

Notice that the Poisson distribution is a probability distribution, because it
is non-negative and because

∞
∑

i=0

λi

i!
= eλ

so that ∞
∑

k=0

λke−λ

k!
= 1

Useful Facts: 15.5 Poisson distribution

1. The mean of a Poisson distribution with intensity λ is λ.

2. The variance of a Poisson distribution with intensity λ is λ (no,
that’s not an accidentally repeated line or typo).

The proof of these facts requires some work with series, and is relegated
to the exercises.

I described the Poisson distribution as a natural model for counts of randomly
distributed points along a time axis. But it doesn’t really matter that this is a time
axis — it could be a space axis instead. For example, you could take a length of
road, divide it into even intervals, then count the number of road-killed animals is
in each interval. If the location of each animal is independent of the location of
any other animal, then you could expect a Poisson model to apply to the count
data. Assume that the Poisson model that best describes the data has parameter
λ. One property of such models is that if you doubled the length of the intervals,
then the resulting dataset would be described by a Poisson model with parameter
2λ; similarly, if you halved the length of the intervals, the best model would have
parameter λ/2. This corresponds to our intuition about such data; roughly, the
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number of road-killed animals in two miles of road should be twice the number in
one mile of road. This property means that no pieces of the road are “special” —
each behaves the same as the other.

We can build a really useful model of spatial randomness by observing this
fact and generalizing very slightly. A Poisson point process with intensity λ is a
set of random points with the property that the number of points in an interval of
length s is a Poisson random variable with parameter λs. Notice how this captures
our intuition that if points are “very randomly” distributed, there should be twice
as many of them in an interval that is twice as long.

This model is easily, and very usefully, extended to points on the plane, on
surfaces, and in 3D. In each case, the process is defined on a domain D (which has
to meet some very minor conditions that are of no interest to us). The number
of points in any subset s of D is a Poisson random variable, with intensity λm(s),
where m(s) is the area (resp. volume) of s. These models are useful, because they
capture the property that (a) the points are random and (b) the probability you
find a point doesn’t depend on where you are. You could reasonably believe models
like this apply to, say, dead flies on windscreens; the places where you find acorns
at the foot of an oak tree; the distribution of cowpats in a field; the distribution of
cherries in a fruitcake; and so on.

15.2 CONTINUOUS DISTRIBUTIONS

15.2.1 The Continuous Uniform Distribution

Some continuous random variables have a natural upper bound and a natural lower
bound but otherwise we know nothing about them. For example, imagine we are
given a coin of unknown properties by someone who is known to be a skillful maker
of unfair coins. The manufacturer makes no representations as to the behavior of
the coin. The probability that this coin will come up heads is a random variable,
about which we know nothing except that it has a lower bound of zero and an
upper bound of one.

If we know nothing about a random variable apart from the fact that it has
a lower and an upper bound, then a uniform distribution is a natural model.
Write l for the lower bound and u for the upper bound. The probability density
function for the uniform distribution is

p(x) =







0 x < l
1/(u− l) l ≤ x ≤ u
0 x > u

A continuous random variable whose probability distribution is the uniform distri-
bution is often called a uniform random variable.

15.2.2 The Beta Distribution

It’s hard to explain now why the Beta (or β) distribution is useful, but it will come
in useful later (section 16.5). The Beta distribution is a probability distribution for
a continuous random variable x in the range 0 ≤ x ≤ 1. There are two parameters,
α > 0 and β > 0. Recall the definition of the Γ function from section 2.2. We have
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FIGURE 15.1: Probability density functions for the Beta distribution with a variety
of different choices of α and β.

that

Pβ(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
x(α−1)(1− x)(β−1).

From this expression, you can see that:

• Pβ(x|1, 1) is a uniform distribution on the unit interval.

• Pβ(x|α, β) has a single maximum at x = (α−1)/(α+β−2) for α > 1, β > 1)
(differentiate and set to zero).

• Generally, as α and β get larger, this peak gets narrower.

• For α = 1, β > 1 the largest value of Pβ(x|α, β) is at x = 0.

• For α > 1, β = 1 the largest value of Pβ(x|α, β) is at x = 1.

Figure 15.1 shows plots of the probability density function of the Beta distribution
for a variety of different values of α and β.

Useful Facts: 15.6 Beta distribution

For a Beta distribution with parameters α, β

1. The mean is α
α+β .

2. The variance is αβ
(α+β)2(α+β+1) .
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15.2.3 The Gamma Distribution

The Gamma (or γ) distribution will also come in useful later on (section 16.5). The
Gamma distribution is a probability distribution for a non-negative continuous
random variable x ≥ 0. There are two parameters, α > 0 and β > 0. The
probability density function is

Pγ(x|α, β) =
βα

Γ(α)
x(α−1)e−βx.

Figure 15.2 shows plots of the probability density function of the Gamma distribu-
tion for a variety of different values of α and β.

Useful Facts: 15.7 Gamma distribution

For a Gamma distribution with parameters α, β

1. The mean is α
β .

2. The variance is α
β2 .

15.2.4 The Exponential Distribution

Assume we have an infinite interval of time or space, with points distributed on it.
Assume these points form a Poisson point process, as above. For example, we might
consider the times at which email arrives; or the times at which phone calls arrive
at a large telephone exchange; or the locations of roadkill on a road. The distance
(or span of time) between two consecutive points is a random variable X . This
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random variable takes an exponential distribution. There is a single parameter,
λ. We have that

Pexp(x|λ) =
{

λ exp−λx for x ≥ 0
0 otherwise

.

This distribution is often useful in modelling the failure of objects. We assume
that failures form a Poisson process in time; then the time to the next failure is
exponentially distributed.

Useful Facts: 15.8 Exponential distribution

For an exponential distribution with parameter λ

1. The mean is
1

λ
.

2. The variance is
1

λ2
.

Notice the relationship between this parameter and the parameter of the Pois-
son distribution. If (say) the phone calls are distributed with Poisson distribution
with intensity λ (per hour), then your expected number of calls per hour is λ. The
time between calls will be exponentially distributed with parameter λ, and the
expected time to the next call is 1/λ (in hours).

15.3 THE NORMAL DISTRIBUTION

15.3.1 The Standard Normal Distribution

Definition: 15.6 Standard Normal distribution

The probability density function

p(x) =

(

1√
2π

)

exp

(−x2

2

)

.

is known as the standard normal distribution

The first step is to plot this probability density function (Figure 15.3). You
should notice it is quite familiar from work on histograms, etc. in Chapter 16.5. It
has the shape of the histogram of standard normal data, or at least the shape that
the histogram of standard normal data aspires to.
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FIGURE 15.3: A plot of the probability density function of the standard normal dis-
tribution. Notice how probability is concentrated around zero, and how there is
relatively little probability density for numbers with large absolute values.

Useful Facts: 15.9 standard normal distribution

1. The mean of the standard normal distribution is 0.

2. The variance of the standard normal distribution is 1.

These results are easily established by looking up (or doing!) the rele-
vant integrals; they are relegated to the exercises.

A continuous random variable is a standard normal random variable if
its probability density function is a standard normal distribution.

15.3.2 The Normal Distribution

Any probability density function that is a standard normal distribution in standard
coordinates is a normal distribution. Now write µ for the mean of a random
variable and σ for its standard deviation; we are saying that, if

x− µ

σ

has a standard normal distribution, then p(x) is a normal distribution. We can work
out the form of the probability density function of a general normal distribution in
two steps: first, we notice that for any normal distribution, we must have

p(x) ∝ exp

[

− (x− µ)2

2σ2

]

.
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But, for this to be a probability density function, we must have
∫∞
−∞ p(x)dx = 1.

This yields the constant of proportionality, and we get

Definition: 15.7 Normal distribution

The probability density function

p(x) =

(

1√
2πσ

)

exp

(−(x− µ)2

2σ2

)

.

is a normal distribution.

Useful Facts: 15.10 normal distribution

The probability density function

p(x) =

(

1√
2πσ

)

exp

(−(x− µ)2

2σ2

)

.

has

1. mean µ

2. and variance σ.

These results are easily established by looking up (or doing!) the rele-
vant integrals; they are relegated to the exercises.

A continuous random variable is a normal random variable if its probability
density function is a normal distribution. Notice that it is quite usual to call
normal distributions gaussian distributions.

15.3.3 Properties of the Normal Distribution

Normal distributions are important, because one often runs into data that is well
described by a normal distribution. It turns out that anything that behaves like a
binomial distribution with a lot of trials — for example, the number of heads in
many coin tosses; as another example, the percentage of times you get the outcome
of interest in a simulation in many runs — should produce a normal distribution
(Section 15.4). For this reason, pretty much any experiment where you perform a
simulation, then count to estimate a probability or an expectation, should give you
an answer that has a normal distribution.
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It is a remarkable and deep fact, known as the central limit theorem, that
adding many independent random variables produces a normal distribution pretty
much whatever the distributions of those random variables. I’ve not shown this
in detail because it’s a nuisance to prove. However, if you add together many
random variables, each of pretty much any distribution, then the answer has a
distribution close to the normal distribution. It turns out that many of the processes
we observe add up subsidiary random variables. This means that you will see normal
distributions very often in practice.

A normal random variable tends to take values that are quite close to the
mean, measured in standard deviation units. We can demonstrate this important
fact by computing the probability that a standard normal random variable lies
between u and v. We form

∫ v

u

1√
2π

exp

(

−u2

2

)

du.

It turns out that this integral can be evaluated relatively easily using a special
function. The error function is defined by

erf(x) =
2√
π

∫ x

0

exp
(

−t2
)

dt

so that
1

2
erf

(

(
x√
2
)

)

=

∫ x

0

1√
2π

exp

(

−u2

2

)

du.

Notice that erf(x) is an odd function (i.e. erf(−x) = erf(x)). From this (and
tables for the error function, or Matlab) we get that, for a standard normal random
variable

1√
2π

∫ 1

−1

exp

(

−x2

2

)

dx ≈ 0.68

and
1√
2π

∫ 2

−2

exp

(

−x2

2

)

dx ≈ 0.95

and
1√
2π

∫ 2

−2

exp

(

−x2

2

)

dx ≈ 0.99.

These are very strong statements. They measure how often a standard normal
random variable has values that are in the range−1, 1, −2, 2, and −3, 3 respectively.
But these measurements apply to normal random variables if we recognize that they
now measure how often the normal random variable is some number of standard
deviations away from the mean. In particular, it is worth remembering that:
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Useful Facts: 15.11 Normal Random Variables

• About 68% of the time, a normal random variable takes a value
within one standard deviation of the mean.

• About 95% of the time, a normal random variable takes a value
within one standard deviation of the mean.

• About 99% of the time, a normal random variable takes a value
within one standard deviation of the mean.

15.4 APPROXIMATING BINOMIALS WITH LARGE N

The Binomial distribution appears to be a straightforward thing. We assume we
flip a coin N times, where N is a very large number. The coin has probability p of
coming up heads, and so probability q = 1 − p of coming up tails. The number of
heads h follows the binomial distribution, so

P (h) =
N !

h!(N − h)!
phq(N−h)

The mean of this distribution isNp, the variance isNpq, and the standard deviation
is
√
Npq.
Evaluating this probability distribution for large N is very difficult, because

factorials grow fast. We will construct an approximation to the binomial distribu-
tion for large N that allows us to evaluate the probability that h lies in some range.
This approximation will show that the probability that h is within one standard
deviation of the mean is approximately 68%.

This is important, because it shows that our model of probability as frequency
is consistent. Consider the probability that the number of heads you see lies within
one standard deviation of the mean. The size of that interval is 2

√
Npq. As N gets

bigger, the size of that interval, relative to the total number of flips, gets smaller.
If I flip a coin N times, in principle I could see a number of heads h that ranges
from 0 to N . However, we will establish that about 68% of the time, h will lie in
the interval within one standard deviation of the mean. The size of this interval,
relative to the total number of flips is

2

√
Npq

N
= 2

√

pq

N
.

As a result, as N → ∞,
h

N
→ p

because h will tend to land in an interval around pN that gets narrower as N gets
larger.
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FIGURE 15.4: Plots of the binomial distribution for p = q = 0.5 for different values
of N . You should notice that the set of values of h (the number of heads) that have
substantial probability is quite narrow compared to the range of possible values. This
set gets narrower as the number of flips increases. This is because the mean is pN
and the standard deviation is

√
Npq — so the fraction of values that is within one

standard deviation of the mean is O(1/
√
N).

The main difficulty with Figure 15.4 (and with the argument above) is that
the mean and standard deviation of the binomial distribution tends to infinity as
the number of coin flips tends to infinity. This can confuse issues. For example, the
plots of Figure 15.4 show narrowing probability distributions — but is this because
the scale is compacted, or is there a real effect? It turns out there is a real effect,
and a good way to see it is to consider the normalized number of heads.

15.4.1 Large N

Recall that to normalize a dataset, you subtract the mean and divide the result
by the standard deviation. We can do the same for a random variable. We now
consider

x =
h−Np√

Npq
.
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The probability distribution of x can be obtained from the probability distribution
for h, because h = Np+ x

√
Npq, so

P (x) =

(

N !

(Np+ x
√
Npq)!(Nq − x

√
Npq)!

)

p(Np+x
√

Npq)q(Nq−x
√

Npq).

I have plotted this probability distribution for various values of N in Figure 15.5.

−20 −10 0 10 20
0

0.1

0.2

0.3

P(k heads) in 4 flips, normalized

Number of heads

P
ro

ba
bi

lit
y

−20 −10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

P(k heads) in 10 flips, normalized

Number of heads

P
ro

ba
bi

lit
y

−20 −10 0 10 20
0

0.05

0.1

P(k heads) in 40 flips, normalized

Number of heads

P
ro

ba
bi

lit
y

−20 −10 0 10 20
0

0.02

0.04

0.06

0.08

P(k heads) in 80 flips, normalized

Number of heads

P
ro

ba
bi

lit
y

FIGURE 15.5: Plots of the distribution for the normalized variable x, with P (x) given
in the text, obtained from the binomial distribution with p = q = 0.5 for different
values of N . These distributions are normalized (mean 0, variance 1. They look
increasingly like a standard normal distribution EXCEPT that the value at their
mode gets smaller as N gets bigger (there are more possible outcomes). In the text,
we will establish that the standard normal distribution is a limit, in a useful sense.

But it is hard to work with this distribution for very large N . The factorials
become very difficult to evaluate. Second, it is a discrete distribution on N points,
spaced 1/

√
Npq apart. As N becomes very large, the number of points that have

non-zero probability becomes very large, and x can be very large, or very small. For
example, there is some probability, though there may be very little indeed, on the
point where h = N , or, equivalently, x = N(p +

√
Npq). For sufficiently large N ,
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we think of this probability distribution as a probability density function. We can
do so, for example, by spreading the probability for xi (the i’th value of x) evenly
over the interval between xi and xi+1. We then have a probability density function
that looks like a histogram, with bars that become narrower as N increases. But
what is the limit?

15.4.2 Getting Normal

To proceed, we need Stirling’s approximation, which says that, for large N ,

N ! ≈
√
2π

√
N

(

N

e

)N

.

This yields

P (h) ≈
(

Np

h

)h(
Nq

N − h

)(N−h)
√

N

2πh(N − h)

Recall we used the normalized variable

x =
h−Np√

Npq
.

We will encounter the term
√
Npq often, and we use σ =

√
Npq as a shorthand.

We can compute h and N − h from x by the equalities

h = Np+ σx N − h = Nq − σx.

So the probability distribution written in this new variable x is

P (x) ≈
(

Np

(Np+ σx)

)(Np+σx)(
Nq

(Nq − σx)

)(Nq−σx)
√

N

2π(Np+ σx)(Nq − σx)

There are three terms to deal with here. It is easiest to work with logP . Now

log(1 + x) = x− 1

2
x2 +O(x3)

so we have

log

(

Np

(Np+ σx)

)

= − log

(

1 +
σx

Np

)

≈ − σx

Np
+ (

1

2
)(

σx

Np
)2

and

log

(

Nq

(Nq − σx)

)

≈ σx

Nq
+ (

1

2
)(
σx

Nq
)2.
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From this, we have that

log

[

(

Np

Np+ σx

)(Np+σx)(
Nq

Nq − σx

)(Nq−σx)
]

≈ [Np+ σx]

[

− σx

Np
+

(

1

2

)(

σx

Np

)2
]

+

[Nq − σx]

[

σx

Nq
+

(

1

2

)(

σx

Nq

)2
]

= −
(

1

2

)

x2 +O((σx)3)

(recall σ =
√
Npq if you’re having trouble with the last step). Now we look at the

square-root term. We have

log

√

N

2π(Np+ σx)(Nq − σx)
= −1

2
(log [Np+ σx] + log [Nq − σx] − logN + log 2π)

= −1

2









logNp+O
((

σx
Np

))

+ logNq −O
((

σx
Nq

))

− logN + log 2π









but, since N is very large compared to σx, we can ignore the O(
(

σx
Np

)

) terms. Then

this term is not a function of x. So we have

logP (x) ≈ −x2

2
+ constant.

Now because N is very large, our probability distribution P limits to a probability
density function p, with

p(x) ∝ exp

(−x2

2

)

.

We can get the constant of proportionality from integrating, to

p(x) =

(

1√
2π

)

exp

(−x2

2

)

.

This constant of proportionality deals with the effect in figure 15.5, where the mode
of the distribution gets smaller as N gets bigger. It does so because there are more
points with non-zero probability to be accounted for. But we are interested in the
limit where N tends to infinity. This must be a probability density function, so it
must integrate to one.

Review this blizzard of terms. We started with a binomial distribution, but
standardized the variables so that the mean was zero and the standard deviation
was one. We then assumed there was a very large number of coin tosses, so large
that that the distribution started to look like a continuous function. The function
we get is the standard normal distribution.
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15.4.3 So What?

I have proven an extremely useful fact, which I shall now put in a box.

Useful Fact: 15.12 Binomial distribution for large N

Assume h follows the binomial distribution with parameters p and q.
Write x = h−Np√

Npq
. Then, for sufficiently large N , the probability distri-

bution P (x) can be approximated by the probability density function

(

1√
2π

)

exp

(−x2

2

)

in the sense that

P ({x ∈ [a, b]}) ≈
∫ b

a

(

1√
2π

)

exp

(−u2

2

)

du

This justifies our model of probability as frequency. I interpreted an event
having probability p to mean that, if I had a large number N of independent
repetitions of the experiment, the number that produced the event would be close
to Np, and would get closer as N got larger. We know that, for example, 68% of
the time a standard normal random variable takes a value between 1 and −1. In
this case, the standard normal random variable is

h− (Np)√
Npq

so that 68% of the time, h must take a value in the range [Np−√
Npq,Np+

√
Npq].

Equivalently, the relative frequency h/N must take a value in the range

[p− pq√
N

, p+
pq√
N

]

but as N → ∞ this range gets smaller and smaller, and h/N limits to p. So our
view of probability as a frequency is consistent.

To obtain h, we added N independent Bernoulli random variables. So you can
interpret the box as saying that the sum of many independent Bernoulli random
variables has a probability distribution that limits to the normal distribution as
the number added together gets larger. Remember that I have stated, though not
precisely, but not proved the deep and useful fact that the sum of pretty much
any independent random variables has a distribution that gets closer to a normal
distribution as the number added together gets larger.
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15.5 YOU SHOULD
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C H A P T E R 16

Background:Inference: Making Point
Estimates

Inference is the process of drawing conclusions from data. One form of
inference is to estimate a number, or set of numbers, that describes a dataset. The
result is known as a point estimate. An alternative is to estimate an interval
within which a number lies, with some degree of certainty. Such estimates are
known as interval estimates. Finally, one might wish to assess the extent to
which a body of evidence supports rejecting an hypothesis — known as hypothesis
testing. In this chapter, we deal with point estimates. In the following chapter, we
deal with interval estimates and hypothesis testing, which require an understanding
of point estimates. There are two, somewhat distinct, situations in which we could
make point estimates.

In the first, we have a dataset {x}, and a probability model we believe applies
to that dataset. But we need to select appropriate values of the parameters to
ensure that the model describes the data. For example, we might have a set of
N coin flips which we believe to be independent and identically distributed. Of
these, k flips came up H . We know that a binomial distribution with p(H) = p
is a good model — but what value of p should we use? Your intuition is likely to
suggest using k/N , but we’d like a more robust procedure than guessing. We need
an inference procedure to obtain the unknown parameter from the data. Notice
that this will be an estimate, rather than the “true” value. As we shall see, there
is more than one possible procedure to apply, depending to some extent on the
problem. In some cases (section 16.1), we estimate parameter values based solely
on data; in others (section 16.2), we are able to use prior information about the
parameters to affect the estimate.

In the second situation, we want to know some property of a population. For
example, we may wish to know the mean weight of a person, or the mean response
of a mouse to a drug. It would be a stretch to describe this population with one of
the probability models that we have seen. In principle, the number we want is not
even necessarily random; in principle, we could measure everyone on the planet and
average the weights. In practice, this doesn’t make sense, for quite straightforward
reasons. You can’t really weigh every person, or dose every mouse, on the planet.
Instead, to estimate this property, we obtain a sample (some people; some mice;
etc.) of the population, and estimate the property from the sample. There is now
an important problem. Different samples lead to different estimates of the property.
We will arrange to have the sample drawn randomly from the population, so the
sample we see represents the value of a set of random variables. If you followed the
proof of the weak law of large numbers, you should suspect that the mean of this
sample could be a good estimate of the population mean. This turns out to be the

318
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case (section 16.5). However, there is some random error in the estimate, and we
can tell (on average) how large the error caused by random sampling could be.

16.1 ESTIMATING MODEL PARAMETERS WITH MAXIMUM LIKELIHOOD

Assume we have a dataset D = {x}, and a probability model we believe applies to
that dataset. Generally, application logic suggests the type of model (i.e. normal
probability density; Poisson probability; geometric probability; and so on). But
usually, we do not know the parameters of the model — for example, the mean and
standard deviation of a normal distribution; the intensity of a poisson distribution;
and so on. Notice that this situation is unlike what we have seen to date. In
chapter 15, we assumed that we knew θ, and could then use the model to assign
a probability to a set of data items D. Here we know the value of D, but don’t
know θ. Our model will be better or worse depending on how well we choose the
parameters. We need a strategy to estimate the parameters of a model from a
sample dataset. Notice how each of the following examples fits this pattern.

Example: 16.1 Inferring p from repeated flips — binomial

We could flip the coin N times, and count the number of heads k. We
know that an appropriate probability model for a set of independent
coin flips is the binomial model P (k;N, p). But we do not know p,
which is the parameter — we need a strategy to extract a value of p
from the data.

Example: 16.2 Inferring p from repeated flips — geometric

We could flip the coin repeatedly until we see a head. We know that,
in this case, the number of flips has the geometric distribution with
parameter p. In this case, the data is a sequence of T ’s with a final H
from the coin flips. There are N flips (or terms) and the last flip is a
head. We know that an appropriate probability model is the geometric
distribution Pg(N ; p). But we do not know p, which is the parameter
— we need a strategy to extract a value of p from the data.
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Example: 16.3 Inferring the intensity of spam — poisson

It is reasonable to assume that the number of spam emails one gets in
an hour has a Poisson distribution. But what is the intensity parameter
λ? We could count the number of spam emails that arrive in each of a
set of distinct hours, giving a dataset of counts D. We need a strategy
to wrestle an estimate of λ from this dataset.

Example: 16.4 Inferring the mean and standard deviation of normal
data

Imagine we know for some reason that our data is well described by
a normal distribution. We could ask what is the mean and standard
deviation of the normal distribution that best represents the data?

Write θ for the parameters of our model. If we knew θ, then the probability
of observing the data D would be P (D|θ). We know D, and we don’t know θ, so
the value of P (D|θ) is a function of θ.

Definition: 16.1 Likelihood

The function P (D|θ), which is a function of θ, is known as the likeli-

hood of the data D, and is often written L(θ) (or L(θ;D) if you want
to remember that data is involved).

16.1.1 The Maximum Likelihood Principle

We need a “reasonable” procedure to choose a value of θ to report. One — and I
stress this is not the only one — is the maximum likelihood principle.

Definition: 16.2 The maximum likelihood principle

Choose θ such that L(θ) = P (D|θ) is maximised, as a function of θ.



Section 16.1 Estimating Model Parameters with Maximum Likelihood 321

In words, this means: Choose the parameter such that the probability of
observing the data you actually see, is maximised. This should strike you as being
a reasonable choice. You should also be aware that this is not the only possible
choice (we’ll see another one in section 16.2).

For the examples we work with, the data will be independent and iden-

tically distributed or IID. This means that each data item is an idependently
obtained sample from the same probability distribution (see section ??). In turn,
this means that the likelihood is a product of terms, one for each data item, which
we can write as

L(θ) = P (D|θ) =
∏

i∈dataset

P (di|θ).

It is traditional to write θ for any set of parameters that are unknown. There
are two, distinct, important concepts we must work with. One is the unknown
parameter(s), which we will write θ. The other is the estimate of the value of that

parameter, which we will write θ̂. This estimate is the best we can do — it may
not be the “true” value of the parameter.
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Worked example 16.1 Inferring p(H) for a coin from flips using a bino-
mial model

In N independent coin flips, you observe k heads. Use the maximum likelihood
principle to infer p(H).

Solution: The coin has θ = p(H), which is the unknown parameter. We know
that an appropriate probability model is the binomial model P (k;N, θ). We
have that

L(θ) = P (D|θ) = Pb(k;N, θ) =

(

N
k

)

θk(1− θ)(N−k)

which is a function of θ — the unknown probability that a coin comes up
heads; k and N are known. We must find the value of θ that maximizes this
expression. Now the maximum occurs when

∂L(θ)
∂θ

= 0.

We have

∂L(θ)
∂θ

=

(

N
k

)

(

kθk−1(1− θ)(N−k) − θk(N − k)(1− θ)(n−k−1)
)

and this is zero when

kθk−1(1− θ)(N−k) = θk(N − k)(1− θ)(N−k−1)

so the maximum occurs when

k(1− θ) = θ(N − k).

This means the maximum likelihood estimate is

θ̂ =
k

N

which is what we guessed would happen, but now we know why that guess
“makes sense”.
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Worked example 16.2 Inferring p(H) from coin flips using a geometric
model

You flip a coin N times, stopping when you see a head. Use the maximum
likelihood principle to infer p(H) for the coin.

Solution: The coin has θ = p(H), which is the unknown parameter. We know
that an appropriate probability model is the geometric model Pg(N ; θ). We
have that

L(θ) = P (D|θ) = Pg(N ; θ) = (1 − θ)(N−1)θ

which is a function of θ — the unknown probability that a coin comes up heads;
N is known. We must find the value of θ that maximizes this expression. Now
the maximum occurs when

∂L(θ)
∂θ

= 0 = ((1− θ)(N−1) − (N − 1)(1− θ)(N−2)θ)

So the maximum likelihood estimate is

θ̂ =
1

N
.

We didn’t guess this.
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Worked example 16.3 Inferring die probabilities from multiple rolls and
a multinomial distribution

You throw a die N times, and see n1 ones, . . . and n6 sixes. Write p1, . . . , p6
for the probabilities that the die comes up one, . . ., six. Use the maximum
likelihood principle to estimate p1, . . . , p6.

Solution: The data are n, n1, . . . , n6. The parameters are θ = (p1, . . . , p6).
P (D|θ) comes from the multinomial distribution. In particular,

L(θ) = P (D|θ) = n!

n1! . . . n6!
pn1
1 pn2

2 . . . pn6
6

which is a function of θ = (p1, . . . , p6). Now we want to maximize this function
by choice of θ. Notice that we could do this by simply making all pi very large
— but this omits a fact, which is that p1 + p2 + p3 + p4 + p5 + p6 = 1. So we
substitute using p6 = 1− p1 − p2 − p3 − p4 − p5 (there are other, neater, ways
of dealing with this issue, but they take more background knowledge). At the
maximum, we must have that for all i,

∂L(θ)
∂pi

= 0

which means that, for pi, we must have

nip
(ni−1)
i (1−p1−p2−p3−p4−p5)

n6 −pni

i n6(1−p1−p2−p3−p4−p5)
(n6−1) = 0

so that, for each pi, we have

ni(1− p1 − p2 − p3 − p4 − p5)− n6pi = 0

or
pi

1− p1 − p2 − p3 − p4 − p5
=

ni

n6
.

You can check that this equation is solved by

θ̂ =
1

(n1 + n2 + n3 + n4 + n5 + n6)
(n1, n2, n3, n4, n5, n6)

The logarithm is a monotonic function (i.e. if x > 0, y > 0, x > y, then
log(x) > log(y)). This means that the values of θ that maximise the log-likelihood
are the same as the values that maximise the likelihood. This observation is very
useful, because it allows us to transform a product into a sum. The derivative of a
product involves numerous terms; the derivative of a sum is easy to take. We have

logP (D|θ) = log
∏

i∈dataset

P (di|θ) =
∑

i∈dataset

logP (di|θ)
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and in some cases, logP (di|θ) takes a convenient, easy form.

Definition: 16.3 The log-likelihood of a dataset under a model

is a function of the unknown parameters, and you will often see it
written as

logL(θ) =
∑

i∈dataset

logP (di|θ).

Worked example 16.4 Poisson distributions

You observe N intervals, each of the same, fixed length (in time, or space).
You know that, in these intervals, events occur with a Poisson distribution (for
example, you might be observing Prussian officers being kicked by horses, or
telemarketer calls...). You know also that the intensity of the Poisson distribu-
tion is the same for each observation. The number of events you observe in the
i’th interval is ni. What is the intensity, λ?

Solution: The likelihood is

L(θ) =
∏

i∈intervals

P ({ni events} |θ) =
∏

i∈intervals

θnie−θ

ni!
.

It will be easier to work with logs. The log-likelihood is

logL(θ) =
∑

i

(ni log θ − θ − logni!)

so that we must solve

∂ logL(θ)
∂θ

=
∑

i

(
ni

θ
− 1) = 0

which yields a maximum likelihood estimate of

θ̂ =

∑

i ni

N
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Worked example 16.5 The intensity of swearing

A famously sweary politician gives a talk. You listen to the talk, and for each of
30 intervals 1 minute long, you record the number of swearwords. You record
this as a histogram (i.e. you count the number of intervals with zero swear
words, with one, etc.). For the first 10 intervals, you see

no. of swear words no. of intervals

0 5
1 2
2 2
3 1
4 0

and for the following 20 intervals, you see
no. of swear words no. of intervals

0 9
1 5
2 3
3 2
4 1

Assume that the politician’s use of swearwords is Poisson. What is the intensity
using the first 10 intervals? the second 20 intervals? all the intervals? why are
they different?

Solution: Use the expression from worked example 16.4 to find

λ̂10 =
total number of swearwords

number of intervals

=
9

10

λ̂20 =
total number of swearwords

number of intervals

=
21

20

λ̂30 =
total number of swearwords

number of intervals

=
30

30
.

These are different because the maximum likelihood estimate is an estimate —
we can’t expect to recover the exact value from a dataset. Notice, however,
that the estimates are quite close.
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Worked example 16.6 Normal distributions

Assume we have x1, . . . , xN , and we wish to model these data with a normal
distribution. Use the maximum likelihood principle to estimate the mean of
that normal distribution.

Solution: The likelihood of a set of data values under the normal distribution
with unknown mean θ and standard deviation σ is

L(θ) = P (x1, . . . xN |θ, σ)
= P (x1|θ, σ)P (x2|θ, σ) . . . P (xN |θ, σ)

=

N
∏

i=1

1√
2πσ

exp

(

− (xi − θ)2

2σ2

)

and this expression is a moderate nuisance to work with. The log of the likeli-
hood is

logL(θ) =
(

N
∑

i=1

− (xi − θ)2

2σ2

)

+ term not depending on θ.

We can find the maximum by differentiating wrt θ and setting to zero, which
yields

∂ logL(θ)
∂θ

=

N
∑

i=1

2(xi − θ)

2σ2

= 0

=
1

σ2

(

N
∑

i=1

xi −Nθ

)

so the maximum likelihood estimate is

θ̂ =

∑N
i=1 xi

N

which probably isn’t all that surprising. Notice we did not have to pay attention
to σ in this derivation — we did not assume it was known, it just doesn’t do
anything.
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Worked example 16.7 Normal distributions -II

Assume we have x1, . . . , xN which are data that can be modelled with a normal
distribution. Use the maximum likelihood principle to estimate the standard
deviation of that normal distribution.

Solution: Now we have to write out the log of the likelihood in more detail.
Write µ for the mean of the normal distribution and θ for the unknown standard
deviation of the normal distribution. We get

logL(θ) =
(

N
∑

i=1

− (xi − µ)2

2θ2

)

−N log θ +Term not depending on θ

We can find the maximum by differentiating wrt θ and setting to zero, which
yields

∂ logL(θ)
∂θ

=
−2

θ3

N
∑

i=1

−(xi − µ)2

2
− N

θ
= 0

so the maximum likelihood estimate is

θ̂ =

√

∑N
i=1(xi − µ)2

N

which probably isn’t all that surprising, either.

You should notice that one could maximize the likelihood of a normal distri-
bution with respect to mean and standard deviation in one go (i.e. I could have
done worked examples 16.6 and 16.7 in one worked example, instead of two). I did
this example in two parts because I felt it was more accessible that way; if you
object, you’re likely to be able to fill in the details yourself very easily.

The maximum likelihood principle has a variety of neat properties we cannot
expound. One worth knowing about is consistency; for our purposes, this means
that the maximum likelihood estimate of parameters can be made arbitrarily close
to the right answer by having a sufficiently large dataset. Now assume that our data
doesn’t actually come from the underlying model. This is the usual case, because
we can’t usually be sure that, say, the data truly is normal or truly comes from a
Poisson distribution. Instead we choose a model that we think will be useful. When
the data doesn’t come from the model, maximum likelihood produces an estimate
of θ that corresponds to the model that is (in quite a strong sense, which we can’t
explore here) the closest to the source of the data. Maximum likelihood is very
widely used because of these neat properties. But there are some difficulties.

16.1.2 Cautions about Maximum Likelihood

One important problem is that it might be hard to find the maximum of the like-
lihood exactly. There are strong numerical methods for maximizing functions, and
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these are very helpful, but even today there are likelihood functions where it is very
hard to find the maximum.

The second is that small amounts of data can present nasty problems. For
example, in the binomial case, if we have only one flip we will estimate p as either
1 or 0. We should find this report unconvincing. In the geometric case, with a
fair coin, there is a probability 0.5 that we will perform the estimate and then
report that the coin has p = 1. This should also worry you. As another example,
if we throw a die only a few times, we could reasonably expect that, for some
i, ni = 0. This doesn’t necessarily mean that pi = 0, though that’s what the
maximum likelihood inference procedure will tell us.

This creates a very important technical problem — how can I estimate the
probability of events that haven’t occurred? This might seem like a slightly silly
question to you, but it isn’t. Solving this problem has really significant practical
consequences. As one example, consider a biologist trying to count the number of
butterfly species on an island. The biologist catches and classifies a lot of butterflies,
then leaves. But are there more butterfly species on the island? To get some sense
that we can reason successfully about this problem, compare two cases. In the
first, the biologist catches many individuals of each of the species observed. In this
case, you should suspect that catching more butterflies is unlikely to yield more
species. In the second case, there are many species where the biologist sees only
one individual of that species. In this case, you should suspect that catching more
butterflies might very well yield new species.

As another example, a really important part of natural language processing
involves estimating the probability of groups of three words. These groups are
usually known as “trigrams”. People typically know an awful lot of words (tens
to hundreds of thousands, depending on what you mean by a word). This means
that there are a tremendous number of trigrams, and you can expect that any real
dataset lacks almost all of them, because the dataset isn’t big enough for there to
be even just one of each trigram. Some are missing because they don’t occur in
real life, but others are not there simply because they are unusual (eg “Atom Heart
Mother” actually occurs in real life, but you may not have seen it — try a web
search if the phrase doesn’t ring a bell). Modern speech recognition systems need
to know how probable every trigram is. If the speech system thinks a trigram has
zero probability and the trigram actually occurs, the system will make a mistake.
We can’t solve this problem just by giving each trigram a very small non-zero
probability, because there are too many trigrams — it is important to distinguish
between rare ones, and ones that don’t ever occur. But what probability should
I use for a rare trigram? Maximum likelihood would say use zero, but this would
generate problems. Formalizing all this gets difficult quite quickly,

16.2 INCORPORATING PRIORS WITH BAYESIAN INFERENCE

Another important issue with maximum likelihood is that there is no mechanism
to incorporate prior beliefs. For example, imagine you get a new die from a reliable
store, roll it six times and see a one once. You would be happy to believe that
p(6) = 1/6 for this die. Now imagine you borrow a die from a friend with a long
history of making weighted dice. Your friend tells you this die is weighted so that
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p(1) = 1/2. You roll the die six times and see a one once; in this case, you might
worry that p(6) isn’t 1/6, and you just happened to get a slightly unusual set
of rolls. You’d worry because you have good reason to believe the die isn’t fair,
and you’d want more evidence to believe p(6) = 1/6. Maximum likelihood can’t
distinguish between these two cases.

The difference lies in prior information — information we possess before we
look at the data. We would like to take this information into account when we
estimate the model. One way to do so is to place a prior probability distribution

p(θ) on the parameters θ. Then, rather than working with the likelihood p(D|θ), we
could apply Bayes’ rule, and form the posterior p(θ|D). This posterior represents
the probability that θ takes various values, given the data D.

Definition: 16.4 Bayesian inference

Extracting information from the posterior p(θ|D) is usually called
Bayesian inference

Definition: 16.5 MAP estimate

A natural estimate of θ is the value that maximizes the posterior p(θ|D).
This estimate is known as a maximum a posteriori estimate or
MAP estimate.

16.2.1 Constructing the Posterior

Bayes’ rule tells us that

p(θ|D) =
P (D|θ)P (θ)

P (D)

but (as we shall see) it can be hard to work out P (D). For some problems, we
might not need to know it.
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FIGURE 16.1: The curves show a function proportional to the posterior on θ, for
the two cases of example ??. Notice that this information is rather richer than the
single value we would get from maximum likelihood inference.

Worked example 16.8 Flipping a coin

We have a coin with probability θ of coming up heads when flipped. We start
knowing nothing about θ. We then flip the coin 10 times, and see 7 heads (and
3 tails). Plot a function proportional to p(θ| {7 heads and 3 tails}). What
happens if there are 3 heads and 7 tails?

Solution: We know nothing about p, except that 0 ≤ θ ≤ 1, so we choose a
uniform prior on p. We have that p({7 heads and 3 tails} |θ) is binomial. The
joint distribution is p({7 heads and 3 tails} |θ) × p(θ) but p(θ) is uniform, so
doesn’t depend on θ. So the posterior is proportional to: θ7(1 − θ)3 which is
graphed in figure 16.1. The figure also shows θ3(1 − θ)7 which is proportional
to the posterior for 3 heads and 7 tails. In each case, the evidence does not
rule out the possibility that θ = 0.5, but tends to discourage the conclusion.
Maximum likelihood would give θ = 0.7 or θ = 0.3, respectively.

In Example 16.8, it is interesting to follow how the posterior on p changes as
evidence come in, which is easy to do because the posterior is proportional to a
binomial distribution. Figure 16.2 shows a set of these posteriors for different sets
of evidence.

For other problems, we will need to marginalize out θ, by computing

P (D) =

∫

θ

P (D|θ)P (θ)dθ.

It is usually impossible to do this in closed form, so we would have to use a numerical
integral or a trick. The next section expounds one useful trick.

Conjugate priors
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FIGURE 16.2: The probability that an unknown coin will come up heads when flipped
is p(H). For these figures, I simulated coin flips from a coin with p = 0.75. I
then plotted the posterior for various data. Notice how, as we see more flips, we
get more confident about p. The vertical axis changes substantially between plots in
this figure.

In some cases, P (θ) and P (D|θ), when multiplied together, take a familiar
form. This happens when P (D|θ) and P (θ) each belong to parametric families
where there is a special relationship between the families. When a prior has this
property, it is called a conjugate prior. There are some cases worth knowing, given
in the worked examples.
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Worked example 16.9 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped. We model
the prior on θ with a Beta distribution, with parameters α > 0, β > 0. We
then flip the coin N times, and see h heads. What is P (θ|N, h, α, β)?

Solution: We have that P (N, h|θ) is binomial, and that P (θ|N, h, α, β) ∝
P (N, h|θ)P (θ|α, β). This means that

P (θ|N, h, α, β) ∝
(

N
h

)

θh(1− θ)(N−h) Γ(α+ β)

Γ(α)Γ(β)
θ(α−1)(1− θ)(β−1).

and we can write

P (θ|N, h, α, β) ∝ θ(α+h−1)(1− θ)(β+N−h−1).

Notice this has the form of a Beta distribution, so it is easy to recover the
constant of proportionality. We have

P (θ|N, h, α, β) =
Γ(α+ β +N)

Γ(α+ h)Γ(β +N − h)
θ(α+h−1)(1 − θ)(β+N−h−1).
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Worked example 16.10 More sweary politicians

Example 16.5 gives some data from a sweary politician. Assume we have only
the first 10 intervals of observations, and we wish to estimate the intensity using
a Poisson model. Write θ for this parameter. Use a Gamma distribution as a
prior, and write out the posterior.

Solution: We have that

p(D|θ) =

(

θ0e−θ

0!

)5(
θ1e−θ

1!

)2

×
(

θ2e−θ

2!

)2(
θ3e−θ

3!

)1

=
θ9e−10θ

12

and

p(θ|α, β) = βα

Γ(α)
θ(α−1)e−βθ

This means that
p(θ|D) ∝ θ(α−1+9)e−(β+10)θ.

Notice this has the form of another Gamma distribution, so we can write

p(θ|D) =
(β + 10)(α+9)

Γ(α+ 9)
θ(α−1+9)e−(β+10)θ

16.2.2 Normal Prior and Normal Likelihood

When both P (D|θ) and P (θ) are normal, some important simplifications occur.
First, the prior is conjugate to the likelihood. Second, the posterior is also normal.
And third, the mean and standard deviation of the posterior take a simple form.

We start with an example. Assume we drop a measuring device down a
borehole. It is designed to stop falling and catch onto the side of the hole after
it has fallen µ0 meters. On board is a device to measure its depth. This device
reports a known constant times the correct depth plus a zero mean normal random
variable, which we call “noise”. The device reports depth every second.

The first question to ask is what depth do we believe the device is at before
we receive any measurement? We designed the device to stop at µ0 meters, so we
are not completely ignorant about where it is. However, it may not have worked
absolutely correctly. We choose to model the depth at which it stops as µ0 meters
plus a zero mean normal random variable. The second term could be caused by error
in the braking system, etc. We could estimate the standard deviation of the second
term (which we write σ0) either by dropping devices down holes, then measuring
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with tape measures, or by analysis of likely errors in our braking system. The depth
of the object is the unknown parameter of the model; we write this depth θ. Now
the model says that θ is a normal random variable with mean µ0 and standard
deviation σ0.

Notice that this model probably isn’t exactly right — for example, there must
be some probability in the model that the object falls beyond the bottom of the
hole, which it can’t do — but it captures some important properties of our system.
The device should stop at or close to µ0 meters most of the time, and it’s unlikely
to be too far away.

Now assume we receive a single measurement — what do we now know about
the device’s depth? The first thing to notice is that there is something to do here.
Ignoring the prior and taking the measurement might not be wise. For example,
imagine that the noise in the wireless system is large, so that the measurement is
often corrupted — our original guess about the device’s location might be better
than the measurement. Write x1 for the measurement. Notice that the scale of
the measurement may not be the same as the scale of the depth, so the mean of
the measurement is c1θ, where c1 is a change of scale (for example, from inches to
meters). We have that p(x1|θ) is normal with mean c1θ and standard deviation
σn1. We would like to know p(θ|x1).

We have that

log p(θ, x1) = log p(x1|θ) + log p(θ)

= − (x1 − c1θ)
2

2σ2
n1

− (θ − µ0)
2

2σ2
0

+ terms not depending on θ or x.

We have two estimates of the position, θ, and we wish to come up with a represen-
tation of what we know about θ. One is x1, which is a measurement — we know
its value. The expected value of x1 is c1θ, so we could infer θ from x1. But we
have another estimate of the position, which is µ0. The posterior, p(θ|x1), is a
probability distribution on the variable θ; it depends on the known values x1, µ0,
σ0 and σn1. We need to determine its form. We can do so by some rearrangement
of the expression for log p(θ, x1).

Notice first that this expression is of degree 2 in θ (i.e. it has terms θ2, θ
and things that don’t depend on θ). This means that p(θ|x1) must be a normal
distribution, because we can rearrange its log into the form of the log of a normal
distribution. This yields a fact of crucial importance.

Useful Fact: 16.1 Normal distributions are conjugate

A normal prior and a normal likelihood yield a normal posterior.
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Write µ1 for the mean of this distribution, and σ1 for its standard deviation.
The log of the distribution must be

− (θ − µ1)
2

2σ2
1

+ terms not depending on θ.

The terms not depending on θ are not interesting, because if we know σ1 those
terms must add up to

log

(

1√
2πσ1

)

so that the probability density function sums to one. Our goal is to rearrange terms
into the form above. Notice that

− (θ − µ1)
2

2σ2
p

= −θ2
(

1

2σ2
1

)

+ 2θ
µ1

2σ2
p

+ term not depending on θ

We have

log p(θ|x1) = − (c1θ − x1)
2

2σ2
n1

− (θ − µ0)
2

2σ2
0

+ terms not depending on θ

= −θ2





1

2
(

σ2
n1σ

2
0

σ2
n1+c21σ

2
0

)



+ 2θ

(

c1
x1

2σ2
n1

+
µ0

2σ2
0

)

+ terms not depending on θ

which means that

σ2
1 =

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

and

µ1 = 2

(

c1
x1

2σ2
n1

+
µ0

2σ2
0

)

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

=

(

c1x1σ
2
0 + µ0σ

2
n1

σ2
n1σ

2
0

)

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

=
c1x1σ

2
0 + µ0σ

2
n1

σ2
n1 + c21σ

2
0

.

These equations “make sense”. Imagine that σ0 is very small, and σn1 is very
big; then our new expected value of θ — which is µ1 — is about µ0. Equivalently,
because our prior was very accurate, and the measurement was unreliable, our
expected value is about the prior value. Similarly, if the measurement is reliable
(i.e. σn1 is small) and the prior has high variance (i.e. σ0 is large), then our
expected value of θ is about x1/c1 — i.e. the measurement, rescaled. I have put
these equations, in a more general form, in a box below.
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Useful Fact: 16.2 Normal posteriors

Assume we wish to estimate a parameter θ. The prior distribution for θ
is normal, with known mean µπ and known standard deviation σπ . We
receive a single data item x. The likelihood of this data item is normal
with mean cθ and standard deviation σm, where c and σm are known.
Then the posterior, p(θ|x, c, σm, µπ, σπ), is normal, with mean

cxσ2
π + µπσ

2
m

σ2
m + c2σ2

π

and standard deviation
√

σ2
mσ2

π

σ2
m + c2σ2

π

.

16.2.3 MAP Inference

Look at example 16.1, where we estimated the probability a coin would come up
heads with maximum likelihood. We could not change our estimate just by knowing
the coin was fair, but we could come up with a number for θ = p(H) (rather than,
say, a posterior distribution). A natural way to produce a point estimate for θ that

incorporates prior information is to choose θ̂ such that

θ̂ =
argmax

θ
P (θ|D) =

argmax
θ

P (θ,D)

P (D)

This is the MAP estimate. If we wish to perform MAP inference, P (D) doesn’t
matter (it changes the value, but not the location, of the maximum). This means
we can work with P (θ,D), often called the joint distribution.
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Worked example 16.11 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped. We model
the prior on θ with a Beta distribution, with parameters α > 0, β > 0. We
then flip the coin N times, and see h heads. What is the MAP estimate of θ?

Solution: We have that

P (θ|N, h, α, β) =
Γ(α+ β +N)

Γ(α+ h)Γ(β +N − h)
θ(α+h−1)(1 − θ)(β+N−h−1).

You can get the MAP estimate by differentiating and setting to 0, yielding

θ̂ =
α− 1 + h

α+ β − 2 +N
.

This has rather a nice interpretation. You can see α and β as extra counts of
heads (resp. tails) that are added to the observed counts. So, for example, if
you were fairly sure that the coin should be fair, you might make α and β large
and equal. When α = 1 and β = 1, we have a uniform prior as in the previous
examples.

Worked example 16.12 More sweary politicians

We observe our swearing politician for N intervals, seeing ni swear words in
the i’th interval. We model the swearing with a Poisson model. We wish to
estimate the intensity, which we write θ. We use a Gamma distribution for the
prior on θ. What is the MAP estimate of θ?

Solution: Write T =
∑N

i=1. We have that

p(θ|D) =
(β +N)(α+T )

Γ(α+ T )
θ(α−1+T )e−(β+T )θ

and the MAP estimate is

θ̂ =
(α− 1 + T )

(β +N)

(which you can get by differentiating with respect to θ, then setting to zero).
Notice that if β is close to zero, you can interpret α as extra counts; if β is large,
then it strongly discourages large values of θ̂, even if the counts are large.

16.2.4 Filtering

We can make online estimates of the maximum likelihood value of mean and stan-
dard deviation for a normal distribution. Assume, rather than seeing N elements
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of a dataset in one go, you get to see each one once, and you cannot store them.
Assume that this dataset is modelled as normal data. Write µ̂k for the maximum
likelihood estimate of the mean based on data items 1 . . . k (and σ̂k for the maximum
likelihood estimate of the standard deviation, etc.). Notice that

µ̂k+1 =
(kµ̂k) + xk+1

(k + 1)

and that

σ̂k+1 =

√

(kσ̂2
k) + (xk+1 − µ̂k+1)2

(k + 1)

This means that you can incorporate new data into your estimate as it arrives
without keeping all the data. This process of updating a representation of a dataset
as new data arrives is known as filtering.

This is particularly useful in the case of normal posteriors. Recall that if we
have a normal prior and a normal likelihood, the posterior is normal. Now consider
a stream of incoming measurements. Our initial representation of the parameters
we are trying to estimate is the prior, which is normal. We allow ourselves to see
one measurement, which has normal likelihood; then the posterior is normal. You
can think of this posterior as a prior for the parameter estimate based on the next
measurement. But we know what to do with a normal prior, a normal likelihood,
and a measurement; so we can incorporate the measurement and go again. This
means we can exploit our expression for the posterior mean and standard deviation
in the case of normal likelihood and normal prior and a single measurement to deal
with multiple measurements very easily.

Assume a second measurement, x2 arrives. We know that p(x2|θ, c2, σn2) is
normal with mean c2θ and standard deviation σn2. In the example, we have a new
measurement of depth — perhaps in a new, known, scale — with new noise (which
might have larger, or smaller, standard deviation than the old noise) added. Then
we can use p(θ|x1, c1, σn1) as a prior to get a posterior p(θ|x1, x2, c1, c2, σn1, σn2).
Each is normal, by useful fact 16.1. Not only that, but we can easily obtain the
expressions for the mean µ2 and the standard deviation σ2 recursively as functions
of µ1 and σ1.

Applying useful fact 16.2, we have

µ2 =
c2x2σ

2
1 + µ1σ

2
n2

σ2
n2 + c22σ

2
1

and

σ2
2 =

σ2
n2σ

2
1

σ2
n2 + c22σ

2
1

.

But what works for 2 and 1 will work for k+1 and k. We know the posterior after
k measurements will be normal, with mean µk and standard deviation σk. The
k+1’th measurement xk+1 arrives, and we have p(xk+1|θ, ck+1, σn(k+1)) is normal.
Then the posterior is normal, and we can write the mean µk+1 and the standard
deviation σk+1 recursively as functions of µk and σk. The result is worth putting
in a box.
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Useful Fact: 16.3 Online updating of normal posteriors

Assume we wish to estimate a parameter θ. The prior distribution for θ
is normal, with known mean µπ and known standard deviation σπ . All
data is normal conditioned on θ. We have already received k data items.
The posterior p(θ|x1, . . . , xk, c1, . . . , ck, σn1, . . . , σnk, µπ, σπ) is normal,
with mean µk and standard deviation σk. We receive a new data item
xk+1. The likelihood of this data item is normal with mean cθ and stan-
dard deviation σn(k+1), where ck+1 and σn(k+1) are known. Then the
posterior, p(θ|x1, . . . , xk+1, c1, . . . , ck, ck+1, σn1, . . . , σn(k+1), µπ, σπ), is
normal, with mean

µk+1 =
ck+1xk+1σ

2
k + µkσ

2
n(k+1)

σ2
n(k+1) + c2k+1σ

2
k

and

σ2
k+1 =

σ2
n(k+1)σ

2
k

σ2
n(k+1) + c2k+1σ

2
k

.

Again, notice the very useful fact that, if everything is normal, we can update
our posterior representation when new data arrives using a very simple recursive
form.
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Worked example 16.13 Normal data

Assume you see N datapoints xi which are modelled by a normal distribution
with unknown mean θ and with known standard deviation σ. You model the
prior on θ using a normal distribution with mean µ0 and standard deviation
σ0. What is the MAP estimate of the mean?

Solution: Recall that the maximum value of a normal distribution occurs at
its mean. Now problem is covered by useful fact 16.2, but in this case we have
ci = 1 for each data point, and σi = σ. We can write

µN =
xNσ2

N−1 + µN−1σ
2

σ2 + σ2
N−1

and

σ2
N =

σ2σ2
N−1

σ2 + σ2
N−1

.

and evaluate the recursion down to µ0, σ0.

16.2.5 Cautions about Bayesian Inference

Just like maximum likelihood inference, bayesian inference is not a recipe that can
be applied without thought. It turns out that, when there is a lot of data, the
prior has little inference on the outcome of the inference, and the MAP solution
looks a lot like the maximum likelihood solution. So the difference between the two
approaches is most interesting when there is little data, where the prior matters.
The difficulty is that it might be hard to know what to use as a good prior. In
the examples, I emphasized mathematical convenience, choosing priors that lead
to clean posteriors. There is no reason to believe that nature uses conjugate priors
(even though conjugacy is a neat property). How should one choose a prior for a
real problem?

This isn’t an easy point. If there is little data, then the choice could really
affect the inference. Sometimes we’re lucky, and the logic of the problem dictates
a choice of prior. Mostly, we have to choose and live with the consequences of the
choice. Often, doing so is succesful in applications.

The fact we can’t necessarily justify a choice of prior seems to be one of life’s
inconveniences, but it represents a significant philosophical problem. It’s been at
the core of a long series of protracted, often quite intense, arguments about the
philosophical basis of statistics. I haven’t followed these arguments closely enough
to summarize them; they seem to have largely died down without any particular
consensus being reached.

16.3 SAMPLES, URNS AND POPULATIONS

Very often the data we see is a small part of the data we could have seen, if we’d
been able to collect enough data. We need to know how the measurements we make
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on the dataset relate to the measurements we could have made, if we had all the
data. This situation occurs very often. For example, imagine we wish to know the
average weight of a rat. This isn’t random; you could weigh every rat on the planet,
and then average the answers. But doing so would absurd (among other things,
you’d have to weigh them all at the same time, which would be tricky). Instead,
we weigh a small set of rats, chosen rather carefully. If we have chosen sufficiently
carefully, then the answer from the small set is quite a good representation of the
answer from the whole set.

The data we could have observed, if we could have seen everything, is the
population. The data we actually have is the sample. We would like to know
the mean of the population, but can see only the sample; surprisingly, we can say
a great deal from the sample alone, assuming that it is chosen appropriately.

16.3.1 Estimating the Population Mean from a Sample

Assume we have a population {x}, for i = 1, . . . , Np. Notice the subscript here —
this is the number of items in the population. The population could be unreasonably
big: for example, it could consist of all the people in the world. We want to know
the mean of this dataset, but we do not get to see the whole dataset. Instead, we
see the sample.

How the sample is obtained is key to describing the population. We will focus
on only one model (there are lots of others). In our model, the sample is obtained by
choosing a fixed number of data items. Write k for the number of data items in the
sample. We expect k is a lot smaller than Np. Each item is chosen independently,
and fairly. This means that each time we choose, we choose one from the entire
set of Np data items, and each has the same probability of being chosen. This is
sometimes referred to as “sampling with replacement”.

One natural way to think about sampling with replacement is to imagine the
data items as being written on tickets, which are placed in an urn (old-fashioned
word for a jar, now used mainly by statisticians and morticians). You obtain the
sample by repeating the following experiment k times: shake the urn; take a ticket
from the urn and write down the data on the ticket; put it back in the urn. Notice
that, in this case, each sample is drawn from the same urn. This is important, and
makes the analysis easier. If we had not put the ticket back, the urn would change
between samples.

We summarize the whole dataset with its mean, which we write popmean ({x}).
This is known as the population mean. The notation is just to drive home the
facts that it’s the mean of the whole population, and that we don’t, and can’t,
know it. The whole point of this exercise is to estimate this mean.

We would like to estimate the mean of the whole dataset from the items that
we actually see. Imagine we draw k tickets from the urn as above, and average the
values. The result is a random variable, because different draws of k tickets will
give us different values. Write X(k) for this random variable, which is referred to
as the sample mean. Because expectations are linear, we must have that

E

[

X(k)
]

=
1

k

(

E

[

X(1)
]

+ . . .+ E

[

X(1)
])

= E

[

X(1)
]

(where X(1) is the random variable whose value is obtained by drawing one ticket
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from the urn). Now

E

[

X(1)
]

=
∑

i∈1,...Np

xip(i)

=
∑

i∈1,...Np

xi
1

Np
because we draw fairly from the urn

=

∑

i∈1,...Np
xi

Np

= popmean ({x})

which is the mean value of the items in the urn. This means that

E

[

X(k)
]

= popmean ({xi}).

Under our sampling model, the expected value of the sample mean is the population
mean.

Useful Facts: 16.4 Sample means and population means

The sample mean is a random variable. It is random, because different
samples from the population will have different values of the sample
mean. The expected value of this random variable is the population
mean.

We will not get the same value of X(k) each time we perform the experiment,
because we see different data items in each sample. So X(k) has variance, and this
variance is important. If it is large, then each estimate is quite different. If it is
small, then the estimates cluster. Knowing the variance of X(k) would tell us how
accurate our estimate of the population mean is.

16.3.2 The Variance of the Sample Mean

We write popsd ({x}) for the standard deviation of the whole population of {x}.
Again, we write it like this to keep track of the facts that (a) it’s for the whole
population and (b) we don’t — and usually can’t — know it.

We can compute the variance of X(k) (the sample mean) easily. We have

var
[

X(k)
]

= E

[

(X(k))2
]

− E

[

X(k)
]2

= E

[

(X(k))2
]

− (popmean ({x}))2

so we need to know E
[

(X(k))2
]

. We can compute this by writing

X(k) =
1

k
(X1 +X2 + . . .Xk)
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where X1 is the value of the first ticket drawn from the urn, etc. We then have

X(k)2 =

(

1

k

)2(
X2

1 +X2
2 + . . . X2

k +X1X2 + . . .
X1Xk +X2X1 + . . . X2Xk + . . . Xk−1Xk

)

.

Expectations are linear, so we have that

E

[

(X(k))2
]

=

(

1

k

)2(
E
[

X2
1

]

+ E
[

X2
2

]

+ . . .E
[

X2
k

]

+ E[X1X2]+
. . .E[X1Xk] + E[X2X1] + . . .E[X2Xk] + . . .E[Xk−1Xk]

)

.

The order in which the tickets are drawn from the urn doesn’t matter, because
each time we draw a ticket we draw from the same urn. This means that E

[

X2
1

]

=

E
[

X2
2

]

= . . .E
[

X2
k

]

. You can think of this term as the expected value of the
random variable generated by: drawing a single number out of the urn; squaring
that number; and reporting the square. Notice that E

[

X2
1

]

= E
[

(X(1))2
]

(look at

the definition of X(1)).
Because the order doesn’t matter, we also have that E[X1X2] = E[X1X3] =

. . .E[Xk−1Xk]. You can think of this term as the expected value of the random
variable generated by: drawing a number out of the urn; writing it down; returning
it to the urn; then drawing a second number from the urn; and reporting the
product of these two numbers. So we can write

E

[

X(k)2
]

= (
1

k
)2
(

kE
[

(X(1))2
]

+ k(k − 1)E[X1X2]
)

and these two terms are quite easy to evaluate.

Worked example 16.14 Urn variances

Show that

E

[

(X(1))2
]

=

∑Np

i=1 x
2
i

Np
= popsd ({x})2 + popmean ({x})2

Solution: First, we have (X(1))2 is the number obtained by taking a ticket
out of the urn and squaring its data item. Now

popsd ({x})2 = E

[

(X(1))2
]

− E

[

X(1)
]2

= E

[

(X(1))2
]

− popmean ({x})2

so
E

[

(X(1))2
]

= popsd ({x})2 + popmean ({x})2
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Worked example 16.15 Urn variances

Show that
E[X1X2] = popmean ({x})2

Solution: This looks hard, but isn’t. Recall from the facts in chapter ??

(useful facts ??, page ??) that if X and Y are independent random variables,
E[XY ] = E[X ]E[Y ]. But X1 and X2 are independent — they are different
random draws from the same urn. So

E[X1X2] = E[X1]E[X2]

but E[X1] = E[X2] (they are draws from the same urn) and E[X ] =
popmean ({x}). So

E[X1X2] = popmean ({x})2.

Now

E

[

(X(k))2
]

=
kE
[

(X(1))2
]

+ k(k − 1)E[X1X2]

k2

=
E
[

(X(1))2
]

+ (k − 1)E[X1X2]

k

=
(popsd ({x})2 + popmean ({x})2) + (k − 1)popmean ({x})2

k

=
popsd ({x})2

k
+ popmean ({x})2

so we have

var
[

X(k)
]

= E

[

(X(k))2
]

− E

[

X(k)
]2

=
popsd ({x})2

k
+ popmean ({x})2 − popmean ({x})2

=
popsd ({x})2

k
.

This is a very useful result which is well worth remembering together with our facts
on the sample mean, so we’ll put them in a box together.
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Useful Fact: 16.5 The sample mean

The sample mean is a random variable. Write X(k) for the mean of k
samples. We have that:

E

[

X(k)
]

= popmean ({x})

var
[

X(k)
]

=
popsd ({x})2

k

std
({

X(k)
})

=
popsd ({x})√

k

The consequence is this: If you draw k samples, the standard deviation of
your estimate of the mean is

popsd ({x})√
k

which means that (a) the more samples you draw, the better your estimate becomes
and (b) the estimate improves rather slowly — for example, to halve the standard
deviation in your estimate, you need to draw four times as many samples. The
standard deviation of the estimate of the mean is often known as the standard

error of the mean. This allows us to draw a helpful distinction: the population
has a standard deviation, and our estimate of its mean (or other things — but we
won’t go into this) has a standard error.

Notice we cannot state the standard error of our estimate exactly, because we
do not know popsd ({x}). But we could make a good estimate of popsd ({x}), by
computing the standard deviation of the examples that we have. It is now helpful
to have some notation for the particular sample we have. I will write

∑

i∈sample
for a sum over the sample items, and we will use

mean ({x}) =
∑

i∈sample xi

k

for the mean of the sample — that is, the mean of the data we actually see; this is
consistent with our old notation, but there’s a little reindexing to keep track of the
fact we don’t see all of the population. Similarly, I will write

std ({x}) =

√

∑

i∈sample(xi −mean ({xi}))2
k

for the sample standard deviation. Again, this is the standard deviation of the data
we actually see; and again, this is consistent with our old notation, again with a
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little reindexing to keep track of the fact we don’t see all of the population. We
could estimate

popsd ({x}) ≈ std ({x})
and as long as we have enough examples, this estimate is good. If the number of
samples k is small, it is better to use

popsd ({x}) ≈

√

∑

i∈sample(xi −mean ({x}))2
k − 1

.

In fact, much more is known about the distribution of X(k).

16.3.3 The Probability Distribution of the Sample Mean

The sample mean is a random variable. We know an expression for its mean, and
we can estimate its variance. In fact, we can determine its probability distribution,
though I won’t do this rigorously. In section 15.4.3, I mentioned that adding a
number of independent random variables almost always got you a normal random
variable, a fact sometimes known as the central limit theorem. I didn’t prove it,
and I’m not going to now. But when we form X(k), we’re adding random variables.
This means that X(k) is a normal random variable, for sufficiently big k (for some
reason, k > 30 is usually seen as right).

This is important, because it has the following consequence. Draw a large
number of different samples of k elements from the population. Each is a dataset of
k items. Compute mean ({x}) for each, and regard the resulting numbers e1, . . . , er
as data items. Convert the ei to standard coordinates si, where

si =
(ei −mean ({ei}))

std (ei)

(i.e. by subtracting the mean of the ei, and dividing by their standard deviation).
Now construct a construct a histogram of the s. If r is sufficiently large, the
histogram will be close to the standard normal curve.

16.3.4 When The Urn Model Works

In our model, there was a population of Np data items xi, and we saw k of them,
chosen at random. In particular, each choice was fair (in the sense that each data
item had the same probability of being chosen) and independent. These assump-
tions are very important for our analysis to apply. If our data does not have these
properties, bad things can happen.

For example, assume we wish to estimate the percentage of the population
that has beards. This is a mean (the data items take the value 1 for a person with
a beard, and 0 without a beard). If we select people according to our model, then
ask them whether they have a beard, then our estimate of the percentage of beards
should behave as above.

The first thing that should strike you is that it isn’t at all easy to select people
according to this model. For example, we might select phone numbers at random,
then call and ask the first person to answer the phone whether they have a beard;
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but many children won’t answer the phone because they are too small. The next
important problem is that errors in selecting people can lead to massive errors in
your estimate. For example, imagine you decide to survey all of the people at a
kindergarten on a particular day; or all of the people in a women’s clothing store;
or everyone attending a beard growing competition (they do exist). In each case,
you will get an answer that is a very poor estimate of the right answer, and the
standard error might look very small. Of course, it is easy to tell that these cases
are a bad choice.

It may not be easy to tell what a good choice is. You should notice the sim-
ilarity between estimating the percentage of the population that wears a beard,
and estimating the percentage that will vote for a particular candidate. There is
a famous example of a survey that mispredicted the result of the Dewey-Truman
presidential election in 1948; poll-takers phoned random phone numbers, and asked
for an opinion. But at that time, telephones tended to be owned by a small per-
centage of rather comfortable households, who tended to prefer one candidate, and
so the polls mispredicted the result rather badly.

Sometimes, we don’t really have a choice of samples. For example, we might
be presented with a small dataset of (say) human body temperatures. If we can be
satisfied that the people were selected rather randomly, we might be able to use this
dataset to predict expected body temperature. But if we knew that the subjects
had their temperatures measured because they presented themselves at the doctor
with a suspected fever, then we most likely cannot use it to predict expected body
temperature.

One important and valuable case where this model works is in simulation. If
you can guarantee that your simulations are independent (which isn’t always easy),
this model applies to estimates obtained from a simulation. Notice that it is usually
straightforward to build a simulation so that the i’th simulation reports an xi where
popmean ({x}) gives you the thing you want to measure. For example, imagine you
wish to measure the probability of winning a game; then the simulation should
report one when the game is won, and zero when it is lost. As another example,
imagine you wish to measure the expected number of turns before a game is won;
then your simulation should report the number of turns elapsed before the game
was won.
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16.4 YOU SHOULD

16.4.1 be able to:

• Write out the likelihood for a set of independent data items produced by
models from chapter 15 (at least Normal, Binomial, Multinomial, Poisson,
Beta, Gamma, Exponential).

• Write out the log likelihood for a set of independent data items produced by
models from chapter 15 (at least Normal, Binomial, Multinomial, Poisson,
Beta, Gamma, Exponential).

• Find maximum likelihood solutions for parameters of these models from a set
of independent data items.

• Describe situations where maximum likelihood estimates might not be reli-
able.

• Describe the difference between maximum likelihood estimation and Bayesian
inference.

• Write an expression for the posterior or log-posterior of model parameters
given a set of independent data items.

• Compute the MAP estimate for the cases shown in the worked examples.

• Compute on-line estimates of the maximum likelihood estimate of the mean
and standard deviation of a normal model.

• Compute on-line estimates of the MAP estimate of the mean and standard
deviation in the case of a normal prior and a normal likelihood.

• Estimate the population mean from a sample mean.

• Estimate the standard error of the estimate of a population mean.

16.4.2 remember:

New term: Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
New term: point estimate . . . . . . . . . . . . . . . . . . . . . . . . 318
New term: interval estimates . . . . . . . . . . . . . . . . . . . . . . 318
New term: hypothesis testing . . . . . . . . . . . . . . . . . . . . . . 318
New term: likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Definition: Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 320
New term: maximum likelihood principle . . . . . . . . . . . . . . . 320
Definition: The maximum likelihood principle . . . . . . . . . . . . . 321
New term: independent and identically distributed . . . . . . . . . . 321
New term: IID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Definition: The log-likelihood of a dataset under a model . . . . . . 325
New term: consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 328
New term: prior probability distribution . . . . . . . . . . . . . . . . 330
New term: posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
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New term: Bayesian inference . . . . . . . . . . . . . . . . . . . . . . 330
Definition: Bayesian inference . . . . . . . . . . . . . . . . . . . . . . 330
New term: maximum a posteriori estimate . . . . . . . . . . . . . . . 330
New term: MAP estimate . . . . . . . . . . . . . . . . . . . . . . . . 330
Definition: MAP estimate . . . . . . . . . . . . . . . . . . . . . . . . 330
New term: conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Useful fact: Normal distributions are conjugate . . . . . . . . . . . . 335
Useful fact: Normal posteriors . . . . . . . . . . . . . . . . . . . . . . 337
New term: joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
New term: filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Useful fact: Online updating of normal posteriors . . . . . . . . . . . 340
New term: population . . . . . . . . . . . . . . . . . . . . . . . . . . 342
New term: sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
New term: population mean . . . . . . . . . . . . . . . . . . . . . . . 342
New term: sample mean . . . . . . . . . . . . . . . . . . . . . . . . . 342
Useful facts: Sample means and population means . . . . . . . . . . 343
Useful fact: The sample mean . . . . . . . . . . . . . . . . . . . . . . 346
New term: standard error . . . . . . . . . . . . . . . . . . . . . . . . 346
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Math Resources

17.1 USEFUL MATERIAL ABOUT MATRICES

Terminology:

• A matrix M is symmetric if M = MT . A symmetric matrix is necessarily
square.

• We write I for the identity matrix.

• A matrix is diagonal if the only non-zero elements appear on the diagonal.
A diagonal matrix is necessarily symmetric.

• A symmetric matrix is positive semidefinite if, for any x such that xTx > 0
(i.e. this vector has at least one non-zero component), we have xTMx ≥ 0.

• A symmetric matrix is positive definite if, for any x such that xTx > 0, we
have xTMx > 0.

• A matrix R is orthonormal if RTR = I = IT = RRT . Orthonormal
matrices are necessarily square.

Orthonormal matrices: You should think of orthonormal matrices as ro-
tations, because they do not change lengths or angles. For x a vector, R an or-
thonormal matrix, and u = Rx, we have uTu = xTRTRx = xTIx = xTx. This
means that R doesn’t change lengths. For y, z both unit vectors, we have that
the cosine of the angle between them is yTx; but, by the same argument as above,
the inner product of Ry and Rx is the same as yTx. This means that R doesn’t
change angles, either.

Eigenvectors and Eigenvalues: Assume S is a d× d symmetric matrix, v
is a d× 1 vector, and λ is a scalar. If we have

Sv = λv

then v is referred to as an eigenvector of S and λ is the corresponding eigenvalue.
Matrices don’t have to be symmetric to have eigenvectors and eigenvalues, but the
symmetric case is the only one of interest to us.

In the case of a symmetric matrix, the eigenvalues are real numbers, and there
are d distinct eigenvectors that are normal to one another, and can be scaled to
have unit length. They can be stacked into a matrix U = [v1, . . . ,vd]. This matrix
is orthonormal, meaning that UTU = I. This means that there is a diagonal matrix
Λ such that

SU = UΛ.

351
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In fact, there is a large number of such matrices, because we can reorder the eigen-
vectors in the matrix U , and the equation still holds with a new Λ, obtained by
reordering the diagonal elements of the original Λ. There is no reason to keep track
of this complexity. Instead, we adopt the convention that the elements of U are
always ordered so that the elements of Λ are sorted along the diagonal, with the
largest value coming first.

Diagonalizing a symmetric matrix: This gives us a particularly impor-
tant procedure. We can convert any symmetric matrix S to a diagonal form by
computing

UTSU = Λ.

This procedure is referred to as diagonalizing a matrix. Again, we assume that
the elements of U are always ordered so that the elements of Λ are sorted along
the diagonal, with the largest value coming first. Diagonalization allows us to
show that positive definiteness is equivalent to having all positive eigenvalues, and
positive semidefiniteness is equivalent to having all non-negative eigenvalues.

Factoring a matrix: Assume that S is symmetric and positive semidefinite.
We have that

S = UΛUT

and all the diagonal elements of Λ are non-negative. Now construct a diagonal
matrix whose diagonal entries are the positive square roots of the diagonal elements
of Λ; call this matrix Λ(1/2). We have Λ(1/2)Λ(1/2) = Λ and (Λ(1/2))T = Λ(1/2).
Then we have that

S = (UΛ(1/2))(Λ(1/2)UT ) = (UΛ(1/2))(UΛ(1/2))T

so we can factor S into the form XX T by computing the eigenvectors and eigen-
values.

17.1.1 The Singular Value Decomposition

For any m× p matrix X , it is possible to obtain a decomposition

X = UΣVT

where U is m ×m, V is p × p, and Σ is m× p and is diagonal. If you don’t recall
what a diagonal matrix looks like when the matrix isn’t square, it’s simple. All
entries are zero, except the i, i entries for i in the range 1 to min(m, p). So if Σ is
tall and thin, the top square is diagonal and everything else is zero; if Σ is short
and wide, the left square is diagonal and everything else is zero. Both U and V are
orthonormal (i.e. UUT = I and VVT = I).

Notice that there is a relationship between forming an SVD and diagonalizing
a matrix. In particular, X TX is symmetric, and it can be diagonalized as

X TX = VΣTΣVT .

Similarly, XX T is symmetric, and it can be diagonalized as

XX T = UΣΣTU .
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17.1.2 Approximating A Symmetric Matrix

Assume we have a k × k symmetric matrix T , and we wish to construct a matrix
A that approximates it. We require that (a) the rank of A is precisely r < k and
(b) the approximation should minimize the Frobenius norm, that is,

||(T − A) ||F 2
=
∑

ij

(Tij −Aij)
2.

It turns out that there is a straightforward construction that yields A.
The first step is to notice that if U is orthonormal and M is any matrix, then

||UM||F = ||MU ||F = ||M||F .

This is true because U is a rotation (as is UT = U−1), and rotations do not change
the length of vectors. So, for example, if we write M as a table of row vectors M =
[m1,m2, ...mk], then UM = [Um1,Um2, ...Umk]. Now ||M||F 2

=
∑k

j=1 ||mj ||2, so
||UM||F 2 =

∑k
i=1 ||Umk ||2. But rotations do not change lengths, so ||Umk ||2 =

||mk ||2, and so ||UM||F = ||M||F . To see the result for the case of MU , just think
of M as a table of row vectors.

Notice that, if U is the orthonormal matrix whose columns are eigenvectors
of T , then we have

||(T − A) ||F 2
= ||UT (T − A)U ||F

2
.

Now write Λr for UTAU , and Λ for the diagonal matrix of eigenvalues of T . Then
we have

||(T − A) ||F 2
= ||Λ− ΛA ||F 2

,

an expression that is easy to solve for ΛA. We know that Λ is diagonal, so the best
ΛA is diagonal, too. The rank of A must be r, so the rank of ΛA must be r as well.
To get the best ΛA, we keep the r largest diagonal values of Λ, and set the rest
to zero; ΛA has rank r because it has only r non-zero entries on the diagonal, and
every other entry is zero.

Now to recover A from ΛA, we know that UTU = UUT = I (remember, I is
the identity). We have ΛA = UTAU , so

A = UΛAUT .

We can clean up this representation in a useful way. Notice that only the first r
columns of U (and the corresponding rows of UT ) contribute to A. The remaining
k − r are each multiplied by one of the zeros on the diagonal of ΛA. Remember
that, by convention, Λ was sorted so that the diagonal values are in descending
order (i.e. the largest value is in the top left corner). We now keep only the top
left r × r block of ΛA, which we write Λr. We then write Ur for the k × r matrix
consisting of the first r columns of U . Then

A = UrΛrUT

This is so useful a result, I have displayed it in a box; you should remember it.
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Procedure: 17.1 Approximating a symmetric matrix with a low rank
matrix

Assume we have a symmetric k× k matrix T . We wish to approximate
T with a matrix A that has rank r < k. Write U for the matrix
whose columns are eigenvectors of T , and Λ for the diagonal matrix
of eigenvalues of A (so AU = UΛ). Remember that, by convention, Λ
was sorted so that the diagonal values are in descending order (i.e. the
largest value is in the top left corner).
Now construct Λr from Λ by setting the k − r smallest values of Λ to
zero, and keeping only the top left r× r block. Construct Ur, the k× r
matrix consisting of the first r columns of U . Then

A = UrΛrUT
r

is the best possible rank r approximation to T in the Frobenius norm.

Now if A is positive semidefinite (i.e. if at least the r largest eigenvalues of
T are non-negative), then we can factor A as in the previous section. This yields a
procedure to approximate a symmetric matrix by factors. This is so useful a result,
I have displayed it in a box; you should remember it.

Procedure: 17.2 Approximating a symmetric matrix with low dimen-
sional factors

Assume we have a symmetric k× k matrix T . We wish to approximate
T with a matrix A that has rank r < k. We assume that at least the
r largest eigenvalues of T are non-negative. Write U for the matrix
whose columns are eigenvectors of T , and Λ for the diagonal matrix
of eigenvalues of A (so AU = UΛ). Remember that, by convention, Λ
was sorted so that the diagonal values are in descending order (i.e. the
largest value is in the top left corner).
Now construct Λr from Λ by setting the k − r smallest values of Λ

to zero and keeping only the top left r × r block. Construct Λ
(1/2)
r

by replacing each diagonal element of Λ with its positive square root.
Construct Ur, the k × r matrix consisting of the first r columns of U .
Then write V = (UrΛ

(1/2)
r )

A = VVT

is the best possible rank r approximation to T in the Frobenius norm.
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Error functions and Gaussians: The error function is defined by

erf(x) =
2√
π

∫ x

0

e−t2dt

and programming environments can typically evaluate the error function. This fact
is made useful to us by a simple change of variables. We get

1√
2π

∫ x

0

e
−u2

2 du =
1√
π

∫ x√
2

0

e−t2dt =
1

2
erf

(

x√
2

)

.

A particularly useful manifestation of this fact comes by noticing that

1√
2π

∫ 0

−∞
e

−t2

2 dt = 1/2

(because 1√
2π

e
−u2

2 is a probability density function, and is symmetric about 0). As

a result, we get
1√
2π

∫ x

−∞
e

−t2

2 dt = 1/2(1 + erf

(

x√
2

)

).

Inverse error functions: We sometimes wish to know the value of x such
that

1√
2π

∫ x

−∞
e

−t2

2 dt = p

for some given p. The relevant function of p is known as the probit function or
the normal quantile function. We write

x = Φ(p).

The probit function Φ can be expressed in terms of the inverse error function.
Most programming environments can evaluate the inverse error function (which is
the inverse of the error function). We have that

Φ(p) =
√
2erf−1(2p− 1).

One problem we solve with some regularity is: choose u such that
∫ u

−u

1√
2π

exp (−x2/2)dx = p.

Notice that

p

2
=

1√
2π

∫ u

0

e
−t2

2 dt

=
1

2
erf

(

u√
2

)

so that
u =

√
2erf−1(p).
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