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CHAPTER 1

Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class
label for them. There could be two, or many, classes. Classifiers are immensely
useful, and find wide application, because many problems are naturally classification
problems. For example, if you wish to determine whether to place an advert on a
web-page or not, you would use a classifier (i.e. look at the page, and say yes or
no according to some rule). As another example, if you have a program that you
found for free on the web, you would use a classifier to decide whether it was safe
to run it (i.e. look at the program, and say yes or no according to some rule). As
yet another example, credit card companies must decide whether a transaction is
good or fraudulent.

All these examples are two class classifiers, but in many cases it is natural
to have more classes. You can think of sorting laundry as applying a multi-class
classifier. You can think of doctors as complex multi-class classifiers: a doctor
accepts a set of features (your complaints, answers to questions, and so on) and
then produces a response which we can describe as a class. The grading procedure
for any class is a multi-class classifier: it accepts a set of features — performance
in tests, homeworks, and so on — and produces a class label (the letter grade).

Definition: 1.1 Classifier

A classifier is a procedure that accepts a set of features and produces a
label.

1.1 CLASSIFICATION: THE BIG IDEAS

Classifiers are built by taking a set of labeled examples and using them to come
up with a procedure that assigns a label to any new example. In the general
problem, we have a training dataset of examples (x;,y;). For the i’th example,
x; represents the values taken by a collection of features. In the simplest case, x;
would be a vector of real numbers. In some cases, x; will contain categorical data
or even unobserved values. Although x; isn’t guaranteed to be a vector, it’s usually
referred to as a feature vector. The y; are labels giving the type of the object
that generated the example. We will use the labelled examples to come up with a
classifier.
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1.1.1 The Error Rate

We need to summarize the behavior of a classifier, so we can choose one that
behaves well. Two values that are widely used are the error or total error rate
(the percentage of classification attempts that gave the wrong answer) and the
accuracy (the percentage of classification attempts that give the right answer).

For most practical cases, the best choice of classifier is guaranteed to make
mistakes. As an example, consider an alien who tries to classify humans into male
and female, using only height as a feature. However the alien’s classifier uses that
feature, it will make mistakes. This is because the classifier must choose, for each
value of height, whether to label the humans with that height male or female. But
for the vast majority of heights, there are some males and some females with that
height, and so the alien’s classifier must make some mistakes.

The example shows we are not guaranteed that a particular feature vector x
always appears with the same label. We should think of labels as appearing with
some probability conditioned on the observations, P(y|x). If we knew this (which
we seldom do), we could use it to compute the expected error rate for any particular
rule. If there are parts of the feature space where P(x) is relatively large (so we
expect to see observations of that form) and where P(y|x) has relatively large values
for more than one label, even the best possible classifier will have a high error rate.
The minimum expected error rate obtained with the best possible classifier applied
to a particular problem is known as the Bayes risk for that problem. In most cases,
it is hard to know what the Bayes risk is, because to compute it requires access to
information that isn’t available (the posterior probability of a class conditioned on
the feature vector, for one thing).

1.1.2  Overfitting

Choosing and evaluating a classifier takes some care. What matters is not the
classifier’s error on the training data, but the error on future test data. For example,
we might use a set of credit card records to make a classifier that predicts whether
a transaction is fraudulent or not. This classifier is only useful if we can use it
successfully on future examples, where we might never know the true label.

Classifiers that have small training error might not have small test error. One
example of this problem is the (silly) classifier that takes any data point and, if it is
the same as a point in the training set, emits the class of that point and otherwise
chooses randomly between the classes. This has zero training error, but might have
large test error.

Test error is usually worse than training error, because the classification pro-
cedure is chosen to do well on the training data. This effect is sometimes called
overfitting. Other names include selection bias, because the training data has
been selected and so isn’t exactly like the test data, and generalizing badly, be-
cause the classifier must generalize from the training data to the test data. The
effect occurs because the classifier has been trained to perform well on the training
dataset, and the training dataset is not the same as the test dataset. First, it is
quite likely smaller. Second, it might be biased through a variety of accidents. This
means that small training error may have to do with quirks of the training dataset
that don’t occur in other sets of examples. One consequence of overfitting is that
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classifiers should always be evaluated on data that was not used in training.

Remember this: Classifiers should always be evaluated on data that
was not used in training.

1.1.3 Cross-Validation

Now assume that we want to estimate the error rate of the classifier on test data.
We cannot estimate the error rate of the classifier using data that was used to train
the classifier, because the classifier has been trained to do well on that data, which
will mean our error rate estimate will be too low. An alternative is to separate
out some training data to form a validation set, then train the classifier on the
rest of the data, and evaluate on the validation set. This has the difficulty that
the classifier will not be the best estimate possible, because we have left out some
training data when we trained it. This issue can become a significant nuisance when
we are trying to tell which of a set of classifiers to use — did the classifier perform
poorly on validation data because it is not suited to the problem representation or
because it was trained on too little data?

We can resolve this problem with cross-validation, which involves repeat-
edly: splitting data into training and validation sets uniformly and at random,
training a classifier on the training set, evaluating it on the validation set, and
then averaging the error over all splits. This allows an estimate of the likely fu-
ture performance of a classifier, at the expense of substantial computation. You
should notice that cross-validation, in some sense, looks at the sensitivity of the
classifier to a change in the training set. The most usual form of this algorithm
involves omitting single items from the dataset and is known as leave-one-out
cross-validation.

1.1.4 s the Classifier Working Well?

The error rate of a classifier is not that meaningful on its own. There might be some
other classifier with a better error rate. Furthermore, there might be some structure
in the errors that suggests ways to improve the classifier. The simplest comparison is
to a know-nothing strategy. Imagine classifying the data without using the feature
vector at all — how well does this strategy do? If each of the C' classes occurs with
the same frequency, then it’s enough to label the data by choosing a label uniformly
and at random, and the error rate is 1 — 1/C. If one class is more common than
the others, the lowest error rate is obtained by labelling everything with that class.
This comparison is often known as comparing to chance. Further comparisons
can be obtained by building several different classifiers, and seeing which has the
lowest error rate.

It is very common to deal with data where there are only two labels. You
should keep in mind this means the highest possible error rate is 50% — if you have
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a classifier with a higher error rate, you can improve it by switching the outputs. If
one class is much more common than the other, training becomes more complicated
because the best strategy — labelling everything with the common class — becomes
hard to beat.

Analyzing performance involves looking at more than just the error rate. For a
two-class classifier and a 0-1 loss function, one can report the false positive rate
(the percentage of negative test data that was classified positive) and the false
negative rate (the percentage of positive test data that was classified negative).
Note that it is important to provide both, because a classifier with a low false
positive rate tends to have a high false negative rate, and vice versa. As a result, you
should be suspicious of reports that give one number but not the other. Alternative
numbers that are reported sometimes include the sensitivity (the percentage of
true positives that are classified positive) and the specificity (the percentage of
true negatives that are classified negative).

Evaluating a multi-class classifier is more complex than evaluating a binary
classifier. A multi-class classifier can make many more kinds of mistake than a
binary classifier can. If the total error rate is low enough, or the accuracy is high
enough, there’s not much to worry about. But if it’s not, you can look at the class
confusion matrix to see what’s going on.

Predict | Predict | Predict | Predict | Predict | Class

0 1 2 3 4 error

True 0 151 7 2 3 1 7.9%
True 1 32 5 9 9 0 91%
True 2 10 9 7 9 1 81%
True 3 6 13 9 5 2 86%
True 4 2 3 2 6 0 100%

TABLE 1.1: The class confusion matrix for a multiclass classifier. Further details
about the dataset and this example appear in worked example

Table [[L1] gives an example. This is a class confusion matrix from a classifier
built on a dataset where one tries to predict the degree of heart disease from a col-
lection of physiological and physical measurements. There are five classes (0...4).
The 4, j'th cell of the table shows the number of data points of true class ¢ that
were classified to have class j. As I find it hard to recall whether rows or columns
represent true or predicted classes, I have marked this on the table. For each row,
there is a class error rate, which is the percentage of data points of that class
that were misclassified. The first thing to look at in a table like this is the diagonal;
if the largest values appear there, then the classifier is working well. This clearly
isn’t what is happening for table [Tl Instead, you can see that the method is very
good at telling whether a data point is in class 0 or not (the class error rate is
rather small), but cannot distinguish between the other classes. This is a strong
hint that the data can’t be used to draw the distinctions that we want. It might
be a lot better to work with a different set of classes.
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1.2 CLASSIFYING WITH NEAREST NEIGHBORS

Assume we have a set of N example points x;. These points come with their class
labels, which we write as y;; thus, our dataset can be written as

{(Xl,yl)a R (XNayN)}'

We wish to predict the label y for any point x. Generally we expect that if two
points are close enough, then they will have the same label. This suggests a really
effective strategy. If you want to classify a data item (sometimes called a query
point), find the closest example, and report the class of that example. Alternatively,
you could find the closest k& examples, and vote.

How well can we expect this strategy to work? A precise analysis would take
us way out of our way, but simple reasoning is informative. Assume we have only
two labels to deal with, and that we use only a single nearest neighbor. Around
each example point x; is a cell of points to which our classifier gives the same
label as x;. If we have enough examples, most of these cells are small. In places
where P(y = 1]x) is high, almost every example will have the label 1, and all the
corresponding cells will have that label, too, and so the error rate will be low. In
regions where P(y = 1|x) is about the same as P(y = —1|x), there will be about
as many examples (and so, cells) with label 1 as with label —1. This means that
in these regions the classifier will tend to make mistakes more often, as it should.
Using a great deal more of this kind of reasoning, nearest neighbors can be shown
to produce an error that is no worse than twice the best error rate, if the method
has enough examples. There is no prospect of seeing enough examples in practice
for this result to apply.

One important generalization is to find the k£ nearest neighbors, then choose
a label from those. A (k,l) nearest neighbor classifier finds the k example points
closest to the point being considered, and classifies this point with the class that has
the highest number of votes, as long as this class has more than [ votes (otherwise,
the point is classified as unknown). In practice, one seldom uses more than three
nearest neighbors. Finding the k£ nearest points for a particular query can be
difficult, and Section 7?7 reviews this point.

There are three practical difficulties in building nearest neighbor classifiers.
You need a lot of labelled examples. You need to be able to find the nearest
neighbors for your query point. And you need to use a sensible choice of distance.
For features that are obviously of the same type, such as lengths, the usual metric
may be good enough. But what if one feature is a length, one is a color, and one
is an angle? One possibility is to whiten the features (section [[T.1]). This may be
hard if the dimension is so large that the covariance matrix is hard to estimate. It is
almost always a good idea to scale each feature independently so that the variance
of each feature is the same, or at least consistent; this prevents features with very
large scales dominating those with very small scales. Notice that nearest neighbors
(fairly obviously) doesn’t like categorical data. If you can’t give a clear account
of how far apart two things are, you shouldn’t be doing nearest neighbors. It is
possible to fudge this point a little, by (say) putting together a distance between
the levels of each factor, but it’s probably unwise.

Nearest neighbors is wonderfully flexible about the labels the classifier pre-
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dicts. Nothing changes when you go from a two-class classifier to a multi-class
classifier.

Cross-validation is straightforward with a nearest neighbor classifier. Split
the labelled training data into two pieces, a (typically large) training set and a
(typically small) validation set. Now take each element of the validation set and
label it with the label of the closest element of the training set. Compute the
fraction of these effects that produce an error (the true label and predicted labels
differ). Now repeat this for a different split, and average the errors over splits.
With care, the code you’ll write is shorter than this description.

Worked example 1.1 Classifying using nearest neighbors

Build a nearest neighbor classifier to classify the digit data originally con-
structed by Yann Lecun. You can find it at several places. The original dataset
is at http://yann.lecun.com/exdb/mnist/. The version I used was used for a
Kaggle competition (so I didn’t have to decompress Lecun’s original format).
I found it at http://www.kaggle.com/c/digit-recognizer.

Solution: As you'd expect, R has nearest neighbor code that seems quite
good (I haven’t had any real problems with it, at least). There isn’t really all
that much to say about the code. I used the R FNN package. There is sample
code in listing ?7?7. I trained on 1000 of the 42000 examples, so you could see
how in the code. I tested on the next 200 examples. For this (rather small)
case, I found the following class confusion matrix

0|1 21314156 | 718]9
0112, 00|10} 0] 0]0]0]0]O0
110204 (10| 1]0]|2]2]|1
210101201 ]0]0]0]0]0]O0
310100 (|12 0] 0]0]01| 4]0
4101000180 0]0]1 1
5010000190 |0]1]O0
617000 ]0]O0]|18]01|0]O0
71070 1]10]0]0]0]19| 0] 2
800|100 ]0|0|O0]16]O0
9100023101 1|14

There are no class error rates here, because I couldn’t recall the magic line of
R to get them. However, you can see the classifier works rather well for this
case.

Remember this: Nearest neighbor classifiers are often very effective.
They can predict any kind of label. You do need to be careful to have enough
data, and to have a meaningful distance function.
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1.3 CLASSIFYING WITH NAIVE BAYES

One straightforward source of a classifier is a probability model. For the moment,
assume we know p(y|x) for our data. Assume also that all errors in classification
are equally important. Then the following rule produces smallest possible expected
classification error rate:

For a test example x, report the class y that has the highest value of
p(y|x). If the largest value is achieved by more than one class, choose
randomly from that set of classes.

Usually, we do not have p(y|x). If we have p(x|y) (often called either a
likelihood or class conditional probability), and p(y) (often called a prior)
then we can use Bayes’ rule to form

_ pxly)p(y)

(the posterior). This isn’t much help in this form, but write z; for the j’th com-
ponent of x. Now assume that features are conditionally independent conditioned
on the class of the data item. Our assumption is

p(x|y) = Hp(:vily)-

It is very seldom the case that this assumption is true, but it turns out to be fruitful
to pretend that it is. This assumption means that

p(x|y)p(y)
p(x)
I p(zily)p(y)

p(x)

x Hp(wily)p(y)-

plylx) =

Now to make a decision, we need to choose the class that has the largest value
of p(y|x). In turn, this means we need only know the posterior values up to scale
at x, so we don’t need to estimate p(x). In the case of where all errors have the
same cost, this yields the rule

choose y such that [], p(z;|y)p(y) is largest.

We still need models for p(z;|y) for each x;. It turns out that simple paramet-
ric models work really well here. For example, one could fit a normal distribution
to each z; in turn, for each possible value of y, using the training data. The logic
of the measurements might suggest other distributions, too. If one of the x;’s was
a count, we might fit a Poisson distribution. If it was a 0-1 variable, we might fit a
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Bernoulli distribution. If it was a numeric variable that took one of several values,
then we might use a multinomial model.

Naive bayes is particularly good when there are a large number of features,
but there are some things to be careful about. You can’t actually multiply a
large number of probabilities and expect to get an answer that a floating point
system thinks is different from zero. Instead, you should add the log probabilities.
Notice that the logarithm function has one nice property: it is monotonic, meaning
that a > b is equivalent to loga > logb. In turn, this means you don’t need
to exponentiate when you've added up the log probabilities. If, for some reason,
you need to know the values of the probabilities, you should not just add up all
the log probabilities then exponentiate, or else you will find that each class has a
posterior probability of zero. Instead, subtract the largest log from all the others,
then exponentiate; you will obtain a vector proportional to the class probabilities,
where the largest element has the value 1.

The usual way to find a model of p(y) is to count the number of training
examples in each class, then divide by the number of classes. If there are some
classes with very little data, then the classifier is likely to work poorly, because you
will have trouble getting reasonable estimates of the parameters for the p(a;|y).

Worked example 1.2 Classifying breast tissue samples

The “breast tissue” dataset at https://archive.ics.uci.edu/ml/datasets/
Breast+ Tissue contains measurements of a variety of properties of six differ-
ent classes of breast tissue. Build and evaluate a naive bayes classifier to
distinguish between the classes automatically from the measurements.

Solution: The main difficulty here is finding appropriate packages, under-
standing their documentation, and checking they’re right, unless you want to
write the source yourself (which really isn’t all that hard). I used the R package
caret to do train-test splits, cross-validation, etc. on the naive bayes classifier
in the R package k1aR. I separated out a test set randomly (approx 20% of the
cases for each class, chosen at random), then trained with cross-validation on
the remainder. The class-confusion matrix on the test set was:

Prediction | adi car con fad gla mas
adi 2 0 0 0 0 0
car 0 3 0 0 0 1
con 2 0 2 0 0 0
fad 0 0 0 0 1 0
gla 0 0 0 0 2 1
mas 0 1 0 ) 0 1

which is fairly good. The accuracy is 52%. In the training data, the classes are
nearly balanced and there are six classes, meaning that chance is about 17%.
These numbers, and the class-confusion matrix, will vary with test-train split.
I have not averaged over splits, which would be the next thing.
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Remember this: Naive bayes classifiers are straightforward to build,
and very effective. Dealing with missing data is easy. Experience has shown
they are particularly effective at high dimensional data.

1.3.1 Missing Data

Missing data occurs when some values in the training data are unknown. This can
happen in a variety of ways. Someone didn’t record the value; someone recorded
it incorrectly, and you know the value is wrong but you don’t know what the right
one is; the dataset was damaged in storage or transmission; instruments failed;
and so on. This is quite typical of data where the feature values are obtained by
measuring effects in the real world. It’s much less common where the feature values
are computed from signals — for example, when one tries to classify digital images,
or sound recordings.

Missing data can be a serious nuisance in classification problems, because
many methods cannot handle incomplete feature vectors. If there are relatively few
incomplete feature vectors, one could just drop them and proceed. Naive bayes is
rather good at handling data where there are many incomplete feature vectors in
quite a simple way. For example, assume for some i, we wish to fit p(z;|y) with a
normal distribution. We need to estimate the mean and standard deviation of that
normal distribution (which we do with maximum likelihood, as one should). If not
every example has a known value of x;, this really doesn’t matter; we simply omit
the unknown number from the estimate. Write z; ; for the value of x; for the j’th
example. To estimate the mean, we form

Zjecases with known values 74,
number of cases with known values

and so on.

Dealing with missing data during classification is easy, too. We need to look
for the y that produces the largest value of ), log p(z;|y). We can’t evaluate p(z;|y)
if the value of that feature is missing - but it is missing for each class. We can just
leave that term out of the sum, and proceed. This procedure is fine if data is
missing as a result of “noise” (meaning that the missing terms are independent of
class). If the missing terms depend on the class, there is much more we could do
— for example, we might build a model of the class-conditional density of missing
terms.

Notice that if some values of a discrete feature z; don’t appear for some class,
you could end up with a model of p(x;|y) that had zeros for some values. This almost
inevitably leads to serious trouble, because it means your model states you cannot
ever observe that value for a data item of that class. This isn’t a safe property:
it is hardly ever the case that not observing something means you cannot observe
it. A simple, but useful, fix is to add one to all small counts. More sophisticated
methods are available, but well beyond our scope.
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1.4 THE SUPPORT VECTOR MACHINE

Assume we have a set of N example points x; that belong to two classes, which we
indicate by 1 and —1. These points come with their class labels, which we write as
y;; thus, our dataset can be written as

{(Xl,yl)a R (XNayN)}'

We wish to predict the sign of y for any point x. We will use a linear classifier, so
that for a new data item x, we will predict

sign(a-x+b)

and the particular classifier we use is given by our choice of a and b.

You should think of a and b as representing a hyperplane, given by the points
where a - x + b = 0. Notice that the magnitude of a - x + b grows as the point x
moves further away from the hyperplane. This hyperplane separates the positive
data from the negative data, and is an example of a decision boundary. When
a point crosses the decision boundary, the label predicted for that point changes.
All classifiers have decision boundaries. Searching for the decision boundary that
yields the best behavior is a fruitful strategy for building classifiers.

Example: 1.1 A linear model with a single feature

Assume we use a linear model with one feature. Then the model has
the form yfp ) = sign(az; +b). For any particular example which has
the feature value x*, this means we will test whether z* is larger than,
or smaller than, —b/a.

Example: 1.2 A linear model with two features

Assume we use a linear model with two features. Then the model
has the form yZ(p ) = sign(a’x; + b). The sign changes along the line
a’x +b = 0. You should check that this is, indeed, a line. On one
side of this line, the model makes positive predictions; on the other,
negative. Which side is which can be swapped by multiplying a and b
by —1.

This family of classifiers may look bad to you, and it is easy to come up with
examples that it misclassifies badly. In fact, the family is extremely strong. First,
it is easy to estimate the best choice of rule for very large datasets. Second, linear
classifiers have a long history of working very well in practice on real data. Third,
linear classifiers are fast to evaluate.

In practice, examples that are classified badly by the linear rule usually are
classified badly because there are too few features. Remember the case of the alien
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who classified humans into male and female by looking at their heights; if that
alien had looked at their chromosomes as well, the error rate would be small. In
practical examples, experience shows that the error rate of a poorly performing
linear classifier can usually be improved by adding features to the vector x.

1.4.1 Choosing a Classifier with the Hinge Loss

We will choose a and b by choosing values that minimize a cost function. We will
adopt a cost function of the form:

Training error cost + penalty term.

For the moment, we will ignore the penalty term and focus on the training error
cost. Write
Yi = aTxl- + b

for the value that the linear function takes on example i. Write C(v;,y;) for a
function that compares v; with y;. The training error cost will be of the form

N

(1/N)ZC(%',yi)-

i=1

A good choice of C should have some important properties. If «; and y; have
different signs, then C' should be large, because the classifier will make the wrong
prediction for this training example. Furthermore, if v; and y; have different signs
and ~; has large magnitude, then the classifier will very likely make the wrong
prediction for test examples that are close to x;. This is because the magnitude of
(a-x+b) grows as x gets further from the decision boundary. So C should get
larger as the magnitude of 7; gets larger in this case.

If ; and y; have the same signs, but +; has small magnitude, then the classifier
will classify x; correctly, but might not classify points that are nearby correctly.
This is because a small magnitude of +; means that x; is close to the decision
boundary. So C should not be zero in this case. Finally, if 7; and y; have the same
signs and ~; has large magnitude, then C' can be zero because x; is on the right
side of the decision boundary and so are all the points near to x;.

The choice

C(yi,vi) = max(0,1 — y;v;)

has these properties. If y;v; > 1 (so the classifier predicts the sign correctly and
x; is far from the boundary) there is no cost. But in any other case, there is a
cost. The cost rises if x; moves toward the decision boundary from the correct side,
and grows linearly as x; moves further away from the boundary on the wrong side
(Figure[[T)). This means that minimizing the loss will encourage the classifier to (a)
make strong positive (or negative) predictions for positive (or negative) examples
and (b) for examples it gets wrong, make the most positive (negative) prediction
that it can. This choice is known as the hinge loss. A linear classifier trained with
the hinge loss is known as a support vector machine or SVM.

The hinge loss has one odd property. Assume that the pair a, b correctly
classifies all training examples, so that y;(a’x; + b) > 0. Then we can always
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FIGURE 1.1: The hinge loss, plotted for the case y; = 1. The horizontal variable is
the v; = a-x; + b of the text. Notice that giving a strong negative response to this
positive example causes a loss that grows linearly as the magnitude of the response
grows. Notice also that giving an insufficiently positive response also causes a loss.
Giving a strongly positive response is free.

ensure that the hinge loss for the dataset is zero, by scaling a and b, because you
can choose a scale so that yj(a’z; +b) > 1 for every example index j. This
scale hasn’t changed the result of the classification rule on the training data. But
it should worry you, because it means we can’t choose the classifier parameters
uniquely.

Now think about future examples. We don’t know what their feature values
will be, and we don’t know their labels. But we do know that the hinge loss for an
example with feature vector x and unknown label y will be max(0,1—y [a”x + b]).
Imagine we classify this example wrongly. If |a| is small, then at least the hinge
loss will be small. By this argument, we would like to achieve a small value of the
hinge loss using a a that has small length. It is much simpler to use the squared
length (i.e a”a = |a]?) than the length, and doing so is now usual.

The way to do this is to minimize

N
S(a,b;A) = [(1/N) > max(0,1—yi(a-x; +)) +%aTa
=1

where ) is some weight that balances the importance of a small hinge loss against
the importance of a small |a|. There are now two problems to solve. First, assume
we know A; we will need to find a and b that minimize S(a,b; \). Second, we will
need to estimate .

1.4.2 Finding a Minimum: General Points

I will first summarize general recipes for finding a minimum. Write u = [a, b] for the
vector obtained by stacking the vector a together with b. We have a function g(u),
and we wish to obtain a value of u that achieves the minimum for that function.
Sometimes we can solve this problem in closed form by constructing the gradient
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and finding a value of u the makes the gradient zero. This happens mainly for
specially chosen problems that occur in textbooks. For practical problems, we tend
to need a numerical method.

Typical methods take a point ul®, update it to uC*+, then check to see
whether the result is a minimum. This process is started from a start point. The
choice of start point may or may not matter for general problems, but for our
problem it won’t matter. The update is usually obtained by computing a direction
p( such that for small values of h, g(u®® + hp®) is smaller than g(u?). Such a
direction is known as a descent direction. We must then determine how far to
go along the descent direction, a process known as line search.

One method to choose a descent direction is gradient descent, which uses
the negative gradient of the function. Recall our notation that

and that

vg — Oua

We can write a Taylor series expansion for the function g(u(i) + hp(i)). We have
that
g(u® +hp) = gu®) + 1 [(Vg)"p | + O(h?)

This means that we can expect that if
p) = —Vg(u),

we expect that, at least for small values of h, g(u® +hp?) will be less than g(u®).
This works (as long as g is differentiable, and quite often when it isn’t) because g
must go down for at least small steps in this direction.

1.4.3 Finding a Minimum: Stochastic Gradient Descent

Assume we wish to minimize some function g(u) = go(u) + (1/N) Zil gi(u), as a
function of u. Gradient descent would require us to form

N
~Vg(u) = - <V90(11) + (1/N) Z in(“))
i=1

and then take a small step in this direction. But if NV is large, this is unattractive,
as we might have to sum a lot of terms. This happens a lot in building classifiers,
where you might quite reasonably expect to deal with millions of examples. For
some cases, there might be trillions of examples. Touching each example at each
step really is impractical.
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Instead, assume that, at each step, we choose a number k in the range 1... N
uniformly and at random, and form

pr = — (Vgo(u) + Vgi(u))
and then take a small step along pi. Our new point becomes

(@)

al+) — 2 4 pp®,

where 7 is called the step size (or sometimes steplength or learning rate, even
though it isn’t the size or the length of the step we take, or a rate!). Here k is
known as the batch size. This is often chosen using considerations of computer
architecture (how many examples fit neatly into cache?) or of database design (how
many examples are recovered in one disk cycle?).

It is easy to show that

E[px] = Vg(u)

(where the expectation is over the random choice of k). This implies that if we take
many small steps along px, they should average out to a step backwards along the
gradient. This approach is known as stochastic gradient descent (because we're
not going along the gradient, but along a random vector which is the gradient only
in expectation). It isn’t obvious that stochastic gradient descent is a good idea.
Although each step is easy to take, we may need to take more steps. The question
is then whether we gain in the increased speed of the step what we lose by having
to take more steps. Not much is known theoretically, but in practice the approach
is hugely successful for training classifiers.

Choosing a steplength n takes some work. We can’t search for the step that
gives us the best value of g, because we don’t want to evaluate the function g (doing
so involves looking at each of the g; terms). Instead, we use a steplength that is
large at the start — so that the method can explore large changes in the values of
the classifier parameters — and small steps later — so that it settles down.

One useful strategy is to divide training into seasons. Each season is a block
of a fixed number of iterations. Each iteration is one of the steps given above,
with fixed steplength. However, the steplength changes from season to season. In
particular, in the r’'th season, the steplength is

(ry _ M
g r4+n

where m and n are constants chosen by experiment with small subsets of the dataset.
Often, but not always, the examples chosen are randomized by permuting the
dataset randomly, which means that you can tell how many steps are required
to have seen the whole dataset. An epoch is the number of steps required to have
passed through the whole dataset once.

One cannot really test whether stochastic gradient descent has converged to
the right answer. A better approach is to plot the error as a function of iteration on
a validation set. This should vary randomly, but generally go down as the training
proceeds. I have summarized this discussion in box [Tl You should be aware that
the recipe there admits many useful variations, though.
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Procedure: 1.1 Stochastic Gradient Descent

We have a dataset containing N pairs (x;,y;). Each z; is a d-
dimensional feature vector, and each y; is a label, either 1 or —1.
Choose a set of possible values of the regularization weight A\. We
wish to train a model that minimizes a cost function of the form
g(u) = Julu+(%) Zi\il gi(u). Separate the data into three sets: test,
training and validation. For each value of the regularization weight,
train a model, and evaluate the model on validation data. Keep the
model that produces the lowest error rate on the validation data, and
report its performance on the test data.

Train a model by choosing a fixed number of items per batch V;, a fixed
number of seasons N, and the number of steps per season Ny. Choose a
random start point, ug = [a, b]. For each season, first compute the step
size. In the r’th season, the step size is typically n = Hﬂn for constants
m and n chosen by small-scale experiments (you try training a model
with different values and see what happens). For the r’th season, choose
a subset of the training set for validation for that season. Now repeat
until the model has been updated Ny times:

e Take k steps. Each step is taken by selecting a N; data items
uniformly and at random. Write D for this set. We then compute

1

p= N (Z Vgi(u)> — \u,
i€D

and update the model by computing

Up41 = Up aF np

e Evaluate the current model by computing the accuracy on the
validation set for that season. Plot the accuracy as a function of
step number.

1.4.4 Example: Training an SVM with Stochastic Gradient Descent

I have summarized stochastic gradient descent in algorithm [[I but here is an
example in more detail. We need to choose a and b to minimize

N
C(a,b) = (1/N) Z max(0,1 —y; (a-x; + b)) + %aTa.

This is a support vector machine, because it uses hinge loss. For a support vector
machine, stochastic gradient descent is particularly easy. We have estimates a(™)
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and b of the classifier parameters, and we want to improve the estimates. We
pick the k’th example at random. We must now compute

\% (max(O, l—yp(a-xp+0)+ gaTa) .

Assume that y; (a-x; +b) > 1. In this case, the classifier predicts a score with
the right sign, and a magnitude that is greater than one. Then the first term is
zero, and the gradient of the second term is easy. Now if yi (a - x; +b) < 1, we can
ignore the max, and the first term is 1 — yi (a - x + b); the gradient is again easy.
But what if y; (a-x; +b) = 1?7 there are two distinct values we could choose for
the gradient, because the max term isn’t differentiable. It turns out not to matter
which term we choose (Figure ??), so we can write the gradient as

[)\Oa} if yp (a-xp,+0)>1
Pk =
{ Aa — yiX ] otherwise
—Yk

We choose a steplength 7, and update our estimates using this gradient. This yields:

At _ g _ Aa if yr(a-x, +b) >1
o T xa-— yrX otherwise

and
p(n+1) — p(n) { 0 ifyp(a-xx+0)>1
B - .
—yi otherwise

To construct figures, I downloaded the dataset at http://archive.ics.uci.edu/
ml/datasets/Adult. This dataset apparently contains 48, 842 data items, but I
worked with only the first 32, 000. Each consists of a set of numeric and categorical
features describing a person, together with whether their annual income is larger
than or smaller than 50K$. I ignored the categorical features to prepare these
figures. This isn’t wise if you want a good classifier, but it’s fine for an example.
I used these features to predict whether income is over or under 50K$. I split the
data into 5, 000 test examples, and 27,000 training examples. It’s important to
do so at random. There are 6 numerical features. I subtracted the mean (which
doesn’t usually make much difference) and rescaled each so that the variance was
1 (which is often very important). I used two different training regimes.

In the first training regime, there were 100 seasons. In each season, I applied
426 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees
a total of 42, 600 data items. This means that there is a high probability it has
touched each data item once (27, 000 isn’t enough, because we are sampling with
replacement, so some items get seen more than once). I chose 5 different values
for the regularization parameter and trained with a steplength of 1/(0.01 % e + 50),
where r is the season. At the end of each season, I computed a” a and the accuracy
(fraction of examples correctly classified) of the current classifier on the held out
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FIGURE 1.2: On the left, the magnitude of the weight vector a at the end of each
season for the first training regime described in the text. On the right, the accu-
racy on held out data at the end of each season. Notice how different choices of
reqularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of reqularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

test examples. Figure shows the results. You should notice that the accuracy
changes slightly each season; that for larger regularizer values a” a is smaller; and
that the accuracy settles down to about 0.8 very quickly.

In the second training regime, there were 100 seasons. In each season, I applied
50 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees a
total of 5,000 data items, and about 3,000 unique data items — it hasn’t seen the
whole training set. I chose 5 different values for the regularization parameter and
trained with a steplength of 1/(0.01 % r + 50), where 7 is the season. At the end
of each season, I computed a”’a and the accuracy (fraction of examples correctly
classified) of the current classifier on the held out test examples. Figure shows
the results. You should notice that the accuracy changes slightly each season; that
for larger regularizer values a’a is smaller; and that the accuracy settles down
to about 0.8 very quickly; and that there isn’t much difference between the two
training regimes. All of these points are relatively typical of stochastic gradient
descent with very large datasets.

Remember this:  Linear SVM’s are a go-to classifier. When you have
a binary classification problem, the first step should be to try a linear SVM.
There is an immense quantity of good software available.
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FIGURE 1.3: On the left, the magnitude of the weight vector a at the end of each
season for the second training regime described in the text. On the right, the
accuracy on held out data at the end of each season. Notice how different choices
of regularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of reqularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

1.4.5 Multi-Class Classification with SVMs

I have shown how one trains a linear SVM to make a binary prediction (i.e. predict
one of two outcomes). But what if there are three, or more, labels? In principle,
you could write a binary code for each label, then use a different SVM to predict
each bit of the code. It turns out that this doesn’t work terribly well, because an
error by one of the SVM’s is usually catastrophic.

There are two methods that are widely used. In the all-vs-all approach, we
train a binary classifier for each pair of classes. To classify an example, we present it
to each of these classifiers. Each classifier decides which of two classes the example
belongs to, then records a vote for that class. The example gets the class label with
the most votes. This approach is simple, but scales very badly with the number of
classes (you have to build O(N?) different SVM’s for N classes).

In the one-vs-all approach, we build a binary classifier for each class. This
classifier must distinguish its class from all the other classes. We then take the class
with the largest classifier score. One can think up quite good reasons this approach
shouldn’t work. For one thing, the classifier isn’t told that you intend to use the
score to tell similarity between classes. In practice, the approach works rather well
and is quite widely used. This approach scales a bit better with the number of
classes (O(N)).
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Remember this: It is straightforward to build a multi-class classifier
out of binary classifiers. Any decent SVM package will do this for you.

1.5 CLASSIFYING WITH RANDOM FORESTS

I described a classifier as a rule that takes a feature, and produces a class. One way
to build such a rule is with a sequence of simple tests, where each test is allowed
to use the results of all previous tests. This class of rule can be drawn as a tree
(Figure 77), where each node represents a test, and the edges represent the possible
outcomes of the test. To classify a test item with such a tree, you present it to
the first node; the outcome of the test determines which node it goes to next; and
so on, until the example arrives at a leaf. When it does arrive at a leaf, we label
the test item with the most common label in the leaf. This object is known as a
decision tree. Notice one attractive feature of this decision tree: it deals with
multiple class labels quite easily, because you just label the test item with the most
common label in the leaf that it arrives at when you pass it down the tree.

Figure shows a simple 2D dataset with four classes, next to a decision
tree that will correctly classify at least the training data. Actually classifying data
with a tree like this is straightforward. We take the data item, and pass it down
the tree. Notice it can’t go both left and right, because of the way the tests work.
This means each data item arrives at a single leaf. We take the most common
label at the leaf, and give that to the test item. In turn, this means we can build
a geometric structure on the feature space that corresponds to the decision tree.
I have illustrated that structure in figure [[L5] where the first decision splits the
feature space in half (which is why the term split is used so often), and then the
next decisions split each of those halves into two.

The important question is how to get the tree from data. It turns out that
the best approach for building a tree incorporates a great deal of randomness. As
a result, we will get a different tree each time we train a tree on a dataset. None of
the individual trees will be particularly good (they are often referred to as “weak
learners”). The natural thing to do is to produce many such trees (a decision
forest), and allow each to vote; the class that gets the most votes, wins. This
strategy is extremely effective.

1.5.1 Building a Decision Tree

There are many algorithms for building decision trees. We will use an approach
chosen for simplicity and effectiveness; be aware there are others. We will always
use a binary tree, because it’s easier to describe and because that’s usual (it doesn’t
change anything important, though). Each node has a decision function, which
takes data items and returns either 1 or -1.

We train the tree by thinking about its effect on the training data. We pass
the whole pool of training data into the root. Any node splits its incoming data
into two pools, left (all the data that the decision function labels 1) and right (ditto,
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FIGURE 1.4: This — the household robot’s guide to obstacles — is a typical decision
tree. I have labelled only one of the outgoing branches, because the other is the
negation. So if the obstacle moves, bites, bul isn’t furry, then it’s a toddler. In
general, an item is passed down the tree until it hits a leaf. It is then labelled with

the leaf’s label.

-1). Finally, each leaf contains a pool of data, which it can’t split because it is a
leaf.

Training the tree uses a straightforward algorithm. First, we choose a class of
decision functions to use at each node. It turns out that a very effective algorithm
is to choose a single feature at random, then test whether its value is larger than, or
smaller than a threshold. For this approach to work, one needs to be quite careful
about the choice of threshold, which is what we describe in the next section. Some
minor adjustments, described below, are required if the feature chosen isn’t ordinal.
Surprisingly, being clever about the choice of feature doesn’t seem add a great deal
of value. We won’t spend more time on other kinds of decision function, though
there are lots.

Now assume we use a decision function as described, and we know how to
choose a threshold. We start with the root node, then recursively either split the
pool of data at that node, passing the left pool left and the right pool right, or stop
splitting and return. Splitting involves choosing a decision function from the class
to give the “best” split for a leaf. The main questions are how to choose the best
split (next section), and when to stop.

Stopping is relatively straightforward. Quite simple strategies for stopping
are very good. It is hard to choose a decision function with very little data, so we
must stop splitting when there is too little data at a node. We can tell this is the
case by testing the amount of data against a threshold, chosen by experiment. If all
the data at a node belongs to a single class, there is no point in splitting. Finally,
constructing a tree that is too deep tends to result in generalization problems, so
we usually allow no more than a fixed depth D of splits. Choosing the best splitting
threshold is more complicated.

Figure shows two possible splits of a pool of training data. One is quite
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FIGURE 1.5: A straightforward decision tree, illustrated in two ways. On the left,
I have given the rules at each split; on the right, I have shown the data points in
two dimensions, and the structure that the tree produces in the feature space.

obviously a lot better than the other. In the good case, the split separates the pool
into positives and negatives. In the bad case, each side of the split has the same
number of positives and negatives. We cannot usually produce splits as good as
the good case here. What we are looking for is a split that will make the proper
label more certain.

Figure [ shows a more subtle case to illustrate this. The splits in this figure
are obtained by testing the horizontal feature against a threshold. In one case,
the left and the right pools contain about the same fraction of positive (’x’) and
negative ('0’) examples. In the other, the left pool is all positive, and the right pool
is mostly negative. This is the better choice of threshold. If we were to label any
item on the left side positive and any item on the right side negative, the error rate
would be fairly small. If you count, the best error rate for the informative split is
20% on the training data, and for the uninformative split it is 40% on the training
data.

But we need some way to score the splits, so we can tell which threshold is
best. Notice that, in the uninformative case, knowing that a data item is on the
left (or the right) does not tell me much more about the data than I already knew.
We have that p(1]left pool, uninformative) = 2/3 & 3/5 = p(1|parent pool) and
p(1|right pool, uninformative) = 1/2 ~ 3/5 = p(1|parent pool). For the informa-
tive pool, knowing a data item is on the left classifies it completely, and knowing
that it is on the right allows us to classify it an error rate of 1/3. The informative
split means that my uncertainty about what class the data item belongs to is signif-
icantly reduced if I know whether it goes left or right. To choose a good threshold,
we need to keep track of how informative the split is.
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FIGURE 1.6: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’xr’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’o’s, and all the points on the
right are ’x’s. This is an excellent choice of split — once we have arrived in a leaf,
everything has the same label. Compare this with the less informative split. We
started with a node that was half 'z’ and half 'o’, and now have two nodes each of
which is half 'z and half "o’ — this isn’t an improvement, because we do not know
more about the label as a result of the split.

1.5.2 Choosing a Split with Information Gain

Write P for the set of all data at the node. Write P; for the left pool, and P, for
the right pool. The entropy of a pool C scores how many bits would be required to
represent the class of an item in that pool, on average. Write n(i;C) for the number
of items of class ¢ in the pool, and N(C) for the number of items in the pool. Then
the entropy H(C) of the pool C is

n(i;C) n(i;C)
_zi: N 82 N

It is straightforward that H(P) bits are required to classify an item in the parent
pool P. For an item in the left pool, we need H(P;) bits; for an item in the right
pool, we need H(P,) bits. If we split the parent pool, we expect to encounter items
in the left pool with probability

N(Pp)
N(P)
and items in the right pool with probability

N(Pr)
N(P)

This means that, on average, we must supply

N(P)
(P)

H(P)) +

=
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FIGURE 1.7: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’xr’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’x’s, and two-thirds of the points
on the right are ’o’s. This means that knowing which side of the split a point lies
would give us a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are ’x’s and about half on the right are x’s
— knowing which side of the split a point lies is much less useful in deciding what
the label is.

bits to classify data items if we split the parent pool. Now a good split is one that
results in left and right pools that are informative. In turn, we should need fewer
bits to classify once we have split than we need before the split. You can see the
difference

N(P)
N(P)

N(P,)
N(P)

I(P,Pr;P)=H(P) — < H(P) + H(Pr))

as the information gain caused by the split. This is the average number of bits
that you don’t have to supply if you know which side of the split an example lies.
Better splits have larger information gain.

Recall that our decision function is to choose a feature at random, then test
its value against a threshold. Any data point where the value is larger goes to the
left pool; where the value is smaller goes to the right. This may sound much too
simple to work, but it is actually effective and popular. Assume that we are at
a node, which we will label k. We have the pool of training examples that have
reached that node. The i’th example has a feature vector x;, and each of these
feature vectors is a d dimensional vector.

We choose an integer j in the range 1...d uniformly and at random. We will
split on this feature, and we store j in the node. Recall we write xgj ) for the value
of the j’th component of the i'th feature vector. We will choose a threshold ty,
and split by testing the sign of xl(]) — t,. Choosing the value of tj, is easy. Assume
there are Nj examples in the pool. Then there are Ny — 1 possible values of g
that lead to different splits. To see this, sort the Nj, examples by z(/), then choose
values of ), halfway between example values (Figure[L8]). For each of these values,
we compute the information gain of the split. We then keep the threshold with the
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FIGURE 1.8: We search for a good splitting threshold by looking at values of the
chosen component that yield different splits. On the left, I show a small dataset
and its projection onto the chosen splitting component (the horizontal axis). For the
8 data points here, there are only 7 threshold values that produce interesting splits,
and these are shown as ’t’s on the axis. On the right, I show a larger dataset; in
this case, I have projected only a subset of the data, which results in a small set of
thresholds to search.

best information gain.

We can elaborate this procedure in a useful way, by choosing m features at
random, finding the best split for each, then keeping the feature and threshold
value that is best. It is important that m is a lot smaller than the total number of
features — a usual root of thumb is that m is about the square root of the total
number of features. It is usual to choose a single m, and choose that for all the
splits.

Now assume we happen to have chosen to work with a feature that isn’t
ordinal, and so can’t be tested against a threshold. A natural, and effective, strategy
is as follows. We can split such a feature into two pools by flipping an unbiased
coin for each value — if the coin comes up H, any data point with that value goes
left, and if it comes up 7', any data point with that value goes right. We chose this
split at random, so it might not be any good. We can come up with a good split by
repeating this procedure F' times, computing the information gain for each split,
then keeping the one that has the best information gain. We choose F' in advance,
and it usually depends on the number of values the categorical variable can take.

We now have a relatively straightforward blueprint for an algorithm, which I
have put in a box. It’s a blueprint, because there are a variety of ways in which it
can be revised and changed.
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Procedure: 1.2 Building a decision tree

We have a dataset containing N pairs (x;,y;). Each z; is a d-
dimensional feature vector, and each y; is a label. Call this dataset
a pool. Now recursively apply the following procedure:

e If the pool is too small, or if all items in the pool have the same
label, or if the depth of the recursion has reached a limit, stop.

e Otherwise, search the features for a good split that divides the
pool into two, then apply this procedure to each child.

We search for a good split by the following procedure:

e Choose a subset of the feature components at random. Typically,
one uses a subset whose size is about the square root of the feature
dimension.

e For each component of this subset, search for the best splitting
threshold. Do so by selecting a set of possible values for the
threshold, then for each value splitting the dataset (every data
item with a value of the component below the threshold goes left,
others go right), and computing the information gain for the split.
Keep the threshold that has the largest information gain.

A good set of possible values for the threshold will contain values that
separate the data “reasonably”. If the pool of data is small, you can
project the data onto the feature component (i.e. look at the values of
that component alone), then choose the N — 1 distinct values that lie
between two data points. If it is big, you can randomly select a subset
of the data, then project that subset on the feature component and
choose from the values between data points.

1.5.3 Forests

A single decision tree tends to yield poor classifications. One reason is because the
tree is not chosen to give the best classification of its training data. We used a
random selection of splitting variables at each node, so the tree can’t be the “best
possible”. Obtaining the best possible tree presents significant technical difficulties.
It turns out that the tree that gives the best possible results on the training data
can perform rather poorly on test data. The training data is a small subset of
possible examples, and so must differ from the test data. The best possible tree on
the training data might have a large number of small leaves, built using carefully
chosen splits. But the choices that are best for training data might not be best for
test data.

Rather than build the best possible tree, we have built a tree efficiently, but
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with number of random choices. If we were to rebuild the tree, we would obtain
a different result. This suggests the following extremely effective strategy: build
many trees, and classify by merging their results.

1.5.4 Building and Evaluating a Decision Forest

There are two important strategies for building and evaluating decision forests. I
am not aware of evidence strongly favoring one over the other, but different software
packages use different strategies, and you should be aware of the options. In one
strategy, we separate labelled data into a training and a test set. We then build
multiple decision trees, training each using the whole training set. Finally, we
evaluate the forest on the test set. In this approach, the forest has not seen some
fraction of the available labelled data, because we used it to test. However, each
tree has seen every training data item.

Procedure: 1.3 Building a decision forest

We have a dataset containing N pairs (x;,y;). FEach x; is a d-
dimensional feature vector, and each y; is a label. Separate the dataset
into a test set and a training set. Train multiple distinct decision trees
on the training set, recalling that the use of a random set of components
to find a good split means you will obtain a distinct tree each time.

In the other strategy, sometimes called bagging, each time we train a tree we
randomly subsample the labelled data with replacement, to yield a training set the
same size as the original set of labelled data. Notice that there will be duplicates
in this training set, which is like a bootstrap replicate. This training set is often
called a bag. We keep a record of the examples that do not appear in the bag (the
“out of bag” examples). Now to evaluate the forest, we evaluate each tree on its
out of bag examples, and average these error terms. In this approach, the entire
forest has seen all labelled data, and we also get an estimate of error, but no tree
has seen all the training data.

Procedure: 1.4 Building a decision forest using bagging

We have a dataset containing N pairs (x;,y;). FEach x; is a d-
dimensional feature vector, and each y; is a label. Now build k& boot-
strap replicates of the training data set. Train one decision tree on each
replicate.
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1.5.5 Classifying Data Items with a Decision Forest

Once we have a forest, we must classify test data items. There are two major
strategies. The simplest is to classify the item with each tree in the forest, then
take the class with the most votes. This is effective, but discounts some evidence
that might be important. For example, imagine one of the trees in the forest has a
leaf with many data items with the same class label; another tree has a leaf with
exactly one data item in it. One might not want each leaf to have the same vote.

Procedure: 1.5 Classification with a decision forest

Given a test example x, pass it down each tree of the forest. Now choose
one of the following strategies.

e Each time the example arrives at a leaf, record one vote for the
label that occurs most often at the leaf. Now choose the label
with the most votes.

e Each time the example arrives at a leaf, record N; votes for each of
the labels that occur at the leaf, where N; is the number of times
the label appears in the training data at the leaf. Now choose the
label with the most votes.

An alternative strategy that takes this observation into account is to pass the
test data item down each tree. When it arrives at a leaf, we record one vote for each
of the training data items in that leaf. The vote goes to the class of the training
data item. Finally, we take the class with the most votes. This approach allows
big, accurate leaves to dominate the voting process. Both strategies are in use, and
I am not aware of compelling evidence that one is always better than the other.
This may be because the randomness in the training process makes big, accurate
leaves uncommon in practice.
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Worked example 1.3 Classifying heart disease data

Build a random forest classifier to classify the “heart” dataset from the UC
Irvine machine learning repository. The dataset is at http://archive.ics.uci.edu/
ml/datasets/Heart+Disease. There are several versions. You should look at the
processed Cleveland data, which is in the file “processed.cleveland.data.txt”.

Solution: I used the R random forest package. This uses a bagging strategy.
This package makes it quite simple to fit a random forest, as you can see. In
this dataset, variable 14 (V14) takes the value 0, 1, 2, 3 or 4 depending on
the severity of the narrowing of the arteries. Other variables are physiological
and physical measurements pertaining to the patient (read the details on the
website). I tried to predict all five levels of variable 14, using the random forest
as a multivariate classifier. This works rather poorly, as the out-of-bag class
confusion matrix below shows. The total out-of-bag error rate was 45%.

Predict | Predict | Predict | Predict | Predict | Class

0 1 2 & 4 error

True 0 151 7 2 3 1 7.9%
True 1 32 5) 9 9 0 91%
True 2 10 9 7 9 1 81%
True 3 6 13 9 5 2 86%
True 4 2 3 2 6 0 100%

This is the example of a class confusion matrix from table [Tl Fairly clearly,
one can predict narrowing or no narrowing from the features, but not the
degree of narrowing (at least, not with a random forest). So it is natural to
quantize variable 14 to two levels, 0 (meaning no narrowing), and 1 (meaning
any narrowing, so the original value could have been 1, 2, or 3). I then built
a random forest to predict this from the other variables. The total out-of-bag
error rate was 19%, and I obtained the following out-of-bag class confusion
matrix

Predict | Predict | Class

0 1 error

True 0 138 26 16%
True 1 31 108 22%

Notice that the false positive rate (16%, from 26/164) is rather better than the
false negative rate (22%). Looking at these class confusion matrices, you might
wonder whether it is better to predict 0, ..., 4, then quantize. But this is not a
particularly good idea. While the false positive rate is 7.9%, the false negative
rate is much higher (36%, from 50/139). In this application, a false negative is
likely more of a problem than a false positive, so the tradeoff is unattractive.
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Remember this:  Random forests are straightforward to build, and very
effective. They can predict any kind of label. Good software implementa-
tions are easily available.
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1.6 YOU SHOULD

1.6.1 remember these definitions:

1.6.2 remember these terms:

batch sizd . . . . . . L 15

tochastic gradient descentl . . . . . . . .. .. 15
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1.6.3 remember these facts:

[Nearest neighbors are good andeasvl . . . ... 8

oodandeasyl . . .. ... . ... ..., 30

1.6.4 remember these procedures:

Stochastic Gradient Descentl . . . . . . . . . . ... 16
Building a. decision tred . . . . ... ... oL 26

1.6.5 be able to:

build a nearest neighbors classifier using your preferred software package, and
produce a cross-validated estimate of its error rate or its accuracy;

build a naive bayes classifier using your preferred software package, and pro-
duce a cross-validated estimate of its error rate or its accuracy;

build an SVM using your preferred software package, and produce a cross-
validated estimate of its error rate or its accuracy;

write code to train an SVM using stochastic gradient descent, and produce a
cross-validated estimate of its error rate or its accuracy;

and build a decision forest using your preferred software package, and produce
a cross-validated estimate of its error rate or its accuracy.
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PROGRAMMING EXERCISES

1.1.

1.2.

The UC Irvine machine learning data repository hosts a famous collection of
data on whether a patient has diabetes (the Pima Indians dataset), originally
owned by the National Institute of Diabetes and Digestive and Kidney Diseases
and donated by Vincent Sigillito. This can be found at http://archive.ics.uci.
edu/ml/datasets/Pima+Indians+Diabetes. This data has a set of attributes of
patients, and a categorical variable telling whether the patient is diabetic or
not. For several attributes in this data set, a value of 0 may indicate a missing
value of the variable.

(a) Build a simple naive Bayes classifier to classify this data set. You should
hold out 20% of the data for evaluation, and use the other 80% for training.
You should use a normal distribution to model each of the class-conditional
distributions. You should write this classifier yourself (it’s quite straight-
forward), but you may find the function createDataPartition in the R
package caret helpful to get the random partition.

(b) Now adjust your code so that, for attribute 3 (Diastolic blood pressure),
attribute 4 (Triceps skin fold thickness), attribute 6 (Body mass index),
and attribute 8 (Age), it regards a value of 0 as a missing value when
estimating the class-conditional distributions, and the posterior. R uses
a special number NA to flag a missing value. Most functions handle this
number in special, but sensible, ways; but you’ll need to do a bit of looking
at manuals to check. Does this affect the accuracy of your classifier?

(c) Now use the caret and klaR packages to build a naive bayes classifier
for this data, assuming that no attribute has a missing value. The caret
package does cross-validation (look at train) and can be used to hold out
data. The klaR package can estimate class-conditional densities using a
density estimation procedure that I will describe much later in the course.
Use the cross-validation mechanisms in caret to estimate the accuracy of
your classifier. I have not been able to persuade the combination of caret
and klaR to handle missing values the way I’d like them to, but that may
be ignorance (look at the na.action argument).

(d) Now install SVMLight, which you can find at http://svmlight.joachims.
org, via the interface in klaR (look for svmlight in the manual) to train
and evaluate an SVM to classify this data. You don’t need to understand
much about SVM’s to do this — we’ll do that in following exercises. You
should hold out 20% of the data for evaluation, and use the other 80% for
training. You should NOT substitute NA values for zeros for attributes 3,
4, 6, and 8.

The UC Irvine machine learning data repository hosts a collection of data

on student performance in Portugal, donated by Paulo Cortez, University of

Minho, in Portugal. You can find this data at https://archive.ics.uci.edu/ml/

datasets/Student+Performance. It is described in P. Cortez and A. Silva. Using

Data Mining to Predict Secondary School Student Performance. In A. Brito

and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology Con-

ference (FUBUTEC 2008) pp. 5-12, Porto, Portugal, April, 2008, EUROSIS,

ISBN 978-9077381-39-7.

There are two datasets (for grades in mathematics and for grades in Por-

tugese). There are 30 attributes each for 649 students, and 3 values that can
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be predicted (G1, G2 and G3). Of these, ignore G1 and G2.

(a) Use the mathematics dataset. Take the G3 attribute, and quantize this
into two classes, G3 > 12 and G3 < 12. Build and evaluate a naive
bayes classifier that predicts G3 from all attributes except G1 and G2.
You should build this classifier from scratch (i.e. DON’'T use the pack-
ages described in the code snippets). For binary attributes, you should
use a binomial model. For the attributes described as “numeric”, which
take a small set of values, you should use a multinomial model. For the
attributes described as “nominal”, which take a small set of values, you
should again use a multinomial model. Ignore the “absence” attribute.
Estimate accuracy by cross-validation. You should use at least 10 folds,
excluding 15% of the data at random to serve as test data, and average
the accuracy over those folds. Report the mean and standard deviation
of the accuracy over the folds.

(b) Now revise your classifier of the previous part so that, for the attributes
described as “numeric”, which take a small set of values, you use a multi-
nomial model. For the attributes described as “nominal”, which take a
small set of values, you should still use a multinomial model. Ignore the
“absence” attribute. Estimate accuracy by cross-validation. You should
use at least 10 folds, excluding 15% of the data at random to serve as test
data, and average the accuracy over those folds. Report the mean and
standard deviation of the accuracy over the folds.

(c) Which classifier do you believe is more accurate and why?

The UC Irvine machine learning data repository hosts a collection of data on

heart disease. The data was collected and supplied by Andras Janosi, M.D., of

the Hungarian Institute of Cardiology, Budapest; William Steinbrunn, M.D.,

of the University Hospital, Zurich, Switzerland; Matthias Pfisterer, M.D., of

the University Hospital, Basel, Switzerland; and Robert Detrano, M.D., Ph.D.,
of the V.A. Medical Center, Long Beach and Cleveland Clinic Foundation. You
can find this data at https://archive.ics.uci.edu/ml/datasets/Heart+Disease.

Use the processed Cleveland dataset, where there are a total of 303 instances

with 14 attributes each. The irrelevant attributes described in the text have

been removed in these. The 14’th attribute is the disease diagnosis. There are
records with missing attributes, and you should drop these.

(a) Take the disease attribute, and quantize this into two classes, num = 0
and num > 0. Build and evaluate a naive bayes classifier that predicts
the class from all other attributes Estimate accuracy by cross-validation.
You should use at least 10 folds, excluding 15% of the data at random to
serve as test data, and average the accuracy over those folds. Report the
mean and standard deviation of the accuracy over the folds.

(b) Now revise your classifier to predict each of the possible values of the
disease attribute (0-4 as I recall). Estimate accuracy by cross-validation.
You should use at least 10 folds, excluding 15% of the data at random to
serve as test data, and average the accuracy over those folds. Report the
mean and standard deviation of the accuracy over the folds.

The UC Irvine machine learning data repository hosts a collection of data

on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and

William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/

datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an

id number, 10 continuous variables, and a class (benign or malignant). There

are 569 examples. Separate this dataset randomly into 100 validation, 100


https://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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test, and 369 training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you
don’t really need one), but your own code. You should ignore the id number,
and use the continuous variables as a feature vector. You should search for
an appropriate value of the regularization constant, trying at least the values
A =[le—3,1e — 2,1e — 1,1]. Use the validation set for this search
You should use at least 50 epochs of at least 100 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 10 steps. You should produce:
(a) A plot of the accuracy every 10 steps, for each value of the regularization
constant.
(b) Your estimate of the best value of the regularization constant, together
with a brief description of why you believe that is a good value.
(c) Your estimate of the accuracy of the best classifier on held out data
The UC Irvine machine learning data repository hosts a collection of data on
adult income, donated by Ronny Kohavi and Barry Becker. You can find this
data at https://archive.ics.uci.edu/ml/datasets/Adult For each record, there is
a set of continuous attributes, and a class (;=50K or {50K). There are 48842
examples. You should use only the continous attributes (see the description on
the web page) and drop examples where there are missing values of the contin-
uous attributes. Separate the resulting dataset randomly into 10% validation,
10% test, and 80% training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you
don’t really need one), but your own code. You should ignore the id number,
and use the continuous variables as a feature vector. You should search for
an appropriate value of the regularization constant, trying at least the values
A =[le—3,1e — 2,1e — 1, 1]. Use the validation set for this search
You should use at least 50 epochs of at least 300 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 30 steps. You should produce:
(a) A plot of the accuracy every 30 steps, for each value of the regularization
constant.
(b) Your estimate of the best value of the regularization constant, together
with a brief description of why you believe that is a good value.
(¢) Your estimate of the accuracy of the best classifier on held out data
The UC Irvine machine learning data repository hosts a collection of data on
the whether p53 expression is active or inactive.
You can find out what this means, and more information about the dataset,
by reading: Danziger, S.A., Baronio, R., Ho, L., Hall, L., Salmon, K., Hat-
field, G.W., Kaiser, P., and Lathrop, R.H. (2009) Predicting Positive p53
Cancer Rescue Regions Using Most Informative Positive (MIP) Active Learn-
ing, PLOS Computational Biology, 5(9); Danziger, S.A., Zeng, J., Wang, Y.,
Brachmann, R.K. and Lathrop, R.H. (2007) Choosing where to look next in
a mutation sequence space: Active Learning of informative p53 cancer res-
cue mutants, Bioinformatics, 23(13), 104-114; and Danziger, S.A., Swamidass,
S.J., Zeng, J., Dearth, L.R., Lu, Q., Chen, J.H., Cheng, J., Hoang, V.P., Saigo,
H., Luo, R., Baldi, P., Brachmann, R.K. and Lathrop, R.H. (2006) Functional
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census of mutation sequence spaces: the example of p53 cancer rescue mu-

tants, IEEE/ACM transactions on computational biology and bioinformatics

/ IEEE, ACM, 3, 114-125.

You can find this data at https://archive.ics.uci.edu/ml/datasets/p53+Mutants.

There are a total of 16772 instances, with 5409 attributes per instance. At-

tribute 5409 is the class attribute, which is either active or inactive. There are

several versions of this dataset. You should use the version K8.data.

(a) Train an SVM to classify this data, using stochastic gradient descent. You
will need to drop data items with missing values. You should estimate
a regularization constant using cross-validation, trying at least 3 values.
Your training method should touch at least 50% of the training set data.
You should produce an estimate of the accuracy of this classifier on held
out data consisting of 10% of the dataset, chosen at random.

(b) Now train a naive bayes classifier to classify this data. You should produce
an estimate of the accuracy of this classifier on held out data consisting
of 10% of the dataset, chosen at random.

(c) Compare your classifiers. Which one is better? why?
The UC Irvine machine learning data repository hosts a collection of data on
whether a mushroom is edible, donated by Jeff Schlimmer and to be found at
http://archive.ics.uci.edu/ml/datasets/Mushroom. This data has a set of cat-
egorical attributes of the mushroom, together with two labels (poisonous or
edible). Use the R random forest package (as in the example in the chapter)
to build a random forest to classify a mushroom as edible or poisonous based
on its attributes.

(a) Produce a class-confusion matrix for this problem. If you eat a mushroom
based on your classifier’s prediction it is edible, what is the probability of
being poisoned?
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CHAPTER 2

Extracting Important Relationships
in High Dimensions

Chapter 7?7 described methods to explore the relationship between two ele-
ments in a dataset. We could extract a pair of elements and construct various plots.
For vector data, we could also compute the correlation between different pairs of
elements. But if each data item is d-dimensional, there could be a lot of pairs to
deal with.

We will think of our dataset as a collection of d dimensional vectors. It turns
out that there are easy generalizations of our summaries. However, is hard to
plot d-dimensional vectors. We need to find some way to make them fit on a 2-
dimensional plot. Some simple methods can offer insights, but to really get what is
going on we need methods that can represent all relationships in a dataset in one
go.

These methods visualize the dataset as a “blob” in a d-dimensional space.
Many such blobs are flattened in some directions, because components of the data
are strongly correlated. Finding the directions in which the blobs are flat yields
methods to compute lower dimensional representations of the dataset.

2.1 SUMMARIES AND SIMPLE PLOTS

In this chapter, we assume that our data items are vectors. This means that we can
add and subtract values and multiply values by a scalar without any distress. This
is an important assumption, but it doesn’t necessarily mean that data is continuous
(for example, you can meaningfully add the number of children in one family to the
number of children in another family). It does rule out a lot of discrete data. For
example, you can’t add “sports” to “grades” and expect a sensible answer.

When we plotted histograms, we saw that mean and variance were a very
helpful description of data that had a unimodal histogram. If the histogram had
more than one mode, one needed to be somewhat careful to interpret the mean and
variance; in the pizza example, we plotted diameters for different manufacturers to
try and see the data as a collection of unimodal histograms. In higher dimensions,
the analogue of a unimodal histogram is a “blob” — a group of data points that
clusters nicely together and should be understood together.

You might not believe that “blob” is a technical term, but it’s quite widely
used. This is because it is relatively easy to understand a single blob of data. There
are good summary representations (mean and covariance, which I describe below).
If a dataset forms multiple blobs, we can usually coerce it into a representation as a
collection of blobs (using the methods of chapter ). But many datasets really are
single blobs, and we concentrate on such data here. There are quite useful tricks
for understanding blobs of low dimension by plotting them, which I describe below.

43
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FIGURE 2.1:  Left: a 2D scatterplot for the famous Iris data. I have chosen
two variables from the four, and have plotted each species with a different marker.
Right: a 3D scatterplot for the same data. You can see from the plots that the
species cluster quite tightly, and are different from one another. If you compare
the two plots, you can see how suppressing a variable leads to a loss of structure.
Notice that, on the left, some ‘x’s lie on top of boxes; you can see that this is an
effect of projection by looking at the 3D picture (for each of these data points, the
petal widths are quite different). You should worry that leaving out the last variable
might have suppressed something important like this.

To understand a high dimensional blob, we will need to think about the coordinate
transformations that places it into a particularly convenient form.

Notation: Our data items are vectors, and we write a vector as x. The
data items are d-dimensional, and there are N of them. The entire data set is {x}.
When we need to refer to the i’th data item, we write x;. We write {x;} for a new
dataset made up of IV items, where the ¢’th item is x;. If we need to refer to the
j’th component of a vector x;, we will write :vl(-J) (notice this isn’t in bold, because
it is a component not a vector, and the j is in parentheses because it isn’t a power).

Vectors are always column vectors.

2.1.1 The Mean

For one-dimensional data, we wrote

2 i T
mean ({z}) = =—.
(o)) = &4
This expression is meaningful for vectors, too, because we can add vectors and

divide by scalars. We write

mean ({x}) = %
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FIGURE 2.2: On the left, a stem plot of the mean of all data items in the wine
dataset, from http://archive.ics.uci.edu/ml/datasets/Wine. On the right, I have
overlaid stem plots of each class mean from the wine dataset, from http://archive.
ics.uci.edu/ml/datasets/ Wine, so that you can see the differences between class
means.

and call this the mean of the data. Notice that each component of mean ({x}) is the
mean of that component of the data. There is not an easy analogue of the median,
however (how do you order high dimensional data?) and this is a nuisance. Notice
that, just as for the one-dimensional mean, we have

mean ({x — mean ({x})}) =0

(i.e. if you subtract the mean from a data set, the resulting data set has zero mean).

2.1.2 Stem Plots and Scatterplot Matrices

Plotting high dimensional data is tricky. If there are relatively few dimensions, you
could just choose two (or three) of them and produce a 2D (or 3D) scatterplot.
Figure 2] shows such a scatterplot, for data that was originally four dimensional.
This dataset is a famous dataset to do with the botanical classification of irises. I
found a copy at the UC Irvine repository of datasets that are important in machine
learning. You can find the repository at http://archive.ics.uci.edu/ml/index.html.

Another simple but useful plotting mechanism is the stem plot. This is can be
a useful way to plot a few high dimensional data points. One plots each component
of the vector as a vertical line, typically with a circle on the end (easier seen than
said; look at figure2.2]). The dataset I used for this is the wine dataset, from the UC
Irvine machine learning data repository. You can find this dataset at http://archive.
ics.uci.edu/ml/datasets/Wine. For each of three types of wine, the data records the
values of 13 different attributes. In the figure, I show the overall mean of the
dataset, and also the mean of each type of wine (also known as the class means, or
class conditional means). A natural way to compare class means is to plot them on
top of one another in a stem plot (figure [2Z2]).

Another strategy that is very useful when there aren’t too many dimensions
is to use a scatterplot matrix. To build one, you lay out scatterplots for each pair


http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine
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Scatter Plot Matrix

FIGURE 2.3: Left: the 3D scatterplot of the iris data of Figure[21), for comparison.
Right: a scatterplot matriz for the Iris data. There are four variables, measured
for each of three species of iris. I have plotted each species with a different marker.
You can see from the plot that the species cluster quite tightly, and are different
from one another.

of variables in a matrix. On the diagonal, you name the variable that is the vertical
axis for each plot in the row, and the horizontal axis in the column. This sounds
more complicated than it is; look at the example of figure 23] which shows both a
3D scatter plot and a scatterplot matrix for the same dataset. This is the famous
Iris dataset, collected by Edgar Anderson in 1936, and made popular amongst
statisticians by Ronald Fisher in that year.

Figure 2.4] shows a scatter plot matrix for four of the variables in the height
weight dataset of http://www?2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls at
that URL). This is originally a 16-dimensional dataset, but a 16 by 16 scatterplot
matrix is squashed and hard to interpret. For figure 224l you can see that weight
and adiposity appear to show quite strong correlations, but weight and age are
pretty weakly correlated. Height and age seem to have a low correlation. It is also
easy to visualize unusual data points. Usually one has an interactive process to
do so — you can move a “brush” over the plot to change the color of data points
under the brush.


http://www2.stetson.edu/~jrasp/data.htm
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FIGURE 2.4: This is a scatterplot matrixz for four of the variables in the height weight
dataset of http://www2.stetson.edu/~jrasp/data.htm. Each plot is a scatterplot of
a pair of variables. The name of the variable for the horizontal axis is obtained by
running your eye down the column; for the vertical axis, along the row. Although
this plot is redundant (half of the plots are just flipped versions of the other half),
that redundancy makes it easier to follow points by eye. You can look at a column,
move down to a row, move across to a column, etc. Notice how you can spot
correlations between variables and outliers (the arrows).

2.1.3 Covariance

Variance, standard deviation and correlation can each be seen as an instance of a
more general operation on data. Recall that I described correlation by extracting
two components from each vector of a dataset of vectors. This gave me two datasets
of N items; write {z} for one and {y} for the other. The i’th element of {x}
corresponds to the i’th element of {y}. This is because the i’th element of {x}
is one component of some bigger vector x; and the i’th element of {y} is another
component of this vector. We can define the covariance of {z} and {y}.


http://www2.stetson.edu/~jrasp/data.htm
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Definition: 2.1 Cowvariance

Assume we have two sets of N data items, {«} and {y}. We compute
the covariance by

cov ({a}, {y}) — 2tz = mean (D) s = mean ()

Covariance measures the tendency of corresponding elements of {z} and of {y}
to be larger than (resp. smaller than) the mean. Just like mean, standard deviation
and variance, covariance can refer either to a property of a dataset (as in the
definition here) or a particular expectation (as in chapter ??). The correspondence
is defined by the order of elements in the data set, so that x; corresponds to yi,
x9 corresponds to yo2, and so on. If {z} tends to be larger (resp. smaller) than its
mean for data points where {y} is also larger (resp. smaller) than its mean, then
the covariance should be positive. If {z} tends to be larger (resp. smaller) than its
mean for data points where {y} is smaller (resp. larger) than its mean, then the
covariance should be negative.

From this description, it should be clear we have seen examples of covariance
already. Notice that

std (z)° = var ({z}) = cov ({z} , {z})

which you can prove by substituting the expressions. Recall that variance measures
the tendency of a dataset to be different from the mean, so the covariance of a
dataset with itself is a measure of its tendency not to be constant. More important
is the relationship between covariance and correlation, in the box below.

Remember this:

" _ cov({z},{y}) )
corr ({(z,y)}) Veov ({z}, {z}) v/eov ({u}, {v})

This is occasionally a useful way to think about correlation. It says that the
correlation measures the tendency of {z} and {y} to be larger (resp. smaller) than
their means for the same data points, compared to how much they change on their
own.
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2.1.4 The Covariance Matrix

Working with covariance (rather than correlation) allows us to unify some ideas.
In particular, for data items which are d dimensional vectors, it is straightforward
to compute a single matrix that captures all covariances between all pairs of com-
ponents — this is the covariance matrix.

Definition: 2.2 Covariance Matriz

The covariance matrix is:

3% — mean ({x}))(x; — mean ({x}))"

Covmat ({x}) = N

Notice that it is quite usual to write a covariance matrix as >, and we
will follow this convention.

Covariance matrices are often written as ¥, whatever the dataset (you get to
figure out precisely which dataset is intended, from context). Generally, when we
want to refer to the j, k’th entry of a matrix A, we will write A, so X is the
covariance between the j’th and k’th components of the data.

Useful Facts: 2.1 Properties of the covariance matriz

e The j, k’'th entry of the covariance matrix is the covariance
of the j’th and the k’th components of x, which we write

cov ({20}, {a)}).

e The j, j’th entry of the covariance matrix is the variance of the
7’th component of x.

e The covariance matrix is symmetric.

e The covariance matrix is always positive semi-definite; it is pos-
itive definite, unless there is some vector a such that aT(xi —
mean ({x;}) = 0 for all i.
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Proposition:

Covmat ({x}) ;,, = cov ({Im} , {I(k)})

Proof: Recall

Covmat ({x}) = 2% = mean ({x}))(x; — mean ({x}))

N
and the j, £’th entry in this matrix will be

Zi(%('j) — mean ({x(j)}))(xgk) — mean ({x(k)}))T
N

which is cov ({2}, {z(®}).

Proposition:

Covmat ({x;});; = j; = var ({zm})

Proof:

Covmat ({x}),; = cov ({x(j)} , {gg(j)})
= var ({x(j)}>
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Proposition:
Covmat ({x}) = Covmat ({x})”

Proof: We have
Covmat ({x})jk — cov ({x(j)} 7 {x(k)}>

- ([}, {0

= Covmat ({x});;

Proposition:  Write ¥ = Covmat ({x}). If there is no vector a such that
a’ (x; — mean ({x})) = 0 for all i, then for any vector u, such that |u| > 0,

ulSu > 0.
If there is such a vector a, then

u’Yu > 0.

Proof: We have

wSu = 37 [ Gxi = mean ()] [6xi — mean ({x})"u]
1 2
= 7 X s mean ()]

Now this is a sum of squares. If there is some a such that aT'(x; —
mean ({x})) = 0 for every 7, then the covariance matrix must be positive
semidefinite (because the sum of squares could be zero in this case).
Otherwise, it is positive definite, because the sum of squares will always
be positive.

2.2 USING MEAN AND COVARIANCE TO UNDERSTAND HIGH DIMENSIONAL DATA

The trick to interpreting high dimensional data is to use the mean and covariance
to understand the blob. Figure shows a two-dimensional data set. Notice that
there is obviously some correlation between the x and y coordinates (it’s a diagonal
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FIGURE 2.5: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have plotted
the mean of these data points with a hollow square (it’s easier to see when there is
a lot of data). To translate the blob to the origin, we just subtract the mean from
each datapoint, yielding the blob on the right.

blob), and that neither 2 nor y has zero mean. We can easily compute the mean
and subtract it from the data points, and this translates the blob so that the origin
is at the mean (Figure 20). The mean of the new, translated dataset is zero.

Notice this blob is diagonal. We know what that means from our study of
correlation — the two measurements are correlated. Now consider rotating the blob
of data about the origin. This doesn’t change the distance between any pair of
points, but it does change the overall appearance of the blob of data. We can
choose a rotation that means the blob looks (roughly!) like an axis aligned ellipse.
In these coordinates there is no correlation between the horizontal and vertical
components. But one direction has more variance than the other.

It turns out we can extend this approach to high dimensional blobs. We will
translate their mean to the origin, then rotate the blob so that there is no correlation
between any pair of distinct components (this turns out to be straightforward, which
may not be obvious to you). Now the blob looks like an axis-aligned ellipsoid, and
we can reason about (a) what axes are “big” and (b) what that means about the
original dataset.

2.2.1 Mean and Covariance under Affine Transformations

We have a d dimensional dataset {x}. An affine transformation of this data is
obtained by choosing some matrix A and vector b, then forming a new dataset
{m}, where m; = Ax; + b. Here A doesn’t have to be square, or symmetric, or
anything else; it just has to have second dimension d.
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FIGURE 2.6: On the left, the translated blob of figure[Z3. This blob lies somewhat
diagonally, because the vertical and horizontal components are correlated. On the
right, that blob of data rotated so that there is no correlation between these compo-
nents. We can now describe the blob by the vertical and horizontal variances alone,
as long as we do so in the new coordinate system. In this coordinate system, the
vertical variance is significantly larger than the horizontal variance — the blob is
short and wide.

It is easy to compute the mean and covariance of {m}. We have

mean ({m}) = mean ({Ax + b})
= Amean ({x}) + b,

so you get the new mean by multiplying the original mean by A and adding b.
The new covariance matrix is easy to compute as well. We have:

Covmat ({m}) = Covmat ({Ax + b})
_ 2_;(m; —mean ({m}))(m; — mean ({m}))”
_ SiAxi+b- .Amea]:({x}) — b)(Ax; + b — Amean ({x}) — b)”
A (x — mean ({x}))(xi — m]:—‘]an ({x})"] A"
—  ACovmat ({x})A”. "

All this means that we can try and choose affine transformations that yield
“good” means and covariance matrices. It is natural to choose b so that the mean of
the new dataset is zero. An appropriate choice of A can reveal a lot of information
about the dataset.
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2.2.2 Eigenvectors and Diagonalization

Recall a matrix M is symmetric if M = MT. A symmetric matrix is necessarily
square. Assume S is a d X d symmetric matrix, u is a d X 1 vector, and A is a scalar.
If we have

Su = )\u

then u is referred to as an eigenvector of S and A is the corresponding eigenvalue.
Matrices don’t have to be symmetric to have eigenvectors and eigenvalues, but the
symmetric case is the only one of interest to us.

In the case of a symmetric matrix, the eigenvalues are real numbers, and there
are d distinct eigenvectors that are normal to one another, and can be scaled to
have unit length. They can be stacked into a matrix ¢ = [uy, ..., u4]. This matrix
is orthonormal, meaning that UTU = T.

This means that there is a diagonal matrix A and an orthonormal matrix U
such that

SU =UA.

In fact, there is a large number of such matrices, because we can reorder the eigen-
vectors in the matrix U, and the equation still holds with a new A, obtained by
reordering the diagonal elements of the original A. There is no reason to keep track
of this complexity. Instead, we adopt the convention that the elements of U are
always ordered so that the elements of A are sorted along the diagonal, with the
largest value coming first. This gives us a particularly important procedure.

Procedure: 2.1 Diagonalizing a symmetric matrix

We can convert any symmetric matrix S to a diagonal form by com-
puting
UTSU = A.

Numerical and statistical programming environments have procedures
to compute U and A for you. We assume that the elements of U are
always ordered so that the elements of A are sorted along the diagonal,
with the largest value coming first.
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Useful Facts: 2.2 Orthonormal matrices are rotations

You should think of orthonormal matrices as rotations, because they do
not change lengths or angles. For x a vector, R an orthonormal matrix,
and m = Rx, we have

ulu=xT"RTRx = xTZx = xT'x.
This means that R doesn’t change lengths. For y, z both unit vectors,
we have that the cosine of the angle between them is

ylx.

By the argument above, the inner product of Ry and Rx is the same
as yT'x. This means that R doesn’t change angles, either.

2.2.3 Diagonalizing Covariance by Rotating Blobs

We start with a dataset of N d-dimensional vectors {x}. We can translate this
dataset to have zero mean, forming a new dataset {m} where m; = x; —mean ({x}).
Now recall that, if we were to form a new dataset {a} where

a; = Am;
the covariance matrix of {a} would be
Covmat ({a}) = ACovmat ({m})A” = ACovmat ({x})A”.
Recall also we can diagonalize Covmat ({m}) = Covmat ({x}) to get
UT Covmat ({x})UU = A.
But this means we could form the dataset {r}, using the rule
r; = U m; = UT (x; — mean ({x})).
The mean of this new dataset is clearly 0. The covariance of this dataset is

Covmat ({r})

Covmat ({U"x})

= U Covmat ({x})U
= /X7
where A is a diagonal matrix of eigenvalues of Covmat ({x}) that we obtained by
diagonalization. We now have a very useful fact about {r}: its covariance matrix is
diagonal. This means that every pair of distinct components has covariance zero,
and so has correlation zero. Remember that, in describing diagonalization, we
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adopted the convention that the eigenvectors of the matrix being diagonalized were
ordered so that the eigenvalues are sorted in descending order along the diagonal
of A. Our choice of ordering means that the first component of r has the highest
variance, the second component has the second highest variance, and so on.

The transformation from {x} to {r} is a translation followed by a rotation
(remember U is orthonormal, and so a rotation). So this transformation is a high
dimensional version of what I showed in Figures and

Useful Fact: 2.3 You can transform data to zero mean and diagonal
covariance

We can translate and rotate any blob of data into a coordinate system
where it has (a) zero mean and (b) diagonal covariance matrix.

2.2.4  Approximating Blobs

The covariance matrix of {r} is diagonal, and the values on the diagonal are inter-
esting. It is quite usual for high dimensional datasets to have a small number of
large values on the diagonal, and a lot of small values. This means that the blob
of data is really a low dimensional blob in a high dimensional space. For example,
think about a line segment (a 1D blob) in 3D. As another example, look at Fig-
ure 2.3} the scatterplot matrix strongly suggests that the blob of data is flattened
(eg look at the petal width vs petal length plot).

The blob represented by {r} is low dimensional in a very strong sense. We
need some notation to see this. The data set {r} is d-dimensional. We will try to
represent it with an s dimensional dataset, and see what error we incur. Choose
some s < d. Now take each data point r; and replace the last d — s components
with 0. Call the resulting data item p;. We should like to know the average error
in representing r; with p;.

This error is .
T T
N Z [(ri —pi) (ri—pi) } .
i
Write rgj ) for the j’ component of r;, and so on. Remember that p; is zero in the
last d — s components. The error is then
j=d
L[S (00)
v |2 ()
7 Jj>s
But we know this number, because we know that {r} has zero mean. The error is
j=d

S ()

Jj>s
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FIGURE 2.7: On the left, the translated and rotated blob of figure 2.8l This blob is
stretched — one direction has more variance than another. Setting the y coordinate
to zero for each of these datapoints results in a representation that has relatively
low error, because there isn’t much variance in these values. This results in the
blob on the right. The text shows how the error that results from this projection is
computed.

which is the sum of the diagonal elements of the covariance matrix from r, r to d, d.
If this sum is small compared to the sum of the first » components, then dropping
the last d — r components results in a small error. In that case, we could think
about the data as being r dimensional. Figure 2.7 shows the result of using this
approach to represent the blob we’ve used as a running example as a 1D dataset.

This is an observation of great practical importance. As a matter of experi-
mental fact, a great deal of high dimensional data produces relatively low dimen-
sional blobs. We can identify the main directions of variation in these blobs, and
use them to understand and to represent the dataset.

2.2.5 Example: Transforming the Height-Weight Blob

Translating a blob of data doesn’t change the scatterplot matrix in any interesting
way (the axes change, but the picture doesn’t). Rotating a blob produces really
interesting results, however. Figure shows the dataset of figure 24l translated
to the origin and rotated to diagonalize it. Now we do not have names for each
component of the data (they’re linear combinations of the original components),
but each pair is now not correlated. This blob has some interesting shape features.
Figure shows the gross shape of the blob best. Each panel of this figure has
the same scale in each direction. You can see the blob extends about 80 units in
direction 1, but only about 15 units in direction 2, and much less in the other two
directions. You should think of this blob as being rather cigar-shaped; it’s long in
one direction, but there isn’t much in the others. The cigar metaphor isn’t perfect
because there aren’t any 4 dimensional cigars, but it’s helpful. You can think of
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FIGURE 2.8: A panel plot of the bodyfat dataset of figure[2], now rotated so that the
covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions — they’re linear combinations of the original variables.
Each scatterplot is on the same set of axes, so you can see that the dataset extends
more in some directions than in others.

each panel of this figure as showing views down each of the four axes of the cigar.

Now look at figure This shows the same rotation of the same blob of
data, but now the scales on the axis have changed to get the best look at the
detailed shape of the blob. First, you can see that blob is a little curved (look at
the projection onto direction 2 and direction 4). There might be some effect here
worth studying. Second, you can see that some points seem to lie away from the
main blob. I have plotted each data point with a dot, and the interesting points
with a number. These points are clearly special in some way.

The problem with these figures is that the axes are meaningless. The compo-
nents are weighted combinations of components of the original data, so they don’t
have any units, etc. This is annoying, and often inconvenient. But I obtained Fig-
ure by translating, rotating and projecting data. It’s straightforward to undo
the rotation and the translation — this takes the projected blob (which we know
to be a good approximation of the rotated and translated blob) back to where the
original blob was. Rotation and translation don’t change distances, so the result
is a good approximation of the original blob, but now in the original blob’s co-
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FIGURE 2.9: A panel plot of the bodyfat dataset of figure[27], now rotated so that the
covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions — they’re linear combinations of the original variables. I
have scaled the azes so you can see details; notice that the blob is a little curved,
and there are several data points that seem to lie some way away from the blob,
which I have numbered.

ordinates. Figure shows what happens to the data of Figure 24 This is a
two dimensional version of the original dataset, embedded like a thin pancake of
data in a four dimensional space. Crucially, it represents the original dataset quite
accurately.

2.3 PRINCIPAL COMPONENTS ANALYSIS

We have seen that a blob of data can be translated so that it has zero mean, then
rotated so the covariance matrix is diagonal. In this coordinate system, we can
set some components to zero, and get a representation of the data that is still
accurate. The rotation and translation can be undone, yielding a dataset that is
in the same coordinates as the original, but lower dimensional. The new dataset
is a good approximation to the old dataset. All this yields a really powerful idea:
we can represent the original dataset with a small number of appropriately chosen
vectors.
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FIGURE 2.10: The data of Figure[2.) represented by translating and rotating so that
the covariance is diagonal, projecting off the two smallest directions, then undoing
the rotation and translation. This blob of data is two dimensional (because we
projected off two dimensions), but is represented in a four dimensional space. You
can think of it as a thin pancake of data in the four dimensional space (you should
compare to Figure on page [{0). It is a good representation of the original
data. Notice that it looks slightly thickened on edge, because it isn’t aligned with the
coordinate system — think of a view of a plate at a slight slant.

We start with a dataset of N d-dimensional vectors {x}. We translate this
dataset to have zero mean, forming a new dataset {m} where m; = x; —mean ({x}).
We diagonalize Covmat ({m}) = Covmat ({x}) to get

U Covmat ({x})) = A
and form the dataset {r}, using the rule
r; = U m; = UT (x; — mean ({x})).

We saw the mean of this dataset is zero, and the covariance is diagonal. We
then represented the d-dimensional data set {r} with an s dimensional dataset, by
choosing some r < d, then taking each data point r; and replacing the last d — s
components with 0. We call the resulting data item p;.



Section 2.3 Principal Components Analysis 61

Now consider undoing the rotation and translation. We would form a new
dataset {x}, with the i’th element given by

X; = Up; + mean ({x})

(you should check this expression). But this expression says that X; is constructed
by forming a weighted sum of the first s columns of U (because all the other
components of p; are zero), then adding mean ({x}). If we write u; for the j’th
column of U, we have

%; = ngj)uj + mean ({x}).
Jj=1

What is important about this sum is that s is usually a lot less than d. The u; are
known as principal components of the dataset.

Remember this:  Data items in a d dimensional data set can usually be
represented with good accuracy as a weighted sum of a small number s of d
dimensional vectors, together with the mean. This means that the dataset
lies on an s-dimensional subspace of the d-dimensional space. The subspace
is spanned by the principal components of the data.

We can easily determine the error in approximating {x} with {x}. The error
in representing {r} by {ps} was easy to compute. We had

j=d

%z; [(ri )" (r; - pi)T} = %Z > (TEJ'))Q

i Jj>s

This was the sum of the diagonal elements of the covariance matrix of {r} from s, s
to d,d. If this sum is small compared to the sum of the first s components, then
dropping the last d — s components results in a small error.

The error in representing {x} with {X} is now easy to get. Rotations and
translations do not change lengths. This means that

d

~ 12 2 u
xi = %il* = [ri = pral® = Y (x1)?

u=r+1

which is the sum of the diagonal elements of the covariance matrix of {r} from s, s
to d, d which is easy to evaluate, because these are the values of the d— s eigenvalues
that we decided to ignore. Now we could choose s by identifying how much error
we can tolerate. More usual is to plot the eigenvalues of the covariance matrix, and
look for a “knee”, like that in Figure 2ZTT] You can see that the sum of remaining
eigenvalues is small.
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Procedure: 2.2 Principal Components Analysis

Assume we have a general data set x;, consisting of N d-dimensional
vectors. Now write ¥ = Covmat ({x}) for the covariance matrix.
Form U, A, such that

YU =UA

(these are the eigenvectors and eigenvalues of ). Ensure that the
entries of A are sorted in decreasing order. Choose 7, the number of
dimensions you wish to represent. Typically, we do this by plotting the
eigenvalues and looking for a “knee” (Figure 2.11]). It is quite usual to
do this by hand.

Constructing a low-dimensional representation: For 1 < j < r,
write u; for the i’th column of . Represent the data point x; as

X; = mean ({x}) + Z [u] (x; — mean ({x}))] u,

2.3.1 Example: Representing Colors with Principal Components

Diffuse surfaces reflect light uniformly in all directions. Examples of diffuse surfaces
include matte paint, many styles of cloth, many rough materials (bark, cement,
stone, etc.). One way to tell a diffuse surface is that it does not look brighter
(or darker) when you look at it along different directions. Diffuse surfaces can
be colored, because the surface reflects different fractions of the light falling on it
at different wavelengths. This effect can be represented by measuring the spectral
reflectance of a surface, which is the fraction of light the surface reflects as a function
of wavelength. This is usually measured in the visual range of wavelengths (about
380nm to about 770 nm). Typical measurements are every few nm, depending on
the measurement device. I obtained data for 1995 different surfaces from http://
www.cs.sfu.ca/~colour/data/ (there are a variety of great datasets here, from Kobus
Barnard).

Each spectrum has 101 measurements, which are spaced 4nm apart. This
represents surface properties to far greater precision than is really useful. Physical
properties of surfaces suggest that the reflectance can’t change too fast from wave-
length to wavelength. It turns out that very few principal components are sufficient
to describe almost any spectral reflectance function. Figure Z11] shows the mean
spectral reflectance of this dataset, and Figure 2.I1] shows the eigenvalues of the
covariance matrix.

This is tremendously useful in practice. One should think of a spectral re-
flectance as a function, usually written p(A). What the principal components anal-
ysis tells us is that we can represent this function rather accurately on a (really
small) finite dimensional basis. This basis is shown in figure[ZT1l This means that
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FIGURE 2.11: On the top left, the mean spectral reflectance of a dataset of 1995
spectral reflectances, collected by Kobus Barnard (at http://www.cs.sfu.ca/~colour/
data/). On the top right, eigenvalues of the covariance matriz of spectral re-
flectance data, from a dataset of 1995 spectral reflectances, collected by Kobus
Barnard (at http://www.cs.sfu.ca/~colour/data/). Notice how the first few eigen-
values are large, but most are very small; this suggests that a good representation
using few principal components is available. The bottom row shows the first three
principal components. A linear combination of these, with appropriate weights,
added to the mean of figure 77, gives a good representation of the dataset.

there is a mean function r(A) and k functions ¢,,(A\) such that, for any p(A),
k
P =1(N) + Y _cidi(A) +e()
i=1

where e()) is the error of the representation, which we know is small (because it
consists of all the other principal components, which have tiny variance). In the
case of spectral reflectances, using a value of k£ around 3-5 works fine for most
applications (Figure 2-12). This is useful, because when we want to predict what
a particular object will look like under a particular light, we don’t need to use a
detailed spectral reflectance model; instead, it’s enough to know the ¢; for that
object. This comes in useful in a variety of rendering applications in computer
graphics. It is also the key step in an important computer vision problem, called
color constancy. In this problem, we see a picture of a world of colored ob-
jects under unknown colored lights, and must determine what color the objects
are. Modern color constancy systems are quite accurate, even though the problem
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FIGURE 2.12: On the left, a spectral reflectance curve (dashed) and approzimations
using the mean, the mean and 3 principal components, the mean and 5 principal
components, and the mean and 7 principal components. Notice the mean is a rela-
tively poor approximation, but as the number of principal components goes up, the
error falls rather quickly. On the right is the error for these approximations. Fig-
ure plotted from a dataset of 1995 spectral reflectances, collected by Kobus Barnard
(at http://www.cs.sfu.ca/~colour/data/ ).

sounds underconstrained. This is because they are able to exploit the fact that
relatively few ¢; are enough to accurately describe a surface reflectance.

2.3.2 Example: Representing Faces with Principal Components

An image is usually represented as an array of values. We will consider intensity
images, so there is a single intensity value in each cell. You can turn the image
into a vector by rearranging it, for example stacking the columns onto one another.
This means you can take the principal components of a set of images. Doing so was
something of a fashionable pastime in computer vision for a while, though there
are some reasons that this is not a great representation of pictures. However, the
representation yields pictures that can give great intuition into a dataset.

Figure 77 shows the mean of a set of face images encoding facial expressions of
Japanese women (available at http://www.kasrl.org/jaffe.html; there are tons of face
datasets at http://www.face-rec.org/databases/). I reduced the images to 64x64,
which gives a 4096 dimensional vector. The eigenvalues of the covariance of this
dataset are shown in figure 213t there are 4096 of them, so it’s hard to see a
trend, but the zoomed figure suggests that the first couple of hundred contain
most of the variance. Once we have constructed the principal components, they
can be rearranged into images; these images are shown in figure T4l Principal
components give quite good approximations to real images (figure 2.15)).

The principal components sketch out the main kinds of variation in facial
expression. Notice how the mean face in Figure Z14] looks like a relaxed face, but
with fuzzy boundaries. This is because the faces can’t be precisely aligned, because
each face has a slightly different shape. The way to interpret the components is to
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FIGURE 2.13: On the left,the eigenvalues of the covariance of the Japanese facial
expression dataset; there are 4096, so it’s hard to see the curve (which is packed
to the left). On the right, a zoomed version of the curve, showing how quickly the
values of the eigenvalues get small.

remember one adjusts the mean towards a data point by adding (or subtracting)
some scale times the component. So the first few principal components have to
do with the shape of the haircut; by the fourth, we are dealing with taller/shorter
faces; then several components have to do with the height of the eyebrows, the
shape of the chin, and the position of the mouth; and so on. These are all images of
women who are not wearing spectacles. In face pictures taken from a wider set of
models, moustaches, beards and spectacles all typically appear in the first couple
of dozen principal components.

2.4 MULTI-DIMENSIONAL SCALING

One way to get insight into a dataset is to plot it. But choosing what to plot for
a high dimensional dataset could be difficult. Assume we must plot the dataset
in two dimensions (by far the most common choice). We wish to build a scatter
plot in two dimensions — but where should we plot each data point? One natural
requirement is that the points be laid out in two dimensions in a way that reflects
how they sit in many dimensions. In particular, we would like points that are far
apart in the high dimensional space to be far apart in the plot, and points that are
close in the high dimensional space to be close in the plot.

2.4.1 Choosing Low D Points using High D Distances

We will plot the high dimensional point x; at v;, which is a two-dimensional vector.
Now the squared distance between points ¢ and j in the high dimensional space is

2
D () = (xi = %;)" (i = x;)
(where the superscript is to remind you that this is a squared distance). We could
build an N x N matrix of squared distances, which we write D®(x). The 4, j’th
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Mean image from Japanese Facial Expression dataset

First sixteen principal components of the Japanese Facial Expression dat

FIGURE 2.14: The mean and first 16 principal components of the Japanese facial
expression dataset.

entry in this matrix is Dg)(x), and the x argument means that the distances are
between points in the high-dimensional space. Now we could choose the v; to make

2
> (P - D))
ij
as small as possible. Doing so should mean that points that are far apart in the
high dimensional space are far apart in the plot, and that points that are close in
the high dimensional space are close in the plot.

In its current form, the expression is difficult to deal with, but we can refine
it. Because translation does not change the distances between points, it cannot
change either of the D) matrices. So it is enough to solve the case when the mean
of the points x; is zero. We can assume that

%ZXIZO
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FIGURE 2.15: Approzimating a face image by the mean and some principal compo-
nents; notice how good the approzimation becomes with relatively few components.

Now write 1 for the n-dimensional vector containing all ones, and Z for the identity
matrix. Notice that

Dz(]2) = (Xi — Xj)T(Xi — Xj) =X;  X; — 2X1‘ . Xj —|—Xj . Xj.
Now write

N
Using this expression, you can show that the matrix M, defined below,

A= [I— inﬂ )

M(x) = —%AD@)(X)AT

has 4, jth entry x; - x; (exercises). I now argue that, to make D (v) is close to
D) (x), it is enough to make M(v) close to M(x). Proving this will take us out
of our way unnecessarily, so I omit a proof.

We need some notation. Take the dataset of NV d-dimensional column vectors
x;, and form a matrix X by stacking the vectors, so
x|
x—| %

Xy
In this notation, we have
M(x) = xxT.

Notice M(x) is symmetric, and it is positive semidefinite. It can’t be positive
definite, because the data is zero mean, so M(x)1 = 0.

We can choose a set of v; that makes D) (v) close to D) (x) quite easily.

To obtain a M(v) that is close to M(x), we need to choose V = [v1,va,...,vy]"
so that VVT is close to M(x). We are computing an approximate factorization of
the matrix M(x).
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2.4.2 Factoring a Dot-Product Matrix

We seek a set of k dimensional v that can be stacked into a matrix V. This must
produce a M(v) = VVT that must (a) be as close as possible to M(x) and (b)
have rank at most k. It can’t have rank larger than k£ because there must be some
V which is N x k so that M(v) = VVT. The rows of this V are our v/ .

We can obtain the best factorization of M(x) from a diagonalization. Write
write U for the matrix of eigenvectors of M(x) and A for the diagonal matrix of

eigenvalues sorted in descending order, so we have
M(x) = UNUT

and write A('/2) for the matrix of positive square roots of the eigenvalues. Now we
have

M(x) = UAYVPAY YT = (L{Al/Q) (uAl/Q)T

which allows us to write
X =UNT?,

Now think about approximating M(x) by the matrix M(v). The error is a
sum of squares of the entries,

errf(M(x), A) = Z(mzﬂj — ai;)*.

J
Because U is a rotation, it is straightforward to show that
err(UT M(x)U, U M(V)U) = err(M(x), M(V)).

But
U M(x)U = A

which means that we could find M(v) from the best rank & approximation to A.
This is obtained by setting all but the k largest entries of A to zero. Call the
resulting matrix Ay. Then we have

M(v) = UAU

and
SN

The first & columns of V are non-zero. We drop the remaining N — k& columns of
zeros. The rows of the resulting matrix are our v;, and we can plot these. This
method for constructing a plot is known as principal coordinate analysis.

This plot might not be perfect, because reducing the dimension of the data
points should cause some distortions. In many cases, the distortions are tolerable.
In other cases, we might need to use a more sophisticated scoring system that
penalizes some kinds of distortion more strongly than others. There are many ways
to do this; the general problem is known as multidimensional scaling.
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Procedure: 2.3 Principal Coordinate Analysis

Assume we have a matrix D®) consisting of the squared differences
between each pair of N points. We do not need to know the points. We
wish to compute a set of points in r dimensions, such that the distances
between these points are as similar as possible to the distances in D?).

e Form A = [I— %117"].
e Form W = %AD(Q)AT.

e Form U, A, such that WU = UA (these are the eigenvectors and
eigenvalues of W). Ensure that the entries of A are sorted in
decreasing order.

e Choose r, the number of dimensions you wish to represent. Form
A,., the top left r x r block of A. Form A&l/ 2), whose entries are
the positive square roots of A,.. Form U,., the matrix consisting
of the first r columns of U.

Then
VI = AVDYT = [vy,...,vN]

is the set of points to plot.

2.4.3 Example: Mapping with Multidimensional Scaling

Multidimensional scaling gets positions (the V of section [ZZ1]) from distances (the
D) (x) of section ZAT]). This means we can use the method to build maps from
distances alone. I collected distance information from the web (I used http://
www.distancefromto.net, but a google search on “city distances” yields a wide range
of possible sources), then applied multidimensional scaling. T obtained distances
between the South African provincial capitals, in kilometers. I then used principal
coordinate analysis to find positions for each capital, and rotated, translated and
scaled the resulting plot to check it against a real map (Figure 210]).

One natural use of principal coordinate analysis is to see if one can spot any
structure in a dataset. Does the dataset form a blob, or is it clumpy? This isn’t a
perfect test, but it’s a good way to look and see if anything interesting is happening.
In figure 217 I show a 3D plot of the spectral data, reduced to three dimensions
using principal coordinate analysis. The plot is quite interesting. You should notice
that the data points are spread out in 3D, but actually seem to lie on a complicated
curved surface — they very clearly don’t form a uniform blob. To me, the structure
looks somewhat like a butterfly. I don’t know why this occurs (perhaps the uni-
verse is doodling), but it certainly suggests that something worth investigating is
going on. Perhaps the choice of samples that were measured is funny; perhaps the
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FIGURE 2.16: On the left, a public domain map of South Africa, obtained from
http://commons.wikimedia.org/wiki/ File:Map_of _South_Africa.svg, and edited to re-
move surrounding countries. On the right, the locations of the cities inferred by
multidimensional scaling, rotated, translated and scaled to allow a comparison to
the map by eye. The map doesn’t have all the provincial capitals on it, but it’s easy
to see that MDS has placed the ones that are there in the right places (use a piece
of ruled tracing paper to check).
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FIGURE 2.17: Two views of the spectral data of section [2.31), plotted as a scatter
plot by applying principal coordinate analysis to obtain a 3D set of points. Notice
that the data spreads out in 3D, but seems to lie on some structure; it certainly isn’t
a single blob. This suggests that further investigation would be fruitful.

measuring instrument doesn’t make certain kinds of measurement; or perhaps there
are physical processes that prevent the data from spreading out over the space.
Our algorithm has one really interesting property. In some cases, we do not
actually know the datapoints as vectors. Instead, we just know distances between
the datapoints. This happens often in the social sciences, but there are important
cases in computer science as well. As a rather contrived example, one could survey
people about breakfast foods (say, eggs, bacon, cereal, oatmeal, pancakes, toast,
muffins, kippers and sausages for a total of 9 items). We ask each person to rate the
similarity of each pair of distinct items on some scale. We advise people that similar
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FIGURE 2.18: Two views of a multidimensional scaling to three dimensions of the
height-weight dataset. Notice how the data seems to lie in a flat structure in 3D,
with one outlying data point. This means that the distances between data points can
be (largely) explained by a 2D representation.

items are ones where, if they were offered both, they would have no particular
preference; but, for dissimilar items, they would have a strong preference for one
over the other. The scale might be “very similar”, “quite similar”, “similar”, “quite
dissimilar”, and “very dissimilar” (scales like this are often called Likert scales).
We collect these similarities from many people for each pair of distinct items, and
then average the similarity over all respondents. We compute distances from the
similarities in a way that makes very similar items close and very dissimilar items
distant. Now we have a table of distances between items, and can compute a V
and produce a scatter plot. This plot is quite revealing, because items that most
people think are easily substituted appear close together, and items that are hard
to substitute are far apart. The neat trick here is that we did not start with a X,
but with just a set of distances; but we were able to associate a vector with “eggs”,
and produce a meaningful plot.

2.5 EXAMPLE: UNDERSTANDING HEIGHT AND WEIGHT

Recall the height-weight data set of section ?? (from http://www2.stetson.edu/
~jrasp/data.htm; look for bodyfat.xls at that URL). This is, in fact, a 16-dimensional
dataset. The entries are (in this order): bodyfat; density; age; weight; height; adi-
posity; neck; chest; abdomen; hip; thigh; knee; ankle; biceps; forearm; wrist. We
know already that many of these entries are correlated, but it’s hard to grasp a 16
dimensional dataset in one go. The first step is to investigate with a multidimen-
sional scaling.

Figure 7?7 shows a multidimensional scaling of this dataset down to three
dimensions. The dataset seems to lie on a (fairly) flat structure in 3D, meaning
that inter-point distances are relatively well explained by a 2D representation. Two
points seem to be special, and lie far away from the flat structure. The structure
isn’t perfectly flat, so there will be small errors in a 2D representation; but it’s clear
that a lot of dimensions are redundant. Figure shows a 2D representation of
these points. They form a blob that is stretched along one axis, and there is no sign
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FIGURE 2.19: A multidimensional scaling to two dimensions of the height-weight
dataset. One data point is clearly special, and another looks pretty special. The
data seems to form a blob, with one azis quite a lot more important than another.

of multiple blobs. There’s still at least one special point, which we shall ignore but
might be worth investigating further. The distortions involved in squashing this
dataset down to 2D seem to have made the second special point less obvious than
it was in figure 77.
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FIGURE 2.20: The mean of the bodyfat.zls dataset. Each component is likely in a
different unit (though I don’t know the units), making it difficult to plot the data
without being maisleading. I’'ve adopted one solution here, by plotting a stem plot.
You shouldn’t try to compare the values to one another. Instead, think of this plot
as a compact version of a table.

The next step is to try a principal component analysis. Figure shows
the mean of the dataset. The components of the dataset have different units, and
shouldn’t really be compared. But it is difficult to interpret a table of 16 numbers,
so I have plotted the mean as a stem plot. Figure 2.2I] shows the eigenvalues of
the covariance for this dataset. Notice how one dimension is very important, and
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after the third principal component, the contributions become small. Of course, I

could have said “fourth”, or “fifth”, or whatever — the precise choice depends on
how small a number you think is “small”.
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FIGURE 2.21: On the left, the eigenvalues of the covariance matrixz for the bodyfat

14 16 18

data set. Notice how fast the eigenvalues fall off; this means that most principal
components have very small variance, so that data can be represented well with a
small number of principal components. On the right, the first principal component

for this dataset, plotted using the same convention as for figure [2.20,

Figure 22]] also shows the first principal component. The eigenvalues justify
thinking of each data item as (roughly) the mean plus some weight times this
principal component. From this plot you can see that data items with a larger
value of weight will also have larger values of most other measurements, except age
and density. You can also see how much larger; if the weight goes up by 8.5 units,
then the abdomen will go up by 3 units, and so on. This explains the main variation

in the dataset.
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FIGURE 2.22: On the left, the second principal component, and on the right the

14 16 18

third principal component of the height-weight dataset.
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In the rotated coordinate system, the components are not correlated, and they
have different variances (which are the eigenvalues of the covariance matrix). You
can get some sense of the data by adding these variances; in this case, we get 1404.
This means that, in the translated and rotated coordinate system, the average data
point is about 37 = 1/1404 units away from the center (the origin). Translations
and rotations do not change distances, so the average data point is about 37 units
from the center in the original dataset, too. If we represent a datapoint by using
the mean and the first three principal components, there will be some error. We
can estimate the average error from the component variances. In this case, the sum
of the first three eigenvalues is 1357, so the mean square error in representing a
datapoint by the first three principal components is /(1404 — 1357), or 6.8. The
relative error is 6.8/37 = 0.18. Another way to represent this information, which is
more widely used, is to say that the first three principal components explain all but
(1404 — 1357) /1404 = 0.034, or 3.4% of the variance; notice that this is the square
of the relative error, which will be a much smaller number.

All this means that explaining a data point as the mean and the first three
principal components produces relatively small errors. Figure2Z.23]shows the second
and third principal component of the data. These two principal components suggest
some further conclusions. As age gets larger, height and weight get slightly smaller,
but the weight is redistributed; abdomen gets larger, whereas thigh gets smaller.
A smaller effect (the third principal component) links bodyfat and abdomen. As
bodyfat goes up, so does abdomen.
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2.6 YOU SHOULD

2.6.1 remember these definitions:

2.6.2 remember these terms:

mmetrid . . . . ... 47
eigenvectoll . . . . .. . e e 47
eigenvalud . . . . ... 47
principal componentd . . . . . . .. .. 54
0lor CONStancyl . . . . . . ... 56
principal coordinate analysid. . . . . . . . . .. ... ... .. 61
multidimensional scaling . . . . . . . . .. ..o 61

................................ 64

2.6.3 remember these facts:

2.6.4 remember these procedures:

2.6.5 be able to:

e Create, plot and interpret the first few principal components of a dataset.

e Compute the error resulting from ignoring some principal components.
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PROBLEMS
Summaries
2.1. You have a dataset {x} of N vectors, x;, each of which is d-dimensional. We
will consider a linear function of this dataset. Write a for a constant vector;
then the value of this linear function evaluated on the i'th data item is aTxi.
Write f; = alx;. We can make a new dataset {f} out of the values of this
linear function.
(a) Show that mean ({f}) = a’ mean ({x}) (easy).
(b) Show that var ({f}) = a’ Covmat ({x})a (harder, but just push it through
the definition).
(c) Assume the dataset has the special property that there exists some a so
that a’ Covmat ({x})a. Show that this means that the dataset lies on a
hyperplane.
1
5f H «
s n
. "
O,
_5,
-1 ‘ ‘ ‘
=10 -5 0 5 10
FIGURE 2.23: Figure for the question
2.2. On Figure 2.23] mark the mean of the dataset, the first principal component,
and the second principal component.
2.3. You have a dataset {x} of N vectors, x;, each of which is d-dimensional.

Assume that Covmat ({x}) has one non-zero eigenvalue. Assume that x; and
x9 do not have the same value.
(a) Show that you can choose a set of ¢; so that you can represent every data
item x; exactly
X; = X1 + ti(x2 — x1).

(b) Now consider the dataset of these t values. What is the relationship
between (a) std (¢) and (b) the non-zero eigenvalue of Covmat ({x})? Why?

PROGRAMMING EXERCISES

2.4.

Obtain the iris dataset from the UC Irvine machine learning data repository at

http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data.

(a) Plot a scatterplot matrix of this dataset, showing each species with a
different marker.


http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.
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(b) Now obtain the first two principal components of the data. Plot the
data on those two principal components alone, again showing each species
with a different marker. Has this plot introduced significant distortions?
Explain

Take the wine dataset from the UC Irvine machine learning data repository at

https://archive.ics.uci.edu/ml/datasets/Wine.

(a) Plot the eigenvalues of the covariance matrix in sorted order. How many
principal components should be used to represent this dataset? Why?

(b) Construct a stem plot of each of the first 3 principal components (i.e. the
eigenvectors of the covariance matrix with largest eigenvalues). What do
you see?

(¢) Compute the first two principal components of this dataset, and project
it onto those components. Now produce a scatter plot of this two dimen-
sional dataset, where data items of class 1 are plotted as a ’1’, class 2 as
a '2’, and so on.

Take the wheat kernel dataset from the UC Irvine machine learning data repos-

itory at http://archive.ics.uci.edu/ml/datasets/seeds. Compute the first two

principal components of this dataset, and project it onto those components.

(a) Produce a scatterplot of this projection. Do you see any interesting phe-
nomena?

(b) Plot the eigenvalues of the covariance matrix in sorted order. How many
principal components should be used to represent this dataset? why?

The UC Irvine machine learning data repository hosts a collection of data
on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and
William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an
id number, 10 continuous variables, and a class (benign or malignant). There
are 569 examples. Separate this dataset randomly into 100 validation, 100
test, and 369 training examples. Plot this dataset on the first three principal
components, using different markers for benign and malignant cases. What do
you see?
The UC Irvine Machine Learning data archive hosts a dataset of measure-
ments of abalone at http://archive.ics.uci.edu/ml/datasets/Abalone. Compute
the principal components of all variables except Sex. Now produce a scatter
plot of the measurements projected onto the first two principal components,
plotting an “m” for male abalone, an “f” for female abalone and an “i” for
infants. What do you see?
Choose a state. For the 15 largest cities in your chosen state, find the distance
between cities and the road mileage between cities. These differ because of
the routes that roads take; you can find these distances by careful use of the
internet. Prepare a map showing these cities on the plane using principal
coordinate analysis for each of these two distances. How badly does using the
road network distort to make a map distort the state? Does this differ from
state to state? Why?

CIFAR-10 is a dataset of 32x32 images in 10 categories, collected by Alex

Krizhevsky, Vinod Nair, and Geoffrey Hinton. It is often used to evaluate

machine learning algorithms. You can download this dataset from https://

www.cs.toronto.edu/~kriz/cifar.html.

(a) For each category, compute the mean image and the first 20 principal
components. Plot the error resulting from representing the images of each
category using the first 20 principal components against the category.


https://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/seeds
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Abalone
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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(b) Compute the distances between mean images for each pair of classes. Use

(c)

principal coordinate analysis to make a 2D map of the means of each
categories. For this exercise, compute distances by thinking of the images
as vectors.

Here is another measure of the similarity of two classes. For class A and
class B, define E(A — B) to be the average error obtained by representing
all the images of class A using the mean of class A and the first 20 principal
components of class B. Now define the similarity between classes to be
(1/2)(E(A — B)+E(B — A)). Use principal coordinate analysis to make
a 2D map of the classes. Compare this map to the map in the previous
exercise — are they different? why?



CHAPTER 3

Clustering: Models of High
Dimensional Data

High-dimensional data comes with problems. Data points tend not to be
where you think; they can scattered quite far apart, and can be quite far from
the mean. Except in special cases, the only really reliable probability model is the
Gaussian (or Gaussian blob, or blob).

There is an important rule of thumb for coping with high dimensional data:
Use simple models. A blob is a good simple model. Modelling data as a blob
involves computing its mean and its covariance. Sometimes, as we shall see, the
covariance can be hard to compute. Even so, a blob model is really useful. It is
natural to try and extend this model to cover datasets that don’t obviously consist
of a single blob.

One very good, very simple, model for high dimensional data is to assume
that it consists of multiple blobs. To build models like this, we must determine
(a) what the blob parameters are and (b) which datapoints belong to which blob.
Generally, we will collect together data points that are close and form blobs out of
them. This process is known as clustering.

Clustering is a somewhat puzzling activity. It is extremely useful to cluster
data, and it seems to be quite important to do it reasonably well. But it surprisingly
hard to give crisp criteria for a good (resp. bad) clustering of a dataset. Usually,
clustering is part of building a model, and the main way to know that the clustering
algorithm is bad is that the model is bad.

3.1 THE CURSE OF DIMENSION

High dimensional models display uninituitive behavior (or, rather, it can take years
to make your intuition see the true behavior of high-dimensional models as natural).
In these models, most data lies in places you don’t expect. We will do several simple
calculations with an easy high-dimensional distribution to build some intuition.

3.1.1 The Curse: Data isn't Where You Think it is

Assume our data lies within a cube, with edge length two, centered on the origin.
This means that each component of x; lies in the range [—1,1]. One simple model
for such data is to assume that each dimension has uniform probability density in
this range. In turn, this means that P(z) = 5;. The mean of this model is at the
origin, which we write as 0.

The first surprising fact about high dimensional data is that most of the data
can lie quite far away from the mean. For example, we can divide our dataset into
two pieces. A(e) consists of all data items where every component of the data has

79
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a value in the range [—(1 —€), (1 — €)]. B(e) consists of all the rest of the data. If
you think of the data set as forming a cubical orange, then B(e) is the rind (which
has thickness €) and A(e) is the fruit.

Your intuition will tell you that there is more fruit than rind. This is true,
for three dimensional oranges, but not true in high dimensions. The fact that the
orange is cubical just simplifies the calculations, but has nothing to do with the
real problem.

We can compute P({x € A(e)}) and P({x € A(e)}). These probabilities tell
us the probability a data item lies in the fruit (resp. rind). P({x € A(e)}) is easy
to compute as

P({x € A©D = (1= ) (57) = (1= o

and

P{xeB(e)}) =1—-P({xe Ale)}) =1— (1 — ).

But notice that, as d — oo,
P{x e A(e)}) — 0.

This means that, for large d, we expect most of the data to be in B(e¢). Equivalently,
for large d, we expect that at least one component of each data item is close to
either 1 or —1.

This suggests (correctly) that much data is quite far from the origin. It is
easy to compute the average of the squared distance of data from the origin. We

want
E[xTx] = AOX <Z xf) P(X)dX

K2

but we can rearrange, so that
E[XTX] = ZE[I?] = Z/b 27 P(x)dx.
p p 0x

Now each component of x is independent, so that P(x) = P(x1)P(x2)...P(zq).
Now we substitute, to get

1 1
E[x"x] = ZE[%?} = Z/_l 22 P(x;)dx; = Z % /_led:vi = g,

so as d gets bigger, most data points will be further and further from the origin.
Worse, as d gets bigger, data points tend to get further and further from one
another. We can see this by computing the average of the squared distance of data
points from one another. Write u for one data point and v; we can compute

Eld(u,v)?] = /box /box z:(uZ —v;)?dudv = E[u"u] + E[v'v] - 2E[u’ V]

i
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but since u and v are independent, we have E[u”v] = E[u]"E[v] = 0. This yields

21 od
E[d(u,v)?] _25.

This means that, for large d, we expect our data points to be quite far apart.

3.1.2 Minor Banes of Dimension

High dimensional data presents a variety of important practical nuisances which
follow from the curse of dimension. It is hard to estimate covariance matrices, and
it is hard to build histograms.

Covariance matrices are hard to work with for two reasons. The number of
entries in the matrix grows as the square of the dimension, so the matrix can get
big and so difficult to store. More important, the amount of data we need to get an
accurate estimate of all the entries in the matrix grows fast. As we are estimating
more numbers, we need more data to be confident that our estimates are reasonable.
There are a variety of straightforward work-arounds for this effect. In some cases,
we have so much data there is no need to worry. In other cases, we assume that
the covariance matrix has a particular form, and just estimate those parameters.
There are two strategies that are usual. In one, we assume that the covariance
matrix is diagonal, and estimate only the diagonal entries. In the other, we assume
that the covariance matrix is a scaled version of the identity, and just estimate this
scale. You should see these strategies as acts of desperation, to be used only when
computing the full covariance matrix seems to produce more problems than using
these approaches.

It is difficult to build histogram representations for high dimensional data.
The strategy of dividing the domain into boxes, then counting data into them, fails
miserably because there are too many boxes. In the case of our cube, imagine we
wish to divide each dimension in half (i.e. between [—1,0] and between [0, 1]). Then
we must have 2¢ boxes. This presents two problems. First, we will have difficulty
representing this number of boxes. Second, unless we are exceptionally lucky, most
boxes must be empty because we will not have 2¢ data items.

However, one representation is extremely effective. We can represent data as
a collection of clusters — coherent blobs of similar datapoints that could, under
appropriate circumstances, be regarded as the same. We could then represent the
dataset by, for example, the center of each cluster and the number of data items
in each cluster. Since each cluster is a blob, we could also report the covariance of
each cluster, if we can compute it.

Remember this:  High dimensional data does not behave in a way that
is consistent with most people’s intuition. Points are always close to the
boundary and further apart than you think. This property makes a nuisance
of itself in a variety of ways. The most important is that only the simplest
models work well in high dimensions.
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3.2 THE MULTIVARIATE NORMAL DISTRIBUTION

All the nasty facts about high dimensional data, above, suggest that we need to use
quite simple probability models. By far the most important model is the multivari-
ate normal distribution, which is quite often known as the multivariate gaussian
distribution. There are two sets of parameters in this model, the mean p and the
covariance Y. For a d-dimensional model, the mean is a d-dimensional column
vector and the covariance is a d x d dimensional matrix. The covariance is a sym-
metric matrix. For our definitions to be meaningful, the covariance matrix must be
positive definite.
The form of the distribution p(x|u, X)) is

P, D) = —50c- W)

weorrokdt
enidetn) P\ 2

The following facts explain the names of the parameters:

Useful Facts: 3.1 Parameters of a Multivariate Normal Distribution

Assuming a multivariate normal distribution, we have
e E[x] = p1, meaning that the mean of the distribution is .

o E[(x — p)(x — p)T] = X, meaning that the entries in ¥ represent
covariances.

Assume I know have a dataset of items x;, where ¢ runs from 1 to N, and we
wish to model this data with a multivariate normal distribution. The maximum
likelihood estimate of the mean, fi, is

Do Xi

= N

(Awhich is quite easy to show). The maximum likelihood estimate of the covariance,

>, is
¢ _ il —)xi — )"
N
(which is rather a nuisance to show, because you need to know how to differentiate
a determinant). These facts mean that we already know most of what is interesting
about multivariate normal distributions (or gaussians).

3.2.1 Affine Transformations and Gaussians

Gaussians behave very well under affine transformations. In fact, we've already
worked out all the math. Assume I have a dataset x;. The mean of the maximum
likelihood gaussian model is mean ({x;}), and the covariance is Covmat ({x;}). I
can now transform the data with an affine transformation, to get y; = Ax; + b.
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The mean of the maximum likelihood gaussian model for the transformed dataset
is mean ({y;}), and we’ve dealt with this; similarly, the covariance is Covmat ({y;}),
and we’ve dealt with this, too.

A very important point follows in an obvious way. I can apply an affine trans-
formation to any multivariate gaussian to obtain one with (a) zero mean and (b)
independent components. In turn, this means that, in the right coordinate sys-
tem, any gaussian is a product of zero mean one-dimensional normal distributions.
This fact is quite useful. For example, it means that simulating multivariate nor-
mal distributions is quite straightforward — you could simulate a standard normal
distribution for each component, then apply an affine transformation.

3.2.2 Plotting a 2D Gaussian: Covariance Ellipses

There are some useful tricks for plotting a 2D Gaussian, which are worth knowing
both because they’re useful, and they help to understand Gaussians. Assume we
are working in 2D; we have a Gaussian with mean g (which is a 2D vector), and
covariance % (which is a 2x2 matrix). We could plot the collection of points x that
has some fixed value of p(x|u,%). This set of points is given by:

S (=TS ) =

where ¢ is some constant. I will choose ¢? = %, because the choice doesn’t matter,
and this choice simplifies some algebra. You might recall that a set of points x that
satisfies a quadratic like this is a conic section. Because ¥ (and so 7! is positive
definite, the curve is an ellipse. There is a useful relationship between the geometry
of this ellipse and the Gaussian.

This ellipse — like all ellipses — has a major axis and a minor axis. These
are at right angles, and meet at the center of the ellipse. We can determine the
properties of the ellipse in terms of the Gaussian quite easily. The geometry of the
ellipse isn’t affected by rotation or translation, so we will translate the ellipse so
that © = 0 (i.e. the mean is at the origin) and rotate it so that ¥~ is diagonal.

Writing x = [z, y] we get that the set of points on the ellipse satisfies
1,1 1 1

(=2 _2:_
2(k:fw +k§y) 2

where k% and k% are the diagonal elements of ¥~'. We will assume that the ellipse
1 2

has been rotated so that k1 < ko. The points (k1,0) and (—kq,0) lie on the ellipse,
as do the points (0, k2) and (0, —k2). The major axis of the ellipse, in this coordinate
system, is the x-axis, and the minor axis is the y-axis. In this coordinate system,
x and y are independent. If you do a little algebra, you will see that the standard
deviation of x is abs (k1) and the standard deviation of y is abs (k2). So the ellipse
is longer in the direction of largest standard deviation and shorter in the direction
of smallest standard deviation.

Now rotating the ellipse is means we will pre- and post-multiply the covariance
matrix with some rotation matrix. Translating it will move the origin to the mean.
As a result, the ellipse has its center at the mean, its major axis is in the direction
of the eigenvector of the covariance with largest eigenvalue, and its minor axis is
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in the direction of the eigenvector with smallest eigenvalue. A plot of this ellipse,
which can be coaxed out of most programming environments with relatively little
effort, gives us a great deal of information about the underlying Gaussian. These
ellipses are known as covariance ellipses.

Remember this:  The multivariate normal distribution has the form

1 1 Ty—1
p(x ,E-—exp(——x— X (x — )
(x|, %) ) 5(x—n) (x — p)
Assume you wish to model a dataset {x} with a multivariate normal distri-
bution. The mazimum likelihood estimate of the mean is mean ({x}). The
mazimum likelihood estimate of the covariance ¥ is Covmat ({x}).

3.3 AGGLOMERATIVE AND DIVISIVE CLUSTERING

There are two natural recipes you can use to produce clustering algorithms. In
agglomerative clustering, you start with each data item being a cluster, and
then merge clusters recursively to yield a good clustering (procedure B2)). The
difficulty here is that we need to know a good way to measure the distance between
clusters, which can be somewhat harder than the distance between points. In
divisive clustering, you start with the entire data set being a cluster, and then
split clusters recursively to yield a good clustering (procedure ??). The difficulty
here is we need to know some criterion for splitting clusters.

Procedure: 3.1 Agglomerative Clustering

Choose an inter-cluster distance. Make each point a separate cluster.
Now, until the clustering is satisfactory,

e Merge the two clusters with the smallest inter-cluster distance.

Procedure: 3.2 Divisive Clustering

Choose a splitting criterion. Regard the entire dataset as a single clus-
ter. Now, until the clustering is satisfactory,

e choose a cluster to split;

e then split this cluster into two parts.
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To turn these recipes into algorithms requires some more detail. For agglom-
erative clustering, we need to choose a good inter-cluster distance to fuse nearby
clusters. Even if a natural distance between data points is available, there is no
canonical inter-cluster distance. Generally, one chooses a distance that seems ap-
propriate for the data set. For example, one might choose the distance between the
closest elements as the inter-cluster distance, which tends to yield extended clusters
(statisticians call this method single-link clustering). Another natural choice is
the maximum distance between an element of the first cluster and one of the second,
which tends to yield rounded clusters (statisticians call this method complete-link
clustering). Finally, one could use an average of distances between elements in the
cluster, which also tends to yield rounded clusters (statisticians call this method
group average clustering).

For divisive clustering, we need a splitting method. This tends to be something
that follows from the logic of the application, because the ideal is an efficient method
to find a natural split in a large dataset. We won’t pursue this question further.

Finally, we need to know when to stop. This is an intrinsically difficult task
if there is no model for the process that generated the clusters. The recipes I have
described generate a hierarchy of clusters. Usually, this hierarchy is displayed to
a user in the form of a dendrogram—a representation of the structure of the hi-
erarchy of clusters that displays inter-cluster distances—and an appropriate choice
of clusters is made from the dendrogram (see the example in Figure B.T]).

4

N
—
distance

1 2345 6

FIGURE 3.1: Left, a data set; right, a dendrogram obtained by agglomerative clus-
tering using single-link clustering. If one selects a particular value of distance, then
a horizontal line at that distance splits the dendrogram into clusters. This repre-
sentation makes it possible to guess how many clusters there are and to get some
insight into how good the clusters are.
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Another important thing to notice about clustering from the example of fig-
ure [3.1]is that there is no right answer. There are a variety of different clusterings
of the same data. For example, depending on what scales in that figure mean, it
might be right to zoom out and regard all of the data as a single cluster, or to zoom
in and regard each data point as a cluster. Each of these representations may be
useful.

3.3.1 Clustering and Distance

In the algorithms above, and in what follows, we assume that the features are scaled
so that distances (measured in the usual way) between data points are a good
representation of their similarity. This is quite an important point. For example,
imagine we are clustering data representing brick walls. The features might contain
several distances: the spacing between the bricks, the length of the wall, the height
of the wall, and so on. If these distances are given in the same set of units, we could
have real trouble. For example, assume that the units are centimeters. Then the
spacing between bricks is of the order of one or two centimeters, but the heights
of the walls will be in the hundreds of centimeters. In turn, this means that the
distance between two datapoints is likely to be completely dominated by the height
and length data. This could be what we want, but it might also not be a good
thing.

There are some ways to manage this issue. One is to know what the features
measure, and know how they should be scaled. Usually, this happens because you
have a deep understanding of your data. If you don’t (which happens!), then it is
often a good idea to try and normalize the scale of the data set. There are two good
strategies. The simplest is to translate the data so that it has zero mean (this is
just for neatness - translation doesn’t change distances), then scale each direction
so that it has unit variance. More sophisticated is to translate the data so that
it has zero mean, then transform it so that each direction is independent and has
unit variance. Doing so is sometimes referred to as decorrelation or whitening
(because you make the data more like white noise); I described how to do this in
section 77.

Worked example 3.1 Agglomerative clustering

Cluster the seed dataset from the UC Irvine Machine Learning Dataset Repos-
itory (you can find it at http://archive.ics.uci.edu/ml/datasets/seeds).

Solution: Each item consists of seven measurements of a wheat kernel; there
are three types of wheat represented in this dataset. For this example, I used
Matlab, but many programming environments will provide tools that are useful
for agglomerative clustering. I show a dendrogram in figure ?7?). I deliberately
forced Matlab to plot the whole dendrogram, which accounts for the crowded
look of the figure (you can allow it to merge small leaves, etc.). As you can see
from the dendrogram and from Figure B3] this data clusters rather well.
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FIGURE 3.2: A dendrogram obtained from the seed dataset, using single link cluster-
ing. Recall that the data points are on the horizontal axis, and that the vertical axis
1s distance; there is a horizontal line linking two clusters that get merged, established
at the height at which they’re merged. I have plotted the entire dendrogram, despite
the fact it’s a bit crowded at the bottom, because you can now see how clearly the
data set clusters into a small set of clusters — there are a small number of vertical
“runs”.

Remember this:  Agglomerative clustering starts with each data point a
cluster, then recursively merges. There are three main ways to compute the
distance between clusters. Divisive clustering starts with all in one cluster,
then recursively splits. Choosing a split can be tricky.

3.4 THE K-MEANS ALGORITHM AND VARIANTS

Assume we have a dataset that, we believe, forms many clusters that look like
blobs. If we knew where the center of each of the clusters was, it would be easy to
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FIGURE 3.3: A clustering of the seed dataset, using agglomerative clustering, single
link distance, and requiring a maximum of 30 clusters. I have plotted each cluster
with a distinct marker (though some markers differ only by color; you might need to
look at the PDF version to see this figure at its best). Notice that there are a set of
fairly natural isolated clusters. The original data is 8 dimensional, which presents
plotting problems; I show a scatter plot on the first two principal components (though
I computed distances for clustering in the original 8 dimensional space).

tell which cluster each data item belonged to — it would belong to the cluster with
the closest center. Similarly, if we knew which cluster each data item belonged to,
it would be easy to tell where the cluster centers were — they’d be the mean of the
data items in the cluster. This is the point closest to every point in the cluster.
We can turn these observations into an algorithm. Assume that we know how
many clusters there are in the data, and write k& for this number. The ith data
item to be clustered is described by a feature vector x;. We write c; for the center
of the jth cluster. We assume that most data items are close to the center of their
cluster. This suggests that we cluster the data by minimizing the the cost function

O (clusters, data) = Z Z (x; — ¢;)" (xi — ¢;)

jeclusters \ icith cluster
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FIGURE 3.4: Left: a 3D scatterplot for the famous Iris data, collected by Edgar
Anderson in 1936, and made popular amongst statisticians by Ronald Fisher in that
year. I have chosen three variables from the four, and have plotted each species with
a different marker. You can see from the plot that the species cluster quite tightly,
and are different from one another. Right: a scatterplot matriz for the Iris data.
There are four variables, measured for each of three species of iris. I have plotted
each species with a different marker. You can see from the plot that the species
cluster quite tightly, and are different from one another.

Notice that if we know the center for each cluster, it is easy to determine which
cluster is the best choice for each point. Similarly, if the allocation of points to
clusters is known, it is easy to compute the best center for each cluster. However,
there are far too many possible allocations of points to clusters to search this space
for a minimum. Instead, we define an algorithm that iterates through two activities:

e Assume the cluster centers are known and, allocate each point to the closest
cluster center.

e Assume the allocation is known, and choose a new set of cluster centers. Each
center is the mean of the points allocated to that cluster.

We then choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process eventually converges to a local minimum of
the objective function (the value either goes down or is fixed at each step, and
it is bounded below). It is not guaranteed to converge to the global minimum of
the objective function, however. It is also not guaranteed to produce k clusters,
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unless we modify the allocation phase to ensure that each cluster has some nonzero
number of points. This algorithm is usually referred to as k-means (summarized
in Algorithm B3).

Procedure: 3.3 K-Means Clustering

Choose k. Now choose k data points c; to act as cluster centers. Until
the cluster centers change very little

e Allocate each data point to cluster whose center is nearest.

e Now ensure that every cluster has at least one data point; one
way to do this is by supplying empty clusters with a point chosen
at random from points far from their cluster center.

e Replace the cluster centers with the mean of the elements in their
clusters.

Usually, we are clustering high dimensional data, so that visualizing clusters
can present a challenge. If the dimension isn’t too high, then we can use panel plots.
An alternative is to project the data onto two principal components, and plot the
clusters there; the process for plotting 2D covariance ellipses from section
comes in useful here. A natural dataset to use to explore k-means is the iris data,
where we know that the data should form three clusters (because there are three
species). Recall this dataset from section ??. I reproduce figure from that
section as figure 3.8 for comparison. Figures[35 7?7 and ?7? show different k-means
clusterings of that data.

Worked example 3.2 K-means clustering in R

Cluster the iris dataset into two clusters using k-means, then plot the results
on the first two principal components

Solution: I used the code fragment in listing 3.1, which produced figure 77

3.4.1 How to choose K

The iris data is just a simple example. We know that the data forms clean clusters,
and we know there should be three of them. Usually, we don’t know how many
clusters there should be, and we need to choose this by experiment. One strategy
is to cluster for a variety of different values of k, then look at the value of the cost
function for each. If there are more centers, each data point can find a center that
is close to it, so we expect the value to go down as k goes up. This means that
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FIGURE 3.5: On the left, a panel plot of the iris data clustered using k-means with
k = 2. By comparison with figure [3.8, notice how the versicolor and verginica
clusters appear to have been merged. On the right, this data set projected onto the
first two principal components, with one blob drawn over each cluster.

looking for the k that gives the smallest value of the cost function is not helpful,
because that k is always the same as the number of data points (and the value is
then zero). However, it can be very helpful to plot the value as a function of &, then
look at the “knee” of the curve. Figure B8 shows this plot for the iris data. Notice
that & = 3 — the “true” answer — doesn’t look particularly special, but k£ = 2,
k = 3, or k = 4 all seem like reasonable choices. It is possible to come up with
a procedure that makes a more precise recommendation by penalizing clusterings
that use a large k, because they may represent inefficient encodings of the data.
However, this is often not worth the bother.

Listing 3.1: R code for iris example.

setwd (’/users/daf/Current/courses/Probcourse/Clustering/RCode ”)
#library (’lattice )

# work with iris dataset this is famous, and included in R

# there are three species

head (iris)

#

library (’cluster ’)

numiris=iris [,c(1, 2, 3, 4)] #the numerical values
#scalediris<—scale (numiris) # scale to wunit variance
nclus<—2

sfit<—kmeans (numiris, nclus)

colr<—c(’red’, ’green’, ’'blue’, ’yellow’, ’orange’)

clusplot (numiris, sfit$cluster , color=TRUE, shade=TRUE,
labels=0, lines=0)
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FIGURE 3.6: On the left, a panel plot of the iris data clustered using k-means with
k = 3. By comparison with figure [3.8, notice how the clusters appear to follow
the species labels. On the right, this data set projected onto the first two principal
components, with one blob drawn over each cluster.

In some special cases (like the iris example), we might know the right answer
to check our clustering against. In such cases, one can evaluate the clustering by
looking at the number of different labels in a cluster (sometimes called the purity),
and the number of clusters. A good solution will have few clusters, all of which have
high purity. Mostly, we don’t have a right answer to check against. An alternative
strategy, which might seem crude to you, for choosing k is extremely important in
practice. Usually, one clusters data to use the clusters in an application (one of
the most important, vector quantization, is described in section BH). There are
usually natural ways to evaluate this application. For example, vector quantization
is often used as an early step in texture recognition or in image matching; here one
can evaluate the error rate of the recognizer, or the accuracy of the image matcher.
One then chooses the k that gets the best evaluation score on validation data. In
this view, the issue is not how good the clustering is; it’s how well the system that
uses the clustering works.

3.4.2 Soft Assignment

One difficulty with k-means is that each point must belong to exactly one cluster.
But, given we don’t know how many clusters there are, this seems wrong. If a point
is close to more than one cluster, why should it be forced to choose? This reasoning
suggests we assign points to cluster centers with weights.

We allow each point to carry a total weight of 1. In the conventional k-means
algorithm, it must choose a single cluster, and assign its weight to that cluster
alone. In soft-assignment k-means, the point can allocate some weight to each
cluster center, as long as (a) the weights are all non-negative and (b) the weights
sum to one. Write w; ; for the weight connecting point i to cluster center j. We
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FIGURE 3.7: On the left, a panel plot of the iris data clustered using k-means with
k = 5. By comparison with figure[3.8, notice how setosa seems to have been broken
in two groups, and versicolor and verginica into a total of three . On the right,
this data set projected onto the first two principal components, with one blob drawn
over each cluster.

interpret these weights as the degree to which the point participates in a particular
cluster. We require w;,; > 0 and >, w; ; = 1.

We would like w; ; to be large when x; is close to c;, and small otherwise.
Write d; ; for the distance |x; — ¢;| between these two. Write

—d2
K2V
Sij=¢ 202
where ¢ > 0 is a choice of scaling parameter. This is often called the affinity
between the point ¢ and the center j. Now a natural choice of weights is

Si,j
—
D=1 Sid

All these weights are non-negative, they sum to one, and the weight is large if the
point is much closer to one center than to any other. The scaling parameter o sets
the meaning of “much closer” — we measure distance in units of o.

Once we have weights, re-estimating the cluster centers is easy. We use a
weights to compute a weighted average of the points. In particular, we re-estimate
the j’th cluster center by

w;,j =

i Wi X
2 Wi
Notice that k-means is a special case of this algorithm where ¢ limits to zero. In
this case, each point has a weight of one for some cluster, and zero for all others,
and the weighted mean becomes an ordinary mean. I have collected the description
into a box (procedure B4 for convenience.
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FIGURE 3.8: On the left, the scatterplot matriz for the Iris data, for reference. On
the right, a plot of the value of the cost function for each of several different values
of k. Notice how there is a sharp drop in cost going from k =1 to k = 2, and again
at k = 4; after that, the cost falls off slowly. This suggests using k =2, k=3, or
k =4, depending on the precise application.

Procedure: 3.4 K-Means with Soft Weights

Choose k. Choose k£ data points c¢; to act as initial cluster centers.
Until the cluster centers change very little:

e First, we estimate the weights. For each pair of a data point x;
and a cluster c;, compute the affinity

—tki—cl
Sij =€ 202

e Now for each pair of a data point x; and a cluster c; compute the
soft weight linking the data point to the center

wij = sij/ Y ks
=1

e For each cluster, compute a new center

D Wi

DIXTY

©
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3.4.3 General Comments on K-Means

If you experiment with k-means, you will notice one irritating habit of the algorithm.
It almost always produces either some rather spread out clusters, or some single
element clusters. Most clusters are usually rather tight and blobby clusters, but
there is usually one or more bad cluster. This is fairly easily explained. Because
every data point must belong to some cluster, data points that are far from all
others (a) belong to some cluster and (b) very likely “drag” the cluster center into
a poor location. This applies even if you use soft assignment, because every point
must have total weight one. If the point is far from all others, then it will be
assigned to the closest with a weight very close to one, and so may drag it into a
poor location, or it will be in a cluster on its own.

There are ways to deal with this. If k is very big, the problem is often not
significant, because then you simply have many single element clusters that you
can ignore. It isn’t always a good idea to have too large a k, because then some
larger clusters might break up. An alternative is to have a junk cluster. Any point
that is too far from the closest true cluster center is assigned to the junk cluster,
and the center of the junk cluster is not estimated. Notice that points should not
be assigned to the junk cluster permanently; they should be able to move in and
out of the junk cluster as the cluster centers move.

3.4.4 K-Mediods

In some cases, we want to cluster objects that can’t be averaged. For example, you
can compute distances between two trees but you can’t meaningfully average two
trees. One case where this happens is when you have a table of distances between
objects, but do not know vectors representing the objects. For example, you could
collect data giving the distances between cities, without knowing where the cities are
(as in Section 243 particularly Figure 216]), then try and cluster using this data.
As another example, you could collect data giving similarities between breakfast
items as in Section 243 then turn the similarities into distances by taking the
negative logarithm. This gives a useable table of distances. You still can’t average
kippers with oatmeal, so you couldn’t use k-means to cluster this data. A variant
of k-means, known as k-medoids, applies to this case.

In k-medoids, the cluster centers are data items rather than averages, and so
are called “mediods”. The rest of the algorithm has a familiar form. We assume £,
the number of cluster centers, is known. We initialize the cluster centers by choosing
examples at random. We then iterate two procedures. In the first, we allocate each
data point to the closest mediod. In the second, we choose the best medoid for each
cluster by finding the data point that minimizes the sum of distances of points in
the cluster to that medoid. This point can be found by simply searching all points.
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Remember this: K-means clustering is the “go-to” clustering algo-
rithm. You should see it as a basic recipe from which many algorithms can
be concocted. The recipe is: iterate: allocate each data point to the closest
cluster center; re-estimate cluster centers from their data points. There are
many variations, improvements, etc. that are possible on this recipe. We
have seen soft weights and k-mediods. K-means is not usually best imple-
mented with the method I described (which isn’t particularly efficient, but
gets to the heart of what is going on). Implementations of k-means differ
in tmportant ways from my rather high-level description of the algorithm;
for any but tiny problems, you should use a package, and you should look
for a package that uses the Lloyd-Hartigan method.

3.5 DESCRIBING REPETITION WITH VECTOR QUANTIZATION

Repetition is an important feature of many interesting signals. For example, im-
ages contain textures, which are orderly patterns that look like large numbers of
small structures that are repeated. Examples include the spots of animals such as
leopards or cheetahs; the stripes of animals such as tigers or zebras; the patterns on
bark, wood, and skin. Similarly, speech signals contain phonemes — characteristic,
stylised sounds that people assemble together to produce speech (for example, the
“ka” sound followed by the “tuh” sound leading to “cat”). Another example comes
from accelerometers. If a subject wears an accelerometer while moving around, the
signals record the accelerations during their movements. So, for example, brushing
one’s teeth involves a lot of repeated twisting movements at the wrist, and walking
involves swinging the hand back and forth.

Repetition occurs in subtle forms. The essence is that a small number of
local patterns can be used to represent a large number of examples. You see this
effect in pictures of scenes. If you collect many pictures of, say, a beach scene, you
will expect most to contain some waves, some sky, and some sand. The individual
patches of wave, sky or sand can be surprisingly similar, and different images are
made by selecting some patches from a vocabulary of patches, then placing them
down to form an image. Similarly, pictures of living rooms contain chair patches,
TV patches, and carpet patches. Many different living rooms can be made from
small vocabularies of patches; but you won’t often see wave patches in living rooms,
or carpet patches in beach scenes.

An important part of representing signals that repeat is building a vocabulary
of patterns that repeat, then describing the signal in terms of those patterns. For
many problems, problems, knowing what vocabulary elements appear and how often
is much more important than knowing where they appear. For example, if you want
to tell the difference between zebras and leopards, you need to know whether stripes
or spots are more common, but you don’t particularly need to know where they
appear. As another example, if you want to tell the difference between brushing
teeth and walking using accelerometer signals, knowing that there are lots of (or
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FIGURE 3.9: It is hard to hide repetition in a signal, meaning that you don’t need
to be careful about whether patches overlap, etc. when vector quantizing a signal.
Top: two images with rather exaggerated repetion, published on flickr.com with a
creative commons license by webtreats. Next to these images, I have placed zoomed
sampled 10x10 patches from those images; although the spots (resp. stripes) aren’t
necessarily centered in the patches, it’s pretty clear which image each patch comes
from. Bottom: a 40 patch dictionary computed using k-means from 4000 samples
from each image. If you look closely, you’ll see that some dictionary entries are
clearly stripe entries, others clearly spot entries. Stripe images will have patches
represented by stripe entries, spot images by spot entries; so the histogram construc-
tion in the text should make differences apparent.

few) twisting movements is important, but knowing how the movements are linked
together in time may not be.

3.5.1 Vector Quantization

It is natural to try and find patterns by looking for small pieces of signal of fixed size
that appear often. In an image, a piece of signal might be a 10x10 patch; in a sound
file, which is likely represented as a vector, it might be a subvector of fixed size.
A 3-axis accelerometer signal is represented as a 3 x r dimensional array (where r
is the number of samples); in this case, a piece might be a 3 x 10 subarray. But
finding patterns that appear often is hard to do, because the signal is continuous —
each pattern will be slightly different, so we cannot simply count how many times
a particular pattern occurs.

Here is a strategy. First, we take a training set of signals, and cut each
signal into pieces of fixed size. We could use d dimensional vectors for a sound
file; d x d dimensional patches for an image; or 3 x d dimensional subarrays for an
accelerometer signal. In each case, it is easy to compute the distance between two
pieces: you use the sum of squared distances. It doesn’t seem to matter too much
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if these pieces overlap or not. We then build a set of clusters out of these pieces.
This set of clusters is often thought of as a dictionary. We can now now describe
any new piece with the cluster center closest to that piece. This means that a piece
of signal is described with a number in the range [1, ..., k] (where you get to choose
k), and two pieces that are close should be described by the same number. This
strategy is known as vector quantization.

Procedure: 3.5 Vector Quantization - Building a Dictionary

Take a training set of signals, and cut each signal into pieces of fixed
size. The size of the piece will affect how well your method works, and
is usually chosen by experiment. It does not seem to matter much if the
pieces overlap. Cluster all the example pieces, and record the k cluster
centers. It is usual, but not required, to use k-means clustering.

We can now build features that represent important repeated structure in sig-
nals. We take a signal, and cut it up into vectors of length d. These might overlap,
or be disjoint; we follow whatever strategy we used in building the dictionary. We
then take each vector, and compute the number that describes it (i.e. the number of
the closest cluster center, as above). We then compute a histogram of the numbers
we obtained for all the vectors in the signal. This histogram describes the signal.

Procedure: 3.6 Vector Quantization - Representing a Signal

Take your signal, and cut it into pieces of fixed size. The size of the
piece will affect how well your method works, and is usually chosen by
experiment. It does not seem to matter much if the pieces overlap. For
each piece, record the closest cluster center in the dictionary. Repre-
sent the signal with a histogram of these numbers, which will be a &
dimensional vector.

Notice several nice features to this construction. First, it can be applied to
anything that can be thought of in terms of fixed size pieces, so it will work for
speech signals, sound signals, accelerometer signals, images, and so on. Another
nice feature is the construction can accept signals of different length, and produce a
description of fixed length. One accelerometer signal might cover 100 time intervals;
another might cover 200; but the description is always a histogram with k& buckets,
so it’s always a vector of length k.

Yet another nice feature is that we don’t need to be all that careful how we
cut the signal into fixed length vectors. This is because it is hard to hide repetition.
This point is easier to make with a figure than in text, so look at figure ?7.
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FIGURE 3.10: A panel plot of the wholesale customer data of http://archive.ics.uci.
edu/ml/ datasets/ Wholesale+customers, which records sums of money spent annu-
ally on different commodities by customers in Portugal. This data is recorded for siz
different groups (two channels each within three regions). I have plotted each group
with a different marker, but you can’t really see much structure here, for reasons
explained in the text.

3.5.2 Example: Groceries in Portugal

At http://archive.ics.uci.edu/ml/datasets/Wholesale+customers, you will find a dataset
giving sums of money spent annually on different commodities by customers in Por-
tugal. The commodities are divided into a set of categories (fresh; milk; grocery;
frozen; detergents and paper; and delicatessen) relevant for the study. These cus-
tomers are divided by channel (two channels) and by region (three regions). You
can think of the data as being divided into six groups (one for each pair of channel
and region). There are 440 customer records, and there are many customers in
each group. Figure shows a panel plot of the customer data; the data has been
clustered, and I gave each of 20 clusters its own marker.

People tend to like to live near people who are “like” them, so you could
expect people in a region to be somewhat similar; you could reasonably expect
differences between regions (regional preferences; differences in wealth; and so on).
Retailers have different channels to appeal to different people, so you could expect
people using different channels to be different. But you don’t see this in the plot of
clusters. In fact, the plot doesn’t really show much structure.

Here is a way to think about structure in the data. There are likely to be
different “types” of customer. For example, customers who prepare food at home
might spend more money on fresh or on grocery, and those who mainly buy prepared
food might spend more money on delicatessan; similarly, coffee drinkers with cats
or with children might spend more on milk than the lactose-intolerant, and so on.
So we can expect customers to cluster in types. An effect like this is hard to see on
a panel plot (Figure BI0). The plot for this dataset is hard to read, because the
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FIGURE 3.11: On the left, the cost function (of section[34)]) for clusterings of the
customer data with k-means for k running from 2 to 35. This suggests using a k
somewhere in the range 10-30; I chose 20. On the right, I have clustered this data
to 20 cluster centers with k-means. The clusters do seem to be squashed together,
but the plot on the left suggests that clusters do capture some important information.
Using too few clusters will clearly lead to problems. Notice that I did not scale the
data, because each of the measurements is in a comparable unit. For example, it
wouldn’t make sense to scale expenditures on fresh and expenditures on grocery with
a different scale.

dimension is fairly high for a panel plot and the data is squashed together in the
bottom left corner. However, you can see the effect when you cluster the data and
look at the cost function in representing the data with different values of k — quite
a small set of clusters gives quite a good representation (Figure BI2)). The panel
plot of cluster membership (also in that figure) isn’t particularly informative. The
dimension is quite high, and clusters get squashed together.

There is another effect, which isn’t apparent in these plots. Some of what
cause customers to cluster in types are driven by things like wealth and the ten-
dency of people to have neighbors who are similar to them. This means that differ-
ent groups should have different fractions of each type of customer. There might be
more deli-spenders in wealthier regions; more milk-spenders and detergent-spenders
in regions where it is customary to have many children; and so on. This sort of
structure will not be apparent in a panel plot. A group of a few milk-spenders and
many detergent-spenders will have a few data points with high milk expenditure
values (and low other values) and also many data points with high detergent expen-
diture values (and low other values). In a panel plot, this will look like two blobs;
but if there is a second group with many milk-spenders and few detergent-spenders
will also look like two blobs, lying roughly on top of the first set of blobs. It will
be hard to spot the difference between the groups.

An easy way to see this difference is to look at histograms of the types of
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FIGURE 3.12: The histogram of different types of customer, by group, for the cus-
tomer data. Notice how the distinction between the groups is now apparent — the
groups do appear to contain quite different distributions of customer type. It looks
as though the channels (rows in this figure) are more different than the regions
(columns in this figure).

customer within each group. I described the each group of data by the histogram of
customer types that appeared in that group (Figure ?7). Notice how the distinction
between the groups is now apparent — the groups do appear to contain quite
different distributions of customer type. It looks as though the channels (rows in
this figure) are more different than the regions (columns in this figure). To be more
confident in this analysis, we would need to be sure that different types of customer
really are different. We could do this by repeating the analysis for fewer clusters,
or by looking at the similarity of customer types.

3.5.3 Efficient Clustering and Hierarchical K Means

One important difficulty occurs in applications. We might need to have an enormous
dataset (millions of image patches are a real possibility), and so a very large k. In
this case, k means clustering becomes difficult because identifying which cluster
center is closest to a particular data point scales linearly with k (and we have to
do this for every data point at every iteration). There are two useful strategies for
dealing with this problem.

The first is to notice that, if we can be reasonably confident that each cluster
contains many data points, some of the data is redundant. We could randomly
subsample the data, cluster that, then keep the cluster centers. This works, but
doesn’t scale particularly well.

A more effective strategy is to build a hierarchy of k-means clusters. We
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FIGURE 3.13: Some examples from the accelerom-
eter dataset at https:// archive.ics.uci.edu/ml/datasets/

Dataset+for+ADL+-Recognition+with+ Wrist-worn+Accelerometer. I have la-
belled each signal by the activity. These show acceleration in the X direction (Y
and Z are in the dataset, too). There are four examples for brushing teeth and
four for eat meat. You should notice that the examples don’t have the same length
in time (some are slower and some faster eaters, etc.), but that there seem to be
characteristic features that are shared within a category (brushing teeth seems to
involve faster movements than eating meet).

randomly subsample the data (typically, quite aggressively), then cluster this with
a small value of k. Each data item is then allocated to the closest cluster center, and
the data in each cluster is clustered again with k-means. We now have something
that looks like a two-level tree of clusters. Of course, this process can be repeated to
produce a multi-level tree of clusters. It is easy to use this tree to vector quantize a
query data item. We vector quantize at the first level. Doing so chooses a branch of
the tree, and we pass the data item to this branch. It is either a leaf, in which case
we report the number of the leaf, or it is a set of clusters, in which case we vector
quantize, and pass the data item down. This procedure is efficient both when one
clusters and at run time.

3.5.4 Example: Activity from Accelerometer Data

A complex example dataset appears at https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+
This dataset consists of examples of the signal from a wrist mounted accelerometer,
produced as different subjects engaged in different activities of daily life. Activities
include: brushing teeth, climbing stairs, combing hair, descending stairs, and so on.
Each is performed by sixteen volunteers. The accelerometer samples the data at
32Hz (i.e. this data samples and reports the acceleration 32 times per second). The
accelerations are in the x, y and z-directions. Figure shows the x-component
of various examples of toothbrushing.
There is an important problem with using data like this. Different subjects
take quite different amounts of time to perform these activities. For example, some
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FIGURE 3.14: Some cluster centers from the accelerometer dataset. Each cluster
center represents a one-second burst of activity. There are a total of 480 in my
model, which I built using hierarchical k-means. Notice there are a couple of cen-
ters that appear to represent movement at about 5Hz; another few that represent
movement at about 2Hz; some that look like 0.5Hz movement; and some that seem
to represent much lower frequency movement. These cluster centers are samples
(rather than chosen to have this property).

subjects might be more thorough tooth-brushers than other subjects. As another
example, people with longer legs walk at somewhat different frequencies than people
with shorter legs. This means that the same activity performed by different subjects
will produce data vectors that are of different lengths. It’s not a good idea to deal
with this by warping time and resampling the signal. For example, doing so will
make a thorough toothbrusher look as though they are moving their hands very
fast (or a careless toothbrusher look ludicrously slow: think speeding up or slowing
down a movie). So we need a representation that can cope with signals that are a
bit longer or shorter than other signals.

Another important property of these signals is that all examples of a particular
activity should contain repeated patterns. For example, brushing teeth should show
fast accelerations up and down; walking should show a strong signal at somewhere
around 2 Hz; and so on. These two points should suggest vector quantization to
you. Representing the signal in terms of stylized, repeated structures is probably a
good idea because the signals probably contain these structures. And if we represent
the signal in terms of the relative frequency with which these structures occur, the
representation will have a fixed length, even if the signal doesn’t. To do so, we need
to consider (a) over what time scale we will see these repeated structures and (b)
how to ensure we segment the signal into pieces so that we see these structures.

Generally, repetition in activity signals is so obvious that we don’t need to be
smart about segment boundaries. I broke these signals into 32 sample segments,
one following the other. Each segment represents one second of activity. This
is long enough for the body to do something interesting, but not so long that our
representation will suffer if we put the segment boundaries in the wrong place. This
resulted in about 40, 000 segments. I then used hierarchical k-means to cluster these
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FIGURE 3.15: Histograms of cluster centers for the accelerometer dataset, for differ-
ent activities. You should notice that (a) these histograms look somewhat similar for
different actors performing the same activity and (b) these histograms look some-
what different for different activities.

segments. I used two levels, with 40 cluster centers at the first level, and 12 at the
second. Figure B.14] shows some cluster centers at the second level.

I then computed histogram representations for different example signals (Fig-
ureB.TH). You should notice that when the activity label is different, the histogram
looks different, too.

Another useful way to check this representation is to compare the average
within class chi-squared distance with the average between class chi-squared dis-
tance. I computed the histogram for each example. Then, for each pair of examples,
I computed the chi-squared distance between the pair. Finally, for each pair of ac-
tivity labels, I computed the average distance between pairs of examples where one
example has one of the activity labels and the other example has the other activity
label. In the ideal case, all the examples with the same label would be very close
to one another, and all examples with different labels would be rather different.
Table BT shows what happens with the real data. You should notice that for some
pairs of activity label, the mean distance between examples is smaller than one
would hope for (perhaps some pairs of examples are quite close?). But generally,
examples of activities with different labels tend to be further apart than examples
of activities with the same label.

Yet another way to check the representation is to try classification with nearest
neighbors, using the chi-squared distance to compute distances. I split the dataset
into 80 test pairs and 360 training pairs; using 1-nearest neighbors, I was able to



Section 3.5 Describing Repetition with Vector Quantization 105

09120119 (20(20|20(19(20]19|19|201|20]20]20
1612018 20(20(20(19|19|20]19|19] 20|17
1512011919119 19 (1919|1919 |19 ] 20
14120]20|20]20|20]201]20|20]20]18
15118 1711919 18|19 |19 | 18] 20
09 117119191819 |19 |19 )20
03119119 |15]19|19|19 |20
18 1819|1919 |19 |19
171191191919 |19
16 1.9 19|19 |20
1.8 119 |19]19

1.8 120 |19

1.5 | 2.0

1.5
TABLE 3.1 Each  column  of the table represents an  activily
for the activity dataset https:// archive.ics.uci.edu/ml/datasets/

Dataset+for+ADL+ Recognition+with+ Wrist-worn+Accelerometer, as does each
row. In each of the upper diagonal cells, I have placed the average chi-squared
distance between histograms of examples from that pair of classes (I dropped the
lower diagonal for clarity). Notice that in general the diagonal terms (average
within class distance) are rather smaller than the off diagonal terms. This quite
strongly suggests we can use these histograms to classify examples successfully.

get a held-out error rate of 0.79. This suggests that the representation is fairly
good at exposing what is important.
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3.6 YOU SHOULD
3.6.1 remember these definitions:

3.6.2 remember these terms:

3.6.3 remember these facts:

3.6.4 remember these procedures:
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Vector Quantization - Representing a Signal . . . . . . . . . .. ... 91
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PROGRAMMING EXERCISES

3.1. You can find a dataset dealing with European employment in 1979 at http://
dasl.datadesk.com/data/view/47. This dataset gives the percentage of people
employed in each of a set of areas in 1979 for each of a set of European countries.

(a) Use an agglomerative clusterer to cluster this data. Produce a dendrogram
of this data for each of single link, complete link, and group average clus-
tering. You should label the countries on the axis. What structure in the
data does each method expose? it’s fine to look for code, rather than writ-
ing your own. Hint: I made plots I liked a lot using R’s hclust clustering
function, and then turning the result into a phylogenetic tree and using a
fan plot, a trick I found on the web; try plot (as.phylo(hclustresult),
type=’’fan’’). You should see dendrograms that “make sense” (at least
if you remember some European history), and have interesting differences.

(b) Using k-means, cluster this dataset. What is a good choice of k for this
data and why?

3.2. Obtain the activities of daily life dataset from the UC Irvine machine learning
website (https://archive.ics.uci.edu/ml/datasets/Dataset-+for4+ADL+Recognition+with+Wrist-worn+Acceleron
data provided by Barbara Bruno, Fulvio Mastrogiovanni and Antonio Sgor-
bissa).

(a) Build a classifier that classifies sequences into one of the 14 activities pro-
vided. To make features, you should vector quantize, then use a histogram
of cluster centers (as described in the subsection; this gives a pretty ex-
plicit set of steps to follow). You will find it helpful to use hierarchical
k-means to vector quantize. You may use whatever multi-class classifier
you wish, though I'd start with R’s decision forest, because it’s easy to
use and effective. You should report (a) the total error rate and (b) the
class confusion matrix of your classifier.

(b) Now see if you can improve your classifier by (a) modifying the number
of cluster centers in your hierarchical k-means and (b) modifying the size
of the fixed length samples that you use.

3.3. This is a fairly ambitious exercise. It will demonstrate how to use vector
quantization to handle extremely sparse data. The 20 newsgroups dataset is a
famous text dataset. It consists of posts collected from 20 different newsgroups.
There are a variety of tricky data issues that this presents (for example, what
aspects of the header should one ignore? should one reduce words to their
stems, so “winning” goes to “win”, “hugely” to “huge”, and so on?). We will
ignore these issues, and deal with a cleaned up version of the dataset. This
consists of three items each for train and test: a document-word matrix, a
set of labels, and a map. You can find this cleaned up version of the dataset
at http://qwone.com/~jason/20Newsgroups/. You should look for the cleaned
up version, identified as 20news-bydate-matlab.tgz on that page. The usual
task is to label a test article with which newsgroup it came from. Instead, we
will assume you have a set of test articles, all from the same newsgroup, and
you need to identify the newsgroup. The document-word matrix is a table of
counts of how many times a particular word appears in a particular document.
The collection of words is very large (53975 distinct words), and most words
do not appear in most documents, so most entries of this matrix are zero. The
file train.data contains this matrix for a collection of training data; each row
represents a distinct document (there are 11269), and each column represents
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a distinct word.

(a) Cluster the rows of this matrix to get a set of cluster centers using k-
means. You should have about one center for every 10 documents. Use
k-means, and you should find an efficient package rather than using your
own implementation. In particular, implementations of k-means differ
in important ways from my rather high-level description of the algorithm;
you should look for a package that uses the Lloyd-Hartigan method. Hint:
Clustering all these points is a bit of a performance; check your code on
small subsets of the data first, because the size of this dataset means that
clustering the whole thing will be slow.

(b) You can now think of each cluster center as a document “type”. For each
newsgroup, plot a histogram of the “types” of document that appear in the
training data for that newsgroup. You’ll need to use the file train.label,
which will tell you what newsgroup a particular item comes from.

(c) Now train a classifier that accepts a small set of documents (10-100) from
a single newsgroup, and predicts which of 20 newsgroups it comes from.
You should use the histogram of types from the previous sub-exercise as
a feature vector. Compute the performance of this classifier on the test
data (test.data and test.label).

This is another fairly ambitious exercise. We will use the document clustering
method of section 77 to identify clusters of documents, which we will asso-
ciate with topics. The 20 newsgroups dataset is a famous text dataset. It
consists of posts collected from 20 different newsgroups. There are a vari-
ety of tricky data issues that this presents (for example, what aspects of the
header should one ignore? should one reduce words to their stems, so “win-
ning” goes to “win”, “hugely” to “huge”, and so on?). We will ignore these
issues, and deal with a cleaned up version of the dataset. This consists of three
items each for train and test: a document-word matrix, a set of labels, and a
map. You can find this cleaned up version of the dataset at http://qwone.com/
~jason/20Newsgroups/. You should look for the cleaned up version, identified
as 20news-bydate-matlab.tgz on that page. The usual task is to label a test
article with which newsgroup it came from. The document-word matrix is a
table of counts of how many times a particular word appears in a particular
document. The collection of words is very large (53975 distinct words), and
most words do not appear in most documents, so most entries of this matrix
are zero. The file train.data contains this matrix for a collection of training
data; each row represents a distinct document (there are 11269), and each
column represents a distinct word.

(a) Cluster the rows of this matrix, using the method of section ??, to get a
set of cluster centers which we will identify as topics. Hint: Clustering all
these points is a bit of a performance; check your code on small subsets of
the data first, because the size of this dataset means that clustering the
whole thing will be slow.

(b) You can now think of each cluster center as a document “type”. Assume
you have k clusters (topics). Represent each document by a k-dimensional
vector. Each entry of the vector should be the negative log-probability
of the document under that cluster model. Now use this information to
build a classifier that identifies the newsgroup using the vector. You’ll
need to use the file train.label, which will tell you what newsgroup a
particular item comes from. I advise you use a randomized decision forest,
but other choices are plausible. Evaluate your classifier usingthe test data
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(test.data and test.label).



CHAPTER 4

Applications and variants of PCA

4.1 PRINCIPAL COMPONENTS WITH THE SVD

If you remember the curse of dimension, you should have noticed something of a
problem in my account of PCA. When I described the curse, I said one consequence
was that forming a covariance matrix for high dimensional data is hard or impos-
sible. Then I described PCA as a method to understand the important dimensions
in high dimensional datasets. But PCA appears to rely on covariance, so I should
not be able to form the principal components in the first place. In fact, we can
form principal components without computing a covariance matrix.

4.1.1 Principal Components by SVD

I will now assume the dataset has zero mean, to simplify notation. This is easily
achieved. You subtract the mean from each data item at the start, and add the
mean back once you’ve finished smoothing. As usual, we have N data items, each
a d dimensional column vector. We will now arrange these into a matrix,

T
X1

X = xJ
. .xT
where each row of the matrix is a data vector. Now notice that the covariance
matrix for this dataset can be formed by constructing X7 X, so that

Covmat ({X}) = xTx

and if we form the SVD (see the math notes at the end if you don’t remember this)
of X, we have X = UXVT. But we have XTX = VETEVT so that

VIixTxy =37y

and XT'Y is diagonal. So we can recover the principal components of the dataset
without actually forming the covariance matrix - we just form the SVD of X, and
the columns of V are the principal components.

4.1.2 Just a few Principal Components with NIPALS

For really big datasets, even taking the SVD is hard. Usually, we don’t really want
to recover all the principal components, because we want to recover a reasonably
accurate low dimensional representation of the data. We continue to work with a
data matrix X', whose rows are data items. Now assume we wish to recover the first
principal component. This means we are seeking a vector u and a set of N numbers
w; such that w;u is a good approximation to x;. Now we can stack the w; into a

110
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column vector w. We are asking that the matrix wu” be a good approximation to
X, in the sense that wu” encodes as much of the variance of X as possible.

The Frobenius norm is a term for the matrix norm obtained by summing
squared entries of the matrix. We write

[Alr = ai).
i

In the exercises, you will show that the right choice of w and u minimizes the cost
| X — wu” |p

which we can write as
C’(W7 u) = Z (Iij — ’LUZ'UJ')2 .
ij

Now we need to find the relevant w and u. Notice there is not a unique choice,
because the pair (sw, (1/s)u) works as well as the pair (w,u). We will choose u
such that |u| = 1. There is still not a unique choice, because you can flip the signs
in u and w, but this doesn’t matter. The gradient of the cost function is a set
of partial derivatives with respect to components of w and u. The partial with
respect to wyg is

oC
Bor D (ry — wiuy) uy
i

which can be written in matrix vector form as
VwC = (X — qu)u.
Similarly, the partial with respect to u; is
oC
B ZZ: (za — wiw) w;
which can be written in matrix vector form as
Vu.C = (XT - uwT)w.

At the solution, these partial derivatives are zero. This suggests an algorithm.
First, assume we have an estimate of u, say u(™. Then we could choose the w that
makes the partial wrt w zero, so

Xu™
(u(") )Tu(") '

w' =

Now we can update the estimate of u by choosing a value that makes the partial
wrt u zero, using our estimate w*, to get

XTw
(W*)TW* :

ut =



Section 4.1 Principal Components with the SVD 112

We need to rescale to ensure that our estimate of u has unit length. Write s =
v (u*)Tu* We get
) =W
s

and
w(tD — gw*.

This iteration can be started by choosing some row of X as u(®). You can test for
convergence by checking [u(®*!) — u(™)]|. If this is small enough, then the algorithm
has converged.

To obtain a second principal component, you form X1 = X —wu” and apply
the algorithm to that. You can get many principal components like this, but it’s not
a good way to get all of them (eventually numerical issues mean the estimates are
poor). The algorithm is widely known as NIPALS (for Non-linear Iterative Partial
Least Squares).

4.1.3 Principal Components and Missing Values

Now imagine our dataset has missing values. We assume that the values are not
missing in inconvenient patterns — if, for example, the £’th component was missing
for every vector then we’d have to drop it — but don’t go into what precise kind
of pattern is a problem. Your intuition should suggest that we can estimate a few
principal components of the dataset without particular problems. The argument
is as follows. Each entry of a covariance matrix is a form of average; estimating
averages in the presence of missing values is straightforward; and, when we estimate
a few principal components, we are estimating far fewer numbers than when we are
estimating a whole covariance matrix, so we should be able to make something
work. This argument is sound (if vague).

The whole point of NIPALS is that, if you want a few principal components,
you don’t need to use either a covariance matrix or an SVD. This simplifies thinking
about missing values. NIPALS is quite forgiving of missing values, though missing
values make it hard to use matrix notation. Recall I wrote the cost function as
Clw,u) = (w5 — w;u;)?. Notice that missing data occurs in X' because there
are z;; whose values we don’t know, but there is no missing data in w or u (we're
estimating the values, and we always have some estimate). We change the sum so
that it ranges over only the known values, to get

C(w,u) = Z (wij — win;)?

ijeknown values

then write %
o > (2 — wruz) us]
jeknown values for given k
and
oC

8_ul - Z [(le - wiul) wi] .

icknown values for given [
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These partial derivatives must be zero at the solution, so we can estimate

2 jeknown values for given k ;]

=, [d]

wy, =

and

. 2 icknown values for given | Ti Wl

Ul =
%, 0%

We then normalize as before.

Procedure: 4.1 Obtaining some principal components with NIPALS

We assume that X has zero mean. Each row is a data item. Start with

u® as some row of X. Now iterate

e compute

Zjeknown values for given k (]

=, [

wy, =

and

. 2 icknown values for given [ Tawr

Uy = %,k ’
2 Wi w;
e compute s = /(u*)Tu*, and
*

u
arth) = W
S

and
wth = SW™;

e Check for convergence by checking that [u™*) —u(™)] is small.

This procedure yields a single principal component representing the
highest variance in the dataset. To obtain the next principal compo-
nent, replace X with X —wu’ and repeat the procedure. This process
will yield good estimates of the first few principal components, but as
you generate more principal components, numerical errors will become
more significant.

4.2 TEXT MODELS AND LATENT SEMANTIC ANALYSIS

It is really useful to be able to cluster together documents that are “similar”. We
cannot do so with k-means as we currently understand it, because we do not have
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a distance between documents. But the k-means recipe (i.e. iterate: allocate each
data point to the closest cluster center; re-estimate cluster centers from their data
points) is spectacularly flexible and powerful. T will demonstrate an application of
this recipe to text clustering here.

For many kinds of document, we obtain a good representation by (a) choosing
a vocabulary (a list of different words) then (b) representing the document by a
vector of word counts, where we simply ignore every word outside the vocabulary.
This is a viable representation for many applications because quite often, most of
the words people actually use come from a relatively short list (typically 100s to
1000s, depending on the particular application). The vector has one component
for each word in the list, and that component contains the number of times that
particular word is used. This model is sometimes known as a bag-of-words model.

We could try to cluster on the distance between word vectors, but this turns
out to be a poor idea. This is because quite small changes in word use might lead
to large differences between count vectors. For example, some authors might write
“car” when others write “auto”. In turn, two documents might have a large (resp.
small) count for “car” and a small (resp. large) count for “auto”. Just looking at the
counts would significantly overstate the difference between the vectors. However,
the counts are informative: a document that uses the word “car” often, and the
word “lipstick” seldom, is likely quite different from a document that uses “lipstick”
often and “car” seldom.

Details of how you put the vocabulary together can be quite important. It
is not a good idea to count extremely common words, sometimes known as stop
words, because every document has lots of them and the counts don’t tell you
very much. Typical stop words include “and”, “the”, “he”, “she”, and so on.
These are left out of the vocabulary. Notice that the choice of stop words can be
quite important, and depends somewhat on the application. It’s often, but not
always, helpful to stem words — a process that takes “winning” to “win”, “hugely”
to “huge”, and so on. This can create confusion (for example, a search for “stock”
may be looking for quite different things than a search for “stocking”). We will
always use datasets that have been preprocessed to produce word counts, but you
should be aware that pre-processing this data is hard and involves choices that can
have significant effects on the application.

4.2.1 Document Clustering with a Simple Topic Model

We get a useful notion of the differences between documents by pretending that the
count vector for each document comes from one of a small set of underlying topics.
Each topic generates words as independent, identically distributed samples from a
multinomial distribution, with one probability per word in the vocabulary. Each
topic will be a cluster center. If two documents come from the same topic, they
should have “similar” word distributions. Topics are one way to deal with changes
in word use. For example, one topic might have quite high probability of generating
the word “car” and a high probability of generating the word “auto”; another might
have low probability of generating those words, but a high probability of generating
“lipstick”.

Now think about the key elements of the k-means algorithm. First, we need to
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be able to tell the distance between any data item and any cluster center. Second,
we need to be able to come up with a cluster center for any collection of data
items. We can do each of these with our topic model, by thinking about it as a
probabilistic model of how a document is generated. We will have ¢ topics. Each
document will be a vector of word counts. We will have N vectors of word counts
(i.e. documents), and write x; for the i’th such vector. To generate a document,
we first choose a topic, choosing the j’th topic with probability 7;. Then we will
obtain a set of words for the document by repeatedly drawing IID samples from
that topic, and recording the count of each word in a count vector.

Each topic is a multinomial probability distribution. Write p; for the vector
of word probabilities for the j'th topic. We assume that words are generated inde-
pendently, conditioned on the topic. Write x;; for the k’th component of x;, and
so on. Notice that x] 1 is the sum of entries in x;, and so the number of words in
document 1.

Distance from document to topic: The probability of observing the
counts in x; when the document was generated by topic j is

(x{1)! T
p(xilp;j) = (H o D

This number will be non-negative, but less than one. It will be big when the
document is close to the topic, and small otherwise. We can obtain a distance from
this expression by taking the negative log of the probability. This will be small
when the document is close to the topic, and big otherwise.

Turning a set of documents into topic probabilities: Now assume we
have a set of documents that we assert belong to topic j. We must estimate p;.
We can do this by counting, because we assumed that each word was generated
independent of all others, given the topic. One difficulty we will run into is that
some (likely, most) counts will be zero, because most words are rare. But the fact
you don’t see a word in all the documents in the topic doesn’t mean it never occurs.
We’ve seen this issue before (section ??). You should not allow any element of p;
to be zero; one way to deal with this problem is to add some small number (likely
less than one) to each count.

Initialization: One possible initialization is to take a subset of documents,
allocate elements randomly to clusters, then compute initial cluster centers.

We now have a k-means algorithm adapted to clustering documents. This isn’t
the state of the art, by any manner of means. The next step would be to compute
soft weights linking a document to every cluster, then re-estimating the cluster
centers taking the soft weights into account. This involves some fairly alarming

equations (sections 822 B33 and R34).

4.2.2 Latent Semantic Analysis

Assume we have a set of N documents we wish to deal with. We have removed
stop words, chosen a d dimensional vocabulary, and counted the number of times
each word appears in each document. The result is a collection of N d dimensional
vectors. Write the ¢’th vector x; (these are usually called word vectors). There
is one minor irritation here; I have used d for the dimension of the vector x; for
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consistency with the rest of the text, but d is the number of terms in the vocabulary
not the number of documents.

The distance between two word vectors is usually a poor guide to the similarity
of two documents. One reason is that the number of words in a document isn’t
particularly informative. As an extreme example, we could append a document to
itself to produce a new document. The new document would have twice as many
copies of each word as the old one, yet its meaning wouldn’t have changed. But the
distance between its word vector and other word vectors would be very different.
Another reason is that two words that appear different may mean the same thing
(“car” and “auto”, above).

There are two tricks to making things better. First, normalizing the vector of
word counts is really helpful. Experience has shown that a very effective measure
of the similarity of documents i and j is the cosine distance

Ty .
X; Xj

dij = — 9
7 il

While this is widely referred to as a distance, it isn’t really. If two documents are
very similar, their cosine distance will be close to 1; if they are really different, their
cosine distance will be close to -1. But notice that

It - L] =2 -2
bl Tl J
so looking at the distance between normalized word vectors is enough.

Second, experience shows that when we project word vectors to a lower dimen-
sional space, the distances between projected (and then normalized) word vectors
are a better measure of the similarity of documents. In turn, this will allow us to
cluster documents. There is another, equally useful, way to use the reduced dimen-
sional space. Two apparently different words that have a similar meaning will tend
to appear with the same words in a document. So, for example, either “car” or
“auto” are likely to have “spanner”, “grease”, “oil”, “gasoline”, and so on in the
same document. As I shall show, this will allow us to come up with a measure of
the similarity of the meaning of two words.

Now arrange word vectors into a matrix in the usual way, to obtain

X=1 ...
Xy
This matrix is widely called a document-term matrix (its transpose is called
a term-document matrix). This is because you can think of it as a table of
counts; each row represents a document, each column represents a term from the
vocabulary. We will use this object to produce a reduced dimension representation
of the words in each document.
To form a low dimensional representation, we take an SVD of X, yielding

X =uxyr.
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Now write w; for the 7, k’th element of U, oy for the k’'th diagonal element of X,
where the elements are ordered by size (largest first) and v} for the k’th row of V.
You should read this equation in terms of documents. The equation says the i’th
document is represented as

d
T 2 : T
X, = Wik OV, -
k=1

Now U and V are orthonormal, so Zivzl u?, =1 and v} v = 1. You should look
closely at the limits of the sums. There are no more than d non-zero values of oy,
which is why I wrote the expression for x; with d terms. But &/ is N x N. Now
choose r, and approximate x! by

T
(rT } : T
X, = Uik OV -
k=1

(you can think about this as setting all oy, for k > r to zero). It is straightforward
to show that

d
T T 2
R R IR

i

k=r+41
so if these singular values are small, so is the error in the approximation. Now stack
these xz(-T) into a matrix X", and write ¥, for the matrix obtained by setting all
but the r largest singular values in ¥ to 0. We have

xm =yx, V7’
and so it is straightforward to recover each xgr) by an SVD on X. You should think
of X(") as a smoothing of X. For example, each document that contains the word
“car” should also have a non-zero count for the word “automobile” (and vice versa)
because the two words mean about the same thing. The original matrix of word
counts X doesn’t have this information, because it relies on counting actual words.
But because word vectors in X(") are compelled to occupy a low dimensional space,
counts “leak” between words with similar meanings. In turn, the counts in X'(")
are better estimates of what true word counts should be than one can obtain by
simply countinng words. Recovering information from the SVD of X is referred to
as latent semantic analysis. There are several ways to proceed.
Inter document distances: We could represent the i’th document by

)

x|

The distance between d; and d; is a good representation of the differences in
meaning of document i and document j. We can use this to cluster documents
using k-means on this representation.

Querying for documents: Assume you have a few query words, and you
need to find documents that are suggested by those words. You can represent the
query words as a word vector q, which you can think of as a very small document.
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We will find nearby documents by: computing a d for the query word vector, then
finding nearby d;. Computing a d for the query word vector is straightforward. We
find the best representation of q on the space spanned by {vi,...,v,}, then scale
that to have unit norm.

Inter-word distances: Each row of X(") is a smoothed count of the number
of times each word appears in a single document. In contrast, each column counts
the number of times a single word appears in each document. Imagine we wish to
know the similarity in meaning between two words. Represent the ¢’th word by the
i’th column of X") which I shall write as w;, so that

X0 = [wy,...,wql.

Using a word more often (or less often) should likely not change its meaning. In
turn, this means we should represent the ¢’th word by
W
n, = ——-r
[wil
and the distance between the ¢’th and j’th words is the distance between n, and
Ilj.

Word embeddings: Representing a word as a set of characters can be ex-
tremely inconvenient, because the representation does not expose anything about
the meaning of the word. Instead, we would like to use some feature vector of fixed
length describing the word, where the features give some information about the
meaning. Such a representation might be used to classify or cluster words. An-
other example application is finding words with a meaning that is similar to that of
an unknown word. The construction of n; above is an example of a representation
with these properties. Such representations are known as word embeddings.

4.2.3 Example: Clustering NIPS Words

At https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015, you
can find a dataset giving word counts for each word that appears at least 50 times
in the NIPS conference proceedings from 1987-2015, by paper. It’s big. There are
11463 distinct words in the vocabulary, and 5811 total documents. We will use
LSA to cluster words and try to expose word similarities.

First, we need to deal with practicalities. Taking the SVD of a matrix this size
will present problems, and storing the result will present quite serious problems.
Storing X is quite easy, because most of the entries are zero, and a sparse matrix
representation will work. But the whole point of the exercise is that X(") is not
sparse, and this will have about 107 entries. Nonetheless, I was able to form an
SVD in R, though it took about 30 minutes on my laptop. I give some strategies
for larger matrices below.

Figure[Z ] gives a fan plot of the dendrogram for the 100 most common words,
for a word embedding dimension of 2 and 50. Clustering was by a simple agglomer-
ative clusterer, using the distance in the latent space. Each word is represented by
a vector that summarizes the words that co-occur in the document — the represen-
tation says nothing about where a word appears in the document. So words that
are “close” are words that tend to be used often together in the same document.


https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
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FIGURE 4.1: A fan plot of the dendrogram obtained by clustering the most common
100 words in the NIPS word dataset in a word embedding space of dimension 2 left
and 50 right.

In turn, this gives a very rough estimate of whether words mean the same thing.
For example, notice that each clustering regards “networks” and “network” as very
similar (which is good), but “input” and “output” are also very similar (less good,
but predictable; an author who uses one in a document is likely to use another).
Look also at “use”, “using” and “used”; and at “consider” and “case”.

Recall for this example A" is 5811 x 11463. The reason we could form and
work with this matrix is that it is extremely sparse. But the whole point of our
construction is that X" isn’t sparse. This means that forming it may be very
difficult. In fact, we don’t need to form X" to compute the distance between two
word embeddings. Because |n;| = 1 for each i, it is enough to be able to compute
nl-Tnj for any pair of ¢, j. In turn, this is

T a7 .
Wi Wy

Wl-TWi WJTW7

Now recall there are a lot of zeros in ¥,., and they render most of the columns of U
and rows of VT irrelevant. In particular, write U, for the m x r matrix consisting
of the first r columns of U, and so on; and write 25«5) for the r x r submatrix of X,

with non-zero diagonal. Then we have

X, =us, V' =u, 2w,
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Now notice that
T T

Wl W1 “ee Wl Wy
(XTxm = e
wdTw1 .. wdde

Y (2)2pF
(EEYIHT(2EV)

(because UL U, is the r dimensional identity matrix). Write
W= (V) = [sq,...,84] .

We have that

Tyxr .
Wi Wj

Tg.
e Tar Tg. Tg.
VW] Wi JWiw;  \/s]si\/s]s;
so we can represent the i’th word with s;/|[s;|. This is a significant improvement,

because W has dimension r x 11463 where r is the dimension of word embedding

space. Furthermore, if r is a lot smaller than either N or d (which is the useful

case), we could extract 25” and V), using the NIPALS strategy above.

T
n;

n;

4.3 CANONICAL CORRELATION ANALYSIS

One common kind of high dimensional dataset has two kinds of data. For example,
you might have a representation of a sound, and a video sequence where the sound
occurred. This happens rather often for a variety of reasons. One case involves
road crossings, where accidents are rather easier to detect using sound than using
video. You might want to detect accidents with sound, then preserve the video for
evidence. Another case occurs when you want to choose sound clips to go with
video clips automatically. Yet another case occurs when you want to learn how to
read the (very small) motion cues in a video that result from sounds in a scene (so
you could, say, read a conversation off the tiny wiggles in the curtain caused by the
sound waves). As another example, you might have a representation of the text
in a caption, and of the image that goes with the caption. Again, there are many
cases. In the most common, you would predict words from pictures to label the
pictures, or predict pictures from words to support image search. The important
question here is: what aspects of the one kind of data can be predicted from the
other?

In each case, we deal with a dataset of N pairs, p; = [x;,y:] , where x; is a d,
dimensional vector representing one kind of data (eg words; sound; image; video)
and y; is a d, dimensional vector representing the other kind. I will write {x} for
the x part, etc., but notice that our agenda of prediction assumes that the pairing
is significant — if you could shuffle one of the parts without affecting the outcome
of the algorithm, then you couldn’t predict one from the other.

We could do a principal components analysis on {p}, but that approach misses
the point. We are primarily interested in the relationship between {x} and {y}
and the principal components capture only the major components of variance. For

]T
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example, imagine the x; all have a very large scale, and the y; all have a very
small scale. Then the principal components will be determined by the x;. You
could resolve this by scaling each in advance, but there is still no recipe to predict
aspects of {y} from {x} (or vice versa). We assume that {x} and {y} have zero
mean, because it will simplify the equations and is easy to achieve.

Canonical correlation analysis (or CCA) seeks linear projections of {x} and
{y} such that one is easily predicted from the other. A projection of {x} onto one
dimension can be represented by a vector u. The projection yields a dataset {uTx}
whose i’th element is u’x;. Assume we project {x} onto u and {y} onto v. Our
ability to predict one from the other is measured by the correlation of these two
datasets. So we should look for u, v so that

corr ({uTx, va})

is maximized. If you are worried that a negative correlation with a large absolute
value also allows good prediction, and this isn’t accounted for by the expression,
you should remember that we choose the sign of v.

We need some more notation. Write X for the covariance matrix of {p}. Recall
pi = [xi, yi]t. This means the covariance matrix has a block structure, where one
block is covariance of # components of {p} with each other, another is covariance
of y components with each other, and the third is covariance of x components with
y components. We write

5 Yz 2ay | | & — x covariance x —y covariance
T 2y By | | y— x covariance y — y covariance

We have that
uTEzyv

\/uTZmu\/vTEyyv
and maximizing this ratio will be hard (think about what the derivatives look like).

There is a useful trick. Assume u*, v* are values at a maximum. Then they must
also be solutions of the problem

corr ({uTx, va}) =

MaquEzyv Subject to u’'y,,u=c and vTEyyv =y

(where ¢1, co are positive constants of no particular interest). This second problem
is quite easy to solve. The Lagrangian is

uTEwyv — Al(uTEmu —c)— /\g(vTEyyv —¢2)

so we must solve
Ezyv — /\121111 =0
E;{yu — XXy, v=0

For simplicity, we assume that there are no redundant variables in x or y, so that
Y.z and 3, are both invertible. We substitute (1/A1)¥;/¥,,v=uandw = %,,v
to get

S S S Sy v = (A1 A2)v.
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Similar reasoning yields
S Say Sy S, u = (Arho)u.

So u and v are eigenvectors of the relevant matrices. But which eigenvectors?
Notice that
uTnyv =u’ (MEgpu) = (/\QVTZyy) v

so that

T
T T B u X, v B
corr ({u”x,v'y}) = = - =vVA1V A
\/u Emu\/v YyyV
meaning that the eigenvectors corresponding to the largest eigenvalues give the
largest correlation directions, to the second largest give the second largest correla-
tion directions, and so on. There are min(d,, d,) directions in total.

Worked example 4.1 Anxiety and wildness in mice

Compute the canonical correlations between indicators of anxiety and of wild-
ness in mice, using the dataset at http://phenome.jax.org/db/q?rtn=projects/
details&sym=Jaxpheno7

Solution: You should read the details on the web page that publishes the
data. The anxiety indicators are: transfer_arousal, freeze, activity,
tremor, twitch, defecation_jar, urination_jar, defecation_arena,
urination_arena, and the wildness indicators are: biting, irritability,
aggression, vocal, finger_approach. After this, it’s just a question of
finding a package and putting the data in it. I used R’s cancor, and found the
following five canonical correlations: 0.62, 0.53, 0.40, 0.35, 0.30. You shouldn’t
find the presence of strong correlations shocking (anxious mice should be
bitey), but we don’t have any evidence this isn’t an accident. The example in
the subsection below goes into this question in more detail.

This data was collected by The Jackson Laboratory, who ask it be cited as:
Neuromuscular and behavioral testing in males of 6 inbred strains of mice.
MPD:Jaxpheno7. Mouse Phenome Database web site, The Jackson Laboratory,
Bar Harbor, Maine USA. http://phenome.jax.org

4.3.1 Example: CCA of Albedo and Shading

Here is a classical computer vision problem. The brightness of a diffuse (=dull,
not shiny or glossy) surface in an image is the product of two effects: the albedo
(the percentage of incident light that it reflects) and the shading (the amount of
light incident on the surface). We will observe the brightness in an image, and the
problem is to recover the albedo and the shading separately. This is a problem that
dates back to the early 70’s, but still gets regular and significant attention in the
computer vision literature, because it’s hard, and because it seems to be important.


http://phenome.jax.org/db/q?rtn=projects/details&sym=Jaxpheno7
http://phenome.jax.org/db/q?rtn=projects/details&sym=Jaxpheno7
http://phenome.jax.org
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We will confine our discussion to smooth (=not rough) surfaces, to prevent
the complexity spiralling out of control. Albedo changes at marks on the surface,
so a dark surface has low albedo and a light surface has high albedo. Shading is a
property of the geometry of the light sources with respect to the surface. When you
move an object around in a room, its shading may change a lot (though people are
surprisingly bad at noticing), but its albedo doesn’t change at all. To change an
object’s albedo, you need something like a marker (or paint, etc.). All this suggests
that a CCA of albedo against shading will suggest there is no correlation.

Because this is a classical problem, there are datasets one can download.
There is a very good dataset giving the albedo and shading for images, collected
by Roger Grosse, Micah K. Johnson, Edward H. Adelson, and William T. Free-
man at http://www.cs.toronto.edu/~rgrosse/intrinsic/. These images show individ-
ual objects on black backgrounds, and there are masks identifying object pixels. I
constructed random 11 x 11 tiles of albedo and shading for each of the 20 objects
depicted. T chose 20 tiles per image (so 400 in total), centered at random locations,
but chosen so that every pixel in a tile lies on an object pixel. I then reshaped
each tile into a 121 dimensional vector, and computed a CCA. The top 10 values of
canonical correlations I obtained were: 0.96, 0.94, 0.93, 0.93, 0.92, 0.92, 0.91, 0.91,
0.90, 0.88.

This should strike you as deeply alarming: how could albedo and shading be
correlated? The correct answer is that they are not, but careless analysis might
suggest they are. The difficulty is that the objective function we are maximizing is
a ratio -

corr ({uTx,vTy)) = L ZmV
VUl uy/vTs,, v
Now look at the denominator of this fraction, and recall our work on PCA. The
whole point of PCA is that there are many directions u such that u”'3,,u is small
— these are the directions that we can drop in building low dimensional models.
But now they have a potential to be a significant nuisance. We could have the
objective function take a large value simply because the terms in the denominator
are very small. This is what happens in the case of albedo and shading. You can
check this by looking at Figure[2] or by actually looking at the size of the canonical
correlation directions (the u’s and v’s). You will find that, if you compute u and
v using the procedure I described, these vectors have large magnitude (I found
magnitudes of the order of 100). This suggests, correctly, that they’re associated
with small eigenvalues in X,, and 3.

Just a quick check with intuition and an image tells us that these canonical
correlations don’t mean what we think. But this works only for a situation where
we have intuition, etc. We need a test that tells whether the large correlation values
have arisen by accident.

There is an easy and useful strategy for testing this. If there really are mean-
ingful correlations between the {x} and {y}, they should be disrupted if we reorder
the datasets. So if something important is changed by permuting one dataset, there
is evidence that there is a meaningful correlation. The recipe is straightforward.
We choose a method to summarize the canonical correlations in a number (this is
a statistic; if you don’t remember the term, it’s in the backup material). In the
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Albedo tiles (10x10)  Shading tiles (10x10) Albedo CC’s (5x5) Shading CC’s (5x5)

FIGURE 4.2: On the left, a 10 x 10 grid of tiles of albedo (far left) and shading
(center left ), taken from Grosse et al’s data set. The position of the tiles is keyed,
so (for example) the albedo tile at 3, 5 corresponds to the shading tile at 3, 5. On
the right, the first 25 canonical correlation directions for albedo (center right)
and shading (far right). I have reshaped these into tiles and zoomed them. The
scale is smallest value is black, and largest white. These are ordered so the pair
with highest correlation is at the top left, next highest is one step to the right, etc.
You should notice that these directions do not look even slightly like the patterns in
the original tiles, or like any pattern you expect to encounter in a real image. This
18 because they’re not: these are directions that have very small variance.

case of canonical correlations, the usual choice is Wilks’ lambda (or Wilks’ X if
you're fussy). Write p; for the ¢’th canonical correlation. Wilks’ lambda is

i=Min(d,,d,)

I a-.

=1

Notice if there are a lot of strong correlations, we should get a small number. We
now compute that number for the dataset we have. We then construct a collection
of new datasets by randomly reordering the items in {y}, and for each we compute
the value of the statistic. This gives an estimate of the distribution of values of
Wilks’ lambda available if there is no correlation. We then ask what fraction of the
reordered datasets have an even smaller value of Wilk’s lambda than the observed
value. If this fraction is small, then it is unlikely that the correlations we observed
arose by accident. All this is fairly easily done using a package (I used CCP in R).
Figure shows what happens for the mouse canonical correlation of exam-
ple £11 You should notice that this is a significance test, and follows the usual
recipe for such tests except that we estimate the distribution of the statistic empir-
ically. Here about 97% of random permutations have a larger value of the Wilks’
lambda than that of the original data, which means that we would see the canonical
correlation values we see only about once in 30 experiments if they were purely a
chance effect. You should read this as quite good evidence there is a correlation.
The approach involves a fair amount of computation for a large dataset. Fig-
ure [£4] shows what happens for albedo and shading. The figure is annoying to
interpret, because the value of the Wilks’ lambda is extremely small; the big point
is that almost every permutation of the data has an even smaller value of the
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Permutation distribution
test= Wilks , original test statistic= 0.297 , p= 0.023

0.2 0.3 0.4 0.5 0.6 0.7

stat

FIGURE 4.3: A histogram of values of Wilks’ lambda obtained from permuted versions
of the mouse dataset of example[{-1l The value obtained for the original dataset is
shown by the vertical line. Notice that most values are larger (about 97% of values),
meaning that we would see the canonical correlation values we see only about once
in 30 experiments if they were purely a chance effect. There is very likely a real
effect here.

Wilks’ lambda — the correlations are entirely an accident, and are of no statistical
significance.
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Permutation distribution
test= Wilks , original test statistic= 0.000000000000000000000000138 , p= 0.826
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FIGURE 4.4: A histogram of values of Wilks’ lambda obtained from permuted versions
of the 400 tile albedo shading dataset discussed in the text. The value obtained for
the original dataset is shown by the vertical line, and is really tiny (rather less than
1e-21). But rather more than half of the values obtained by permuting the data are
even tinier, meaning that we would see the canonical correlation values we see or
smaller about 4 in every & experiments if they were purely a chance effect. There
is mo reason to believe the two have a correlation.



CHAPTER 5

Regression

Classification tries to predict a class from a data item. Regression tries to
predict a value. For example, we know the zip code of a house, the square footage
of its lot, the number of rooms and the square footage of the house, and we wish to
predict its likely sale price. As another example, we know the cost and condition of
a trading card for sale, and we wish to predict a likely profit in buying it and then
reselling it. As yet another example, we have a picture with some missing pixels
— perhaps there was text covering them, and we want to replace it — and we want
to fill in the missing values. As a final example, you can think of classification as
a special case of regression, where we want to predict either +1 or —1; this isn’t
usually the best way to proceed, however. Predicting values is very useful, and so
there are many examples like this.

5.1 OVERVIEW

Some formalities are helpful here. In the simplest case, we have a dataset consisting
of a set of N pairs (x;,y;). We think of y; as the value of some function evaluated
at x;, but with some random component. This means there might be two data
items where the x; are the same, and the y; are different. We refer to the x; as
explanatory variables and the y; is a dependent variable. We regularly say
that we are regressing the dependent variable against the explanatory variables.
We want to use the examples we have — the training examples — to build a
model of the dependence between y and x. This model will be used to predict
values of y for new values of x, which are usually called test examples. By far
the most important model has the form y = x* 3 4 £, where 3 are some set of
parameters we need to choose and £ are random effects. Now imagine that we have
one independent variable. An appropriate choice of x (details below) will mean
that the predictions made by this model will lie on a straight line. Figure 51l shows
two regressions. The data are plotted with a scatter plot, and the line gives the
prediction of the model for each value on the x axis.

We do not guarantee that different values of x produce different values of .
Data just isn’t like this (see the crickets example Figure B1l). Traditionally, regres-
sion produces some representation of a probability distribution for y conditioned on
x, so that we would get (say) some representation of a distribution on the houses
likely sale value. The best prediction would then be the expected value of that
distribution.

It should be clear that none of this will work if there is not some relationship
between the training examples and the test examples. If T collect training data
on the height and weight of children, I'm unlikely to get good predictions of the
weight of adults from their height. We can be more precise with a probabilistic
framework. We think of x; as IID samples from some (usually unknown) probability
distribution P(X). Then the test examples should also be IID samples from P(X),

127
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Weight vs length in perch from Lake Laengelmavesi Chirp frequency vs temperature in crickets
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FIGURE 5.1: On the left, a regression of weight against length for perch from a
Finnish lake (you can find this dataset, and the back story at http://www.amstat.
org/ publications/ jse/ jse_data_archive.htm; look for “fishcatch” on that page). No-
tice that the linear regression fits the data fairly well, meaning that you should be
able to predict the weight of a perch from its length fairly well. On the right, a
regression of air temperature against chirp frequency for crickets. The data is fairly
close to the line, meaning that you should be able to tell the temperature from the
pitch of cricket’s chirp fairly well. This data is from http://mste.illinois.edu/ patel/
amar430/ keyprobl.html. The R? you see on each figure is a measure of the goodness

of fit of the regression (section[5.2.7)).

or, at least, rather like them — you usually can’t check this point with any certainty.
A probabilistic formalism can help be precise about the y;, too. Assume another
random variable Y has joint distribution with X given by P(Y,X). We think of
each y; as a sample from P(Y|{X =x;}). Then our modelling problem would be:
given the training data, build a model that takes a test example x and yields a
model of P(Y|{X = x;}).

Thinking about the problem this way should make it clear that we’re not
relying on any exact, physical, or causal relationship between Y and X. It’s enough
that their joint probability makes useful predictions possible, something we will test
by experiment. This means that you can build regressions that work in somewhat
surprising circumstances. For example, regressing childrens’ reading ability against
their foot size can be quite successful. This isn’t because having big feet somehow
helps you read; it’s because on the whole, older children read better, and also have
bigger feet.

To do anything useful with this formalism requires some aggressive simplifying
assumptions. There are very few circumstances that require a comprehensive rep-
resentation of P(Y|{X = x;}). Usually, we are interested in E[Y|{X = x;}| (the
mean of P(Y|{X = x;})) and in var ({P(Y|{X =x;})}). To recover this represen-
tation, we assume that, for any pair of examples (x,y), the value of y is obtained
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http://www.amstat.org/publications/jse/jse_data_archive.htm
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Longevity vs Thorax in Female Fruitflies Heart rate vs temperature in humans
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FIGURE 5.2: Regressions do not necessarily yield good predictions or good model fits.
On the left, a regression of the lifespan of female fruitflies against the length of
their torso as adults (apparently, this doesn’t change as a fruitfly ages; you can
find this dataset, and the back story at http://www.amstat.org/ publications/jse/
Jse_data_archive.htm; look for “fruitfly” on that page). The figure suggests you can
make some prediction of how long your fruitfly will last by measuring its torso, but
not a particularly accurate one. On the right, a regression of heart rate against
body temperature for adults. You can find the data at http://www.amstat.org/
publications/ jse/ jse_data_archive.htm as well; look for “temperature” on that page.
Notice that predicting heart rate from body temperature isn’t going to work that well,
either.

by applying some (unknown) function f to x, then adding some random variable
& with zero mean. We can write y(x) = f(x) + £, though it’s worth remembering
that there can be many different values of y associated with a single x. Now we
must make some estimate of f — which yields E[Y|{X = x;}] — and estimate the
variance of £&. The variance of £ might be constant, or might vary with x.

5.1.1 Regression to Spot Trends

Regression isn’t only used to predict values. Another reason to build a regression
model is to compare trends in data. Doing so can make it clear what is really hap-
pening. Here is an example from Efron (“Computer-Intensive methods in statistical
regression”; B. Efron, STAM Review, 1988). The table in the appendix shows some
data from medical devices, which sit in the body and release a hormone. The data
shows the amount of hormone currently in a device after it has spent some time in
service, and the time the device spent in service. The data describes devices from
three production lots (A, B, and C). Each device, from each lot, is supposed to have
the same behavior. The important question is: Are the lots the same? The amount
of hormone changes over time, so we can’t just compare the amounts currently in
each device. Instead, we need to determine the relationship between time in service
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and hormone, and see if this relationship is different between batches. We can do
so by regressing hormone against time.

Hormone against time in service Regression residual against time
40 6r
()
é 35 4 C B
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FIGURE 5.3: On the left, a scatter plot of hormone against time for devices from
tables[5. 1l and [l Notice that there is a pretty clear relationship between time and
amount of hormone (the longer the device has been in service the less hormone there
is). The issue now is to understand that relationship so that we can tell whether lots
A, B and C are the same or different. The best fit line to all the data is shown as
well, fitted using the methods of section[Z 2. On the right, a scatter plot of residual
— the distance between each data point and the best fit line — against time for the
devices from tables [0l and [51l. Now you should notice a clear difference; some
devices from lots B and C have positive and some negative residuals, but all lot
A devices have negative residuals. This means that, when we account for loss of
hormone over time, lot A devices still have less hormone in them. This is pretty
good evidence that there is a problem with this lot.

Figure shows how a regression can help. In this case, we have modelled
the amount of hormone in the device as

a X (time in service) + b

for a, b chosen to get the best fit (much more on this point later!). This means
we can plot each data point on a scatter plot, together with the best fitting line.
This plot allows us to ask whether any particular batch behaves differently from
the overall model in any interesting way.

However, it is hard to evaluate the distances between data points and the best
fitting line by eye. A sensible alternative is to subtract the amount of hormone
predicted by the model from the amount that was measured. Doing so yields a
residual — the difference between a measurement and a prediction. We can then
plot those residuals (Figure[53]). In this case, the plot suggests that lot A is special
— all devices from this lot contain less hormone than our model predicts.
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Definition: 5.1 Regression

Regression accepts a feature vector and produces a prediction, which
is usually a number, but can sometimes have other forms. You can
use these predictions as predictions, or to study trends in data. It is
possible, but not usually particularly helpful, to see classification as a
form of regression.

5.2 LINEAR REGRESSION AND LEAST SQUARES

Assume we have a dataset consisting of a set of N pairs (x;,y;). We think of y; as
the value of some function evaluated at x;, with some random component added.
This means there might be two data items where the x; are the same, and the y; are
different. We refer to the x; as explanatory variables and the y; is a dependent
variable. We want to use the examples we have — the training examples —
to build a model of the dependence between y and x. This model will be used to
predict values of y for new values of x, which are usually called test examples. It
can also be used to understand the relationships between the x. The model needs
to have some probabilistic component; we do not expect that y is a function of x,
and there is likely some error in evaluating y anyhow.

5.2.1 Linear Regression

We cannot expect that our model makes perfect predictions. Furthermore, y may
not be a function of x — it is quite possible that the same value of x could lead
to different y’s. One way that this could occur is that y is a measurement (and so
subject to some measurement noise). Another is that there is some randomness in
y. For example, we expect that two houses with the same set of features (the x)
might still sell for different prices (the y’s).

A good, simple model is to assume that the dependent variable (i.e. y) is
obtained by evaluating a linear function of the explanatory variables (i.e. x), then
adding a zero-mean normal random variable. We can write this model as

y=x"f+¢

where £ represents random (or at least, unmodelled) effects. We will always assume
that £ has zero mean. In this expression, [ is a vector of weights, which we must
estimate. When we use this model to predict a value of y for a particular set of
explanatory variables x*, we cannot predict the value that & will take. Our best
available prediction is the mean value (which is zero). Notice that if x = 0, the
model predicts y = 0. This may seem like a problem to you — you might be
concerned that we can fit only lines through the origin — but remember that x
contains explanatory variables, and we can choose what appears in x. The two
examples show how a sensible choice of x allows us to fit a line with an arbitrary
y-intercept.
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Definition: 5.2 Linear regression

A linear regression takes the feature vector x and predicts x” 3, for
some vector of coefficients 5. The coefficients are adjusted, using data,
to produce the best predictions.

Example: 5.1 A linear model fitted to a single explanatory variable

Assume we fit a linear model to a single explanatory variable. Then
the model has the form y = z8 + &, where £ is a zero mean random
variable. For any value z* of the explanatory variable, our best estimate
of y is fx*. In particular, if z* = 0, the model predicts y = 0, which
is unfortunate. We can draw the model by drawing a line through the
origin with slope 8 in the z, y plane. The y-intercept of this line must
be zero.

Example: 5.2 A linear model with a non-zero y-intercept

Assume we have a single explanatory variable, which we write u. We
can then create a vector x = [u,1]” from the explanatory variable. We
now fit a linear model to this vector. Then the model has the form
y = xT 3 + &, where £ is a zero mean random variable. For any value
x* = [u*, 1]T of the explanatory variable, our best estimate of y is
(x*)T 8, which can be written as y = fiu* + B2. If 2* = 0, the model
predicts y = 2. We can draw the model by drawing a line through the

origin with slope 8 and y-intercept 52 in the z, y plane.

5.2.2  Choosing /3

We must determine 3. We can proceed in two ways. I show both because different
people find different lines of reasoning more compelling. Each will get us to the
same solution. One is probabilistic, the other isn’t. Generally, I'll proceed as if
they’re interchangeable, although at least in principle they’re different.
Probabilistic approach: we could assume that £ is a zero mean normal
random variable with unknown variance. Then P(y|z, ) is normal, with mean
xT 3, and so we can write out the log-likelihood of the data. Write o2 for the
variance of £, which we don’t know, but will not worry about right now. We have
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that

log £(8) = = log P(yilxi, )
1
sy Z(?Ji —x73)? + term not depending on j3
g -

Maximizing the log-likelihood of the data is equivalent to minimizing the negative
log-likelihood of the data. Furthermore, the term 2% does not affect the location

g
of the minimum, so we must have that 8 minimizes ) . (y; — xF'B)2, or anything
proportional to it. It is helpful to minimize an expression that is an average of

squared errors, because (hopefully) this doesn’t grow much when we add data. We

therefore minimize
1
(N) (Z(yz - XiTﬁ)2> :

K2

Direct approach: notice that, if we have an estimate of 3, we have an
estimate of the values of the unmodelled effects &; for each example. We just take
& =y —x!' 3. Tt is quite natural to make the unmodelled effects “small”. A good
measure of size is the mean of the squared values, which means we want to minimize

(%) (Z(y - x;ﬁf) :

We can write all this more conveniently using vectors and matrices. Write y
for the vector
Y1
Y2

and X for the matrix

B

Then we want to minimize
1
(5) =¥ - x0)
which means that we must have
XTxp—xTy =o.

For reasonable choices of features, we could expect that X”X — which should
strike you as being a lot like a covariance matrix — has full rank. If it does, which
is the usual case, this equation is easy to solve. If it does not, there is more to do,
which we will do in section
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Listing 5.1: R code used for the linear regression example of worked example (.1

efd<-read.table(’efrontable.txt’ , header=IRUE)
# the table has the form

#N1 Ah  Bh Ch N2 At Bt C(Ct

# now we meed to construct a new dataset
hor<—stack (efd , select=2:4)

tim<—stack (efd, select=6:8)

foo<—data.frame (time=tim [, c(”values”)],
hormone=hor [, c(”values”)])

foo .lm<—Im(hormone~time, data=foo)

plot (foo)

abline(foo .lm)

Remember this:  The vector of coefficients B for a linear regression is
usually estimated using a least-squares procedure.

Worked example 5.1 Simple Linear Regression with R

Regress the hormone data against time for all the devices in the Efron example.

Solution: This example is mainly used to demonstrate how to regress in R.
There is sample code in listing [F.Jl The summary in the listing produces a
great deal of information (try it). Most of it won’t mean anything to you yet.
You can get a figure by doing plot(foo.1lm), but these figures will not mean

anything yet, either. In the code, I've shown how to plot the data and a line
on top of it.

5.2.3 Residuals
Assume we have produced a regression by solving
XTxp—xTy =0
for the value of B I write B because this is an estimate; we likely don’t have the

true value of the 8 that generated the data (the model might be wrong; etc.). We

cannot expect that X B is the same as y. Instead, there is likely to be some error.
The residual is the vector

e=y—Xp
which gives the difference between the true value and the model’s prediction at each
point. Each component of the residual is an estimate of the unmodelled effects for
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that data point. The mean square error is

and this gives the average of the squared error of prediction on the training exam-
ples.

Notice that the mean squared error is not a great measure of how good the
regression is. This is because the value depends on the units in which the dependent
variable is measured. So, for example, if you measure y in meters you will get a
different mean squared error than if you measure y in kilometers.

5.2.4 R-squared

There is an important quantitative measure of how good a regression is which
doesn’t depend on units. Unless the dependent variable is a constant (which would
make prediction easy), it has some variance. If our model is of any use, it should
explain some aspects of the value of the dependent variable. This means that
the variance of the residual should be smaller than the variance of the dependent
variable. If the model made perfect predictions, then the variance of the residual
should be zero.

We can formalize all this in a relatively straightforward way. We will ensure
that X always has a column of ones in it, so that the regression can have a non-zero
y-intercept. We now fit a model

y=~XB+e

(where e is the vector of residual values) by choosing 3 such that e’'e is minimized.
Then we get some useful technical results.

Useful Facts: 5.1 Regression

We write y = X B + e, where e is the residual. Assume X has a column
of ones, and [ is chosen to minimize e”e. Then we have

1. e’X = 0, ie. that e is orthogonal to any column of X. This
is because, if e is not orthogonal to some column of e, we can
increase or decrease the B term corresponding to that column to
make the error smaller. Another way to see this is to notice that

f is chosen to minimize ~ele, which is & (y — XB)T(y — XB).

Now because this is a minimum, the gradient with respect to f is
zero, so (y — XB)T(=X) = —eTXx = 0.

2. ef'1 = 0 (recall that X has a column of all ones, and apply the
previous result).

3. 17(y — XB3) = 0 (same as previous result).

4. eTX[ = 0 (first result means that this is true).
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Now y is a one dimensional dataset arranged into a vector, so we can compute
mean ({y}) and var[y]. Similarly, X is a one dimensional dataset arranged into a

vector (its elements are x! 3), as is e, so we know the meaning of mean and variance
for each. We have a particularly important result:

var[y] = var {XBA} + varle].

This is quite easy to show, with a little more notation. Write y = (1£V)(1Ty)1 for

the vector whose entries are all mean ({y}); similarly for & and for X3. We have
varly] = (1/N)(y = ¥)" (v - 5)
and so on for vare;], etc. Notice from the facts that y = X_B Now
N - X T A~ - A~
varfyl = (1/N) (|- XB] +le-a]) ([xB-XB]+e-7q])
~ - T ~ - T ~ - A~ T _
— (1/N) ([Xﬁ — x5 [x5-x5) +20e—4" [x5 - x5| +[e—&" e - e]>
A - X T A~ - A~
— /) (s = %3] [x5 - %3] +fo—ol" e 9]
because € = 0 and eTXB =0and e’1=0
= var[XﬁA} + varle].

This is extremely important, because us allows us to think about a regression as
explaining variance in y. As we are better at explaining y, var[e] goes down. In
turn, a natural measure of the goodness of a regression is what percentage of the
variance of y it explains. This is known as R? (the r-squared measure). We have

var [x; B}
var(y;]

which gives some sense of how well the regression explains the training data. Notice
that the value of R? is not affected by the units of y (exercises)

Good predictions result in high values of R?, and a perfect model will have
R? = 1 (which doesn’t usually happen). For example, the regression of figure
has an R? value of 0.87. Figures 5.1l and 5.2 show the R? values for the regressions
plotted there; notice how better models yield larger values of R?. Notice that if
you look at the summary that R provides for a linear regression, it will offer you
two estimates of the value for R?. These estimates are obtained in ways that try to
account for (a) the amount of data in the regression, and (b) the number of variables
in the regression. For our purposes, the differences between these numbers and the
R? 1 defined are not significant. For the figures, I computed R? as I described in the
text above, but if you substitute one of R’s numbers nothing terrible will happen.
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Remember this:  The quality of predictions made by a regression can be
evaluated by looking at the fraction of the variance in the dependent variable
that is explained by the regression. This number is called R?, and lies be-
tween zero and one; regressions with larger values make better predictions.

Frequency of word usage in Shakespeare Frequency of word usage in Shakespeare, log-log

Number of appearances
Log number of appearances

2000 4000 6000 8000 10000 12000 14000

0
I

0 20 40 60 80 100 0 1 2 3 4

Rank Log rank

FIGURE 5.4: On the left, word count plotted against rank for the 100 most common
words in Shakespeare, using a dataset that comes with R (called “bard”, and quite
likely originating in an unpublished report by J. Gani and I. Saunders). I show a
regression line too. This is a poor fit by eye, and the R? is poor, too (R?> =0.1). On
the right, log word count plotted against log rank for the 100 most common words
in Shakespeare, using a dataset that comes with R (called “bard”, and quite likely
originating in an unpublished report by J. Gani and I. Saunders). The regression
line is very close to the data.

5.2.5 Transforming Variables

Sometimes the data isn’t in a form that leads to a good linear regression. In this
case, transforming explanatory variables, the dependent variable, or both can lead
to big improvements. Figure [5.4] shows one example, based on the idea of word
frequencies. Some words are used very often in text; most are used seldom. The
dataset for this figure consists of counts of the number of time a word occurred
for the 100 most common words in Shakespeare’s printed works. It was originally
collected from a concordance, and has been used to attack a variety of interesting
questions, including an attempt to assess how many words Shakespeare knew. This
is hard, because he likely knew many words that he didn’t use in his works, so
one can’t just count. If you look at the plot of Figure 5.4l you can see that a
linear regression of count (the number of times a word is used) against rank (how
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common a word is, 1-100) is not really useful. The most common words are used
very often, and the number of times a word is used falls off very sharply as one
looks at less common words. You can see this effect in the scatter plot of residual
against dependent variable in Figure 54 — the residual depends rather strongly
on the dependent variable. This is an extreme example that illustrates how poor
linear regressions can be.

However, if we regress log-count against log-rank, we get a very good fit
indeed. This suggests that Shakespeare’s word usage (at least for the 100 most
common words) is consistent with Zipf’s law. This gives the relation between
frequency f and rank r for a word as

S
focr
,

where s is a constant characterizing the distribution. Our linear regression suggests
that s is approximately 1.67 for this data.

In some cases, the natural logic of the problem will suggest variable transfor-
mations that improve regression performance. For example, one could argue that
humans have approximately the same density, and so that weight should scale as
the cube of height; in turn, this suggests that one regress weight against the cube
root of height. Generally, shorter people tend not to be scaled versions of taller
people, so the cube root might be too aggressive, and so one thinks of the square
root.

Remember this: The performance of a regression can be improved by
transforming variables. Transformations can follow from looking at plots,
or thinking about the logic of the problem

The Box-Cox transformation is a method that can search for a transfor-
mation of the dependent variable that improves the regression. The method uses a
one-parameter family of transformations, with parameter A\, then searches for the
best value of this parameter using maximum likelihood. A clever choice of transfor-
mation means that this search is relatively straightforward. We define the Box-Cox
transformation of the dependent variable to be

b Vol GEN£0
y( C) = )\ 1 #
¢ logy; ifA=0

It turns out to be straightforward to estimate a good value of A using maximum
likelihood. One searches for a value of A that makes residuals look most like a
normal distribution. Statistical software will do it for you; the exercises sketch
out the method. This transformation can produce significant improvements in a
regression. For example, the transformation suggests a value of A\ = 0.303 for
the fish example of Figure Bl It isn’t natural to plot weight’3"® against height,
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Weight vs length in perch from Lake Laengelmavesi Chirp frequency vs temperature in crickets
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FIGURE 5.5: The Boz-Cox transformation suggests a value of A = 0.303 for the
regression of weight against height for the perch data of Figure [L1  You can
find this dataset, and the back story at http://www.amstat.org/ publications/jse/
Jse_data_archive.htm; look for “fishcatch” on that page). On the left, a plot of the
resulting curve overlaid on the data. For the cricket temperature data of that fig-
ure (from http://mste.illinois.edu/ patel/amar430/ keyprobl.html), the transforma-
tion suggests a value of A = 4.75. On the right, a plot of the resulting curve
overlaid on the data.

because we don’t really want to predict weight0'303. Instead, we plot the predictions
of weight that come from this model, which will lie on a curve with the form
(az + b)O-%W, rather than on a straight line. Similarly, the transformation suggests
a value of A\ = 0.475 for the cricket data. Figure shows the result of these
transforms.

5.2.6 Can you Trust Your Regression?

Linear regression is useful, but it isn’t magic. Some regressions make poor predic-
tions (recall the regressions of figure 52)). As another example, regressing the first
digit of your telephone number against the length of your foot won’t work.

We have some straightforward tests to tell whether a regression is working.
You can look at a plot for a dataset with one explanatory variable and one
dependent variable. You plot the data on a scatter plot, then plot the model as a
line on that scatterplot. Just looking at the picture can be informative (compare
Figure 51 and Figure (.2)).

You can check if the regression predicts a constant. This is usually a bad
sign. You can check this by looking at the predictions for each of the training data
items. If the variance of these predictions is small compared to the variance of
the independent variable, the regression isn’t working well. If you have only one
explanatory variable, then you can plot the regression line. If the line is horizontal,
or close, then the value of the explanatory variable makes very little contribution


http://www.amstat.org/publications/jse/jse_data_archive.htm
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to the prediction. This suggests that there is no particular relationship between
the explanatory variable and the independent variable.

You can also check, by eye, if the residual isn’t random. If y — x7f is
a zero mean normal random variable, then the value of the residual vector should
not depend on the corresponding y-value. Similarly, if y — x”3 is just a zero
mean collection of unmodelled effects, we want the value of the residual vector to
not depend on the corresponding y-value either. If it does, that means there is
some phenomenon we are not modelling. Looking at a scatter plot of e against
y will often reveal trouble in a regression (Figure [5.7). In the case of Figure B.7]
the trouble is caused by a few data points that are very different from the others
severely affecting the regression. We will discuss how to identify and deal with
such points in Section ??. Once they have been removed, the regression improves
markedly (Figure £.8]).

Remember this:  Linear regressions can make bad predictions. You can
check for trouble by: evaluating R?; looking at a plot; looking to see if the
regression makes a constant prediction; or checking whether the residual is
random. Other strategies exist, but are beyond the scope of this book.




Section 5.3 Problem Data Points 141

Procedure: 5.1 Linear Regression using Least Squares

We have a dataset containing N pairs (x;,y;). Each z; is a d-
dimensional explanatory vector, and each y; is a single dependent vari-
able. We assume that each data point conforms to the model

yi=x; B+&

where &; represents unmodelled effects. We assume that &; are samples
of a random variable with 0 mean and unknown variance. Sometimes,
we assume the random variable is normal. Write

Y1
Y2

and

X = xJ
T
n

We estimate 8 (the value of 8) by solving the linear system
XTxpg—xTy =o.
For a data point x, our model predicts XTB. The residuals are
e=y— & B .

We have that e”'1 = 0. The mean square error is given by

The R? is given by

)
var ({y})

Values of R? range from 0 to 1; a larger value means the regression is
better at explaining the data.

5.3 PROBLEM DATA POINTS

I have described regressions on a single explanatory variable, because it is easy to
plot the line in this case. You can find most problems by looking at the line and
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the data points. But a single explanatory variable isn’t the most common or useful
case. If we have many explanatory variables, it can be hard to plot the regression
in a way that exposes problems. This section mainly describes methods to identify
and solve difficulties that don’t involve looking at the line.

00

-40 -20 0 20 40 -40 -20 0 20 40

xv nxv

FIGURE 5.6: On the left, a synthetic dataset with one independent and one explana-
tory variable, with the regression line plotted. Notice the line is close to the data
points, and its predictions seem likely to be reliable. On the right, the result of
adding a single outlying datapoint to that dataset. The regression line has changed
significantly, because the regression line tries to minimize the sum of squared verti-
cal distances between the data points and the line. Because the outlying datapoint is
far from the line, the squared vertical distance to this point is enormous. The line
has moved to reduce this distance, at the cost of making the other points further
from the line.

5.3.1 Problem Data Points have Significant Impact

Outlying data points can significantly weaken the usefulness of a regression. For
some regression problems, we can identify data points that might be a problem, and
then resolve how to deal with them. One possibility is that they are true outliers —
someone recorded a data item wrong, or they represent an effect that just doesn’t
occur all that often. Another is that they are important data, and our linear model
may not be good enough. If the data points really are outliers, we can drop them
from the data set. If they aren’t, we may be able to improve the regression by
transforming features or by finding a new explanatory variable.

When we construct a regression, we are solving for the S that minimizes
>y — xF'B)2, equivalently for the 8 that produces the smallest value of > 2.
This means that residuals with large value can have a very strong influence on
the outcome — we are squaring that large value, resulting in an enormous value.
Generally, many residuals of medium size will have a smaller cost than one large
residual and the rest tiny. As figure illustrates, this means that a data point
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that lies far from the others can swing the regression line significantly.
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FIGURE 5.7: On the left, weight regressed against height for the bodyfat dataset. The
line doesn’t describe the data particularly well, because it has been strongly affected
by a few data points (filled-in markers). On the right, a scatter plot of the residual
against the value predicted by the regression. This doesn’t look like noise, which is
a sign of trouble.

This creates a problem, because data points that are very different from most
others (sometimes called outliers) can also have the highest influence on the out-
come of the regression. Figure shows this effect for a simple case. When we
have only one explanatory variable, there’s an easy method to spot problem data
points. We produce a scatter plot and a regression line, and the difficulty is usually
obvious. In particularly tricky cases, printing the plot and using a see-through ruler
to draw a line by eye can help (if you use an opaque ruler, you may not see some
errors).

These data points can come from many sources. They may simply be errors.
Failures of equipment, transcription errors, someone guessing a value to replace lost
data, and so on are some methods that might produce outliers. Another possibility
is your understanding of the problem is wrong. If there are some rare effects that are
very different than the most common case, you might see outliers. Major scientific
discoveries have resulted from investigators taking outliers seriously, and trying to
find out what caused them (though you shouldn’t see a Nobel prize lurking behind
every outlier).

What to do about outliers is even more fraught. The simplest strategy is to
find them, then remove them from the data. I will describe some methods that
can identify outliers, but you should be aware that this strategy can get dangerous
fairly quickly. First, you might find that each time you remove a few problematic
data points, some more data points look strange to you. This process is unlikely to
end well. Second, you should be aware that throwing out outliers can increase your
future prediction error, particularly if they’re caused by real effects. An alternative



Section 5.3 Problem Data Points 144

Residuals against fitted values,
weight against height,
4 outliers removed

Weight against height,
4 outliers removed

350
I
150
I

300
I

Weight
250
1
Residuals

200
I

100

30 40 50

Height Fitted values

FIGURE 5.8: On the left, weight regressed against height for the bodyfat dataset. I
have now removed the four suspicious looking data points, identified in Figure [5.7]
with filled-in markers; these seemed the most likely to be outliers. On the right, a
scatter plot of the residual against the value predicted by the regression. Notice that
the residual looks like noise. The residual seems to be uncorrelated to the predicted
value; the mean of the residual seems to be zero; and the variance of the residual
doesn’t depend on the predicted value. All these are good signs, consistent with our
model, and suggest the regression will yield good predictions.

strategy is to build methods that can either discount the effects of outliers, or
model them; I describe some such methods, which can be technically complex, in
the following chapter.

Remember this: Outliers can affect linear regressions significantly.
Usually, if you can plot the regression, you can look for outliers by eyeballing
the plot. Other methods exist, but are beyond the scope of this text.

5.3.2 The Hat Matrix and Leverage

Write 3 for the estimated value of 3, and y® = x B for the predicted y values.
Then we have
B=(xTx) (xTy)
so that
y® = (x (ATx) " aT)y.
What this means is that the values the model predicts at training points are a linear
function of the true values at the training points. The matrix (X (XTX) - X7 is
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sometimes called the hat matrix. The hat matrix is written H, and I shall write
the 4, j’th component of the hat matrix h;;.

Remember this: The predictions of a linear regression at training
points are a linear function of the y-values at the training points. The
linear function is given by the hat matriz.

The hat matrix has a variety of important properties. I won’t prove any here,
but the proofs are in the exercises. It is a symmetric matrix. The eigenvalues can
be only 1 or 0. And the row sums have the important property that

> oh <L
J

This is important, because it can be used to find data points that have values that
are hard to predict. The leverage of the ¢’th training point is the ¢’th diagonal
element, h;;, of the hat matrix 2. Now we can write the prediction at the i’th
training point y,; = hiy; + Z#i hijy;. But if h;; has large absolute value, then
all the other entries in that row of the hat matrix must have small absolute value.
This means that, if a data point has high leverage, the model’s value at that point
is predicted almost entirely by the observed value at that point. Alternatively, it’s
hard to use the other training data to predict a value at that point.

Here is another way to see this importance of h;;. Imagine we change the
value of y; by adding A; then ygp ) becomes ygp )4+ hiA. In turn, a large value of hy;
means that the predictions at the i’th point are very sensitive to the value of y;.

Remember this:  Ideally, the value predicted for a particular data point
depends on many other data points. Leverage measures the importance of
a data point in producing a prediction at that data point. If the leverage of
a point is high, other points are not contributing much to the prediction for
that point, and it may well be an outlier.

5.3.3 Cook’s Distance

Another way to find points that may be creating problems is to look at the effect
of omitting the point from the regression. We could compute y®) using the whole
data set. We then omit the i’th point from the dataset, compute the regression
coefficients from the remaining data (which I will write Bl), then compare y®

to X beAtag. If there is a large difference, the point is suspect, because omitting it
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strongly changes the predictions. The score for the comparison is called Cook’s
distance. If a point has a large value of Cook’s distance, then it has a strong
influence on the regression and might well be an outlier. Typically, one computes
Cook’s distance for each point, and takes a closer look at any point with a large
value. This procedure is described in more detail in procedure

Notice the rough similarity to cross-validation (omit some data and recom-
pute). But in this case, we are using the procedure to identify points we might not
trust, rather than to get an unbiased estimate of the error.

Procedure: 5.2 Computing Cook’s distance

We have a dataset containing N pairs (x;,y;). Each z; is a d-
dimensional explanatory vector, and each y; is a single dependent vari-
able. Write B for the coefficients of a linear regression (see proce-
dure B.1]), and Bl for the coefficients of the linear regression computed
by omitting the i’th data point, y® for XB, and m for the mean square
error. The Cook’s distance of the i'th data point is

(y® = XB)T (y® — XB;)
dm

Large values of this distance suggest a point may present problems.
Statistical software will compute and plot this distance for you.

Remember this:  The Cook’s distance of a training data point measures
the effect on predictions of leaving that point out of the regression. A large
value of Cook’s distance suggests other points are poor at predicting the
value at a given point, so a point with a large value of Cook’s distance may
be an outlier.

5.3.4 Standardized Residuals

The hat matrix has another use. It can be used to tell how “large” a residual is. The
residuals that we measure depend on the units in which y was expressed, meaning
we have no idea what a “large” residual is. For example, if we were to express y in
kilograms, then we might want to think of 0.1 as a small residual. Using exactly
the same dataset, but now with y expressed in grams, that residual value becomes
100 — is it really “large” because we changed units?

Now recall that we assumed, in section [[.2.1] that y — x” 3 was a zero mean
normal random variable, but we didn’t know its variance. It can be shown that,
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FIGURE 5.9: On the left, standardized residuals plotted against predicted value for
weight regressed against height for the bodyfat dataset. I removed the four suspicious
looking data points, identified in Figure[5.7 with filled-in markers ; these seemed the
most likely to be outliers. You should compare this plot with the residuals in figure
[5.8, which are not standardized. On the right, a histogram of the residual values.
Notice this looks rather like a histogram of a standard normal random variable,
though there are slightly more large positive residuals than one would like. This
suggests the regression is working tolerably.

under our assumption, the ¢’th residual value, e;, is a sample of a normal random

variable whose variance is ( . )
ele
(552) - mo

This means we can tell whether a residual is large by standardizing it — that is,
dividing by its standard deviation. Write s; for the standard residual at the i’th
training point. Then we have that

€

\/(ﬂ]\/'e)) (1- hii)'

When the regression is behaving, this standard residual should look like a sample
of a standard normal random variable. In turn, this means that if all is going well,
about 66% of the residuals should have values in the range [—1, 1], and so on. Large
values of the standard residuals are a sign of trouble.

R produces a nice diagnostic plot that can be used to look for problem data
points (code and details in the appendix). The plot is a scatter plot of the standard-
ized residuals against leverage, with level curves of Cook’s distance superimposed.
Figure 510 shows an example. Some bad points that are likely to present problems
are identified with a number (you can control how many, and the number, with
arguments to plot; appendix). Problem points will have high leverage and/or high

S; =
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FIGURE 5.10: A diagnostic plot, produced by R, of a linear regression of weight
against height for the bodyfat dataset. Top: the whole dataset; bottom left: with
the two most extreme points in the top figure removed; bottom right: with two
further points (highest residual) removed. Details in text.

Cook’s distance and/or high residual. The figure shows this plot for three differ-
ent versions of the dataset (original; two problem points removed; and two further
problem points removed).

5.4 MANY EXPLANATORY VARIABLES

In earlier sections, I implied you could put anything into the explanatory variables.
This is correct, and makes it easy to do the math for the general case. However, I

have plotted only cases where there was one explanatory variable (together with a

constant, which hardly counts). In some cases (section [.4T]), we can add explana-
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tory variables and still have an easy plot. Adding explanatory variables can cause
the matrix X7X to have poor condition number; there’s an easy strategy to deal
with this (section B22).

Most cases are hard to plot successfully, and one needs better ways to visualize
the regression than just plotting. The value of R? is still a useful guide to the
goodness of the regression, but the way to get more insight is to use the tools of
the previous section.

5.4.1 Functions of One Explanatory Variable

Imagine we have only one measurement to form explanatory variables. For example,
in the perch data of Figure 5.1l we have only the length of the fish. If we evaluate
functions of that measurement, and insert them into the vector of explanatory
variables, the resulting regression is still easy to plot. It may also offer better
predictions. The fitted line of Figure Bl looks quite good, but the data points
look as though they might be willing to follow a curve. We can get a curve quite
easily. Our current model gives the weight as a linear function of the length with
a noise term (which we wrote y; = fiz; + So + &). But we could expand this
model to incorporate other functions of the length. In fact, it’s quite suprising that
the weight of a fish should be predicted by its length. If the fish doubled in each
direction, say, its weight should go up by a factor of eight. The success of our
regression suggests that fish do not just scale in each direction as they grow. But
we might try the model y; = ngf + Brx; + Bo + &. This is easy to do. The i’th
row of the matrix X' currently looks like [;,1]. We build a new matrix X(®), where
the i’th row is [#?,x;,1], and proceed as before. This gets us a new model. The
nice thing about this model is that it is easy to plot — our predicted weight is still
a function of the length, it’s just not a linear function of the length. Several such
models are plotted in Figure G111

You should notice that it can be quite easy to add a lot of functions like this
(in the case of the fish, I tried 27 as well). However, it’s hard to decide whether the
regression has actually gotten better. The least-squares error on the training data
will never go up when you add new explanatory variables, so the R? will never get
worse. This is easy to see, because you could always use a coefficient of zero with the
new variables and get back the previous regression. However, the models that you
choose are likely to produce worse and worse predictions as you add explanatory
variables. Knowing when to stop can be tough (Section [6.1]), though it’s sometimes
obvious that the model is untrustworthy (Figure B.1T]).

Remember this: If you have only one measurement, you can construct
a high dimensional x by using functions of that measurement. This produces
a regression that has many explanatory variables, but is still easy to plot.
Knowing when to stop is hard. An understanding of the problem is helpful.
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FIGURE 5.11: On the left, several different models predicting fish weight from length.
The line uses the explanatory variables 1 and x;; and the curves use other monomi-
als in x; as well, as shown by the legend. This allows the models to predict curves
that lie closer to the data. It is important to understand that, while you can make
a curve go closer to the data by inserting monomials, that doesn’t mean you neces-
sarily have a better model. On the right, I have used monomials up to x°. This
curve lies very much closer to the data points than any on the other side, at the
cost of some very odd looking wiggles inbetween data points (look at small lengths;
the model goes quite strongly negative there, but I can’t bring myself to change the
azes and show predictions that are obvious nonsense). I can’t think of any reason
that these structures would come from true properties of fish, and it would be hard
to trust predictions from this model.

5.4.2 Regularizing Linear Regressions

When we have many explanatory variables, some might be significantly correlated.
This means that we can predict, quite accurately, the value of one explanatory
variable using the values of the other variables. This means there must be a vector
w so that XY'w is small (exercises). In turn, that w? X7 Xw must be small, so that
XT X has some small eigenvalues. These small eigenvalues lead to bad predictions,
as follows. The vector w has the property that X7 X'w is small. This means that
XTx (B + w) is not much different from x7Xx B (equivalently, the matrix can turn
large vectors into small ones). All this means that (X7 X)~! will turn some small
vectors into big ones. A small change in XY can lead to a large change in the
estimate of B

This is a problem, because we can expect that different samples from the same
data will have somewhat different values of X7Y. For example, imagine the person
recording fish measurements in Lake Laengelmavesi recorded a different set of fish;
we expect changes in X and Y. But, if X7 X has small eigenvalues, these changes
could produce large changes in our model.

The problem is relatively easy to control. When there are small eigenvalues
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FIGURE 5.12: On the left, cross-validated error estimated for different choices of reg-
ularization constant for a linear regression of weight against height for the bodyfat
dataset, with four outliers removed. The horizontal axis is log regression constant;
the vertical is cross-validated error. The mean of the error is shown as a spot, with
vertical error bars. The vertical lines show a range of reasonable choices of reqular-
ization constant (left yields the lowest observed error, right the error whose mean
is within one standard error of the minimum). On the right, two regression lines
on a scatter plot of this dataset; one is the line computed without reqularization, the
other is obtained using the reqularization parameter that yields the lowest observed
error. In this case, the regqularizer doesn’t change the line much, but may produce
improved values on new data (notice how the cross-validated error is fairly flat with
low values of the regularization constant).

in XTX, we expect that B will be large (because we can add components in the
direction of w without changing all that much), and the largest components in B
might be very inaccurately estimated. If we are trying to predict new y values, we
expect that large components in B turn into large errors in prediction (exercises).

An important and useful way to suppress these errors is to try to find a B
that isn’t large, and also gives a low error. We can do this by regularizing, using
the same trick we saw in the case of classification. Instead of choosing the value of
[ that minimizes

()-8 - 28)

we minimize

()-8 -28) + 257

Error + Regularizer

Here A > 0 is a constant that weights the two requirements (small error; small B)
relative to one another. Notice also that dividing the total error by the number of
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data points means that our choice of A\ shouldn’t be affected by changes in the size
of the data set.

Linear regression of Weight against Height,
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FIGURE 5.13: Regularization doesn’t make outliers go away. On the left, cross-
validated error estimated for different choices of regularization constant for a linear
regression of weight against height for the bodyfat dataset, with all points. The
horizontal axis is log regression constant; the vertical is cross-validated error. The
mean of the error is shown as a spot, with vertical error bars. The vertical lines
show a range of reasonable choices of regularization constant (left yields the lowest
observed error, right the error whose mean is within one standard error of the
minimum). On the right, two regression lines on a scatter plot of this dataset; one
is the line computed without reqularization, the other is obtained using the reqular-
1zation parameter that yields the lowest observed error. In this case, the regularizer
doesn’t change the line much, but may produce improved values on new data (no-
tice how the cross-validated error is fairly flat with low values of the reqularization
constant).

Regularization helps deal with the small eigenvalue, because to solve for 8 we
must solve the equation

OESEEOR

(obtained by differentiating with respect to 8 and setting to zero) and the smallest
eigenvalue of the matrix ((4) (X7 X + AZ) will be at least A (exercises). Penalizing
a regression with the size of 8 in this way is sometimes known as ridge regression.

We choose A in the same way we used for classification; split the training set
into a training piece and a validation piece, train for different values of )\, and test
the resulting regressions on the validation piece. The error is a random variable,
random because of the random split. It is a fair model of the error that would occur
on a randomly chosen test example (assuming that the training set is “like” the
test set, in a way that I do not wish to make precise yet). We could use multiple
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FIGURE 5.14: On the left, residuals plotted against leverage for a regression of
weight against all other measurements for the bodyfat dataset. I did not remove the
outliers. The contours on the plot are contours of Cook’s distance; I have overlaid
arrows showing points with suspiciously large Cook’s distance. Notice also that
several points have high leverage, without having a large residual value. These points
may or may not present problems. On the right, the same plot for this dataset with
points 36, 39, 41 and 42 removed (these are the points I have been removing for
each such plot). Notice that another point now has high Cook’s distance, but mostly
the residual is much smaller.

splits, and average over the splits. Doing so yields both an average error for a value
of A and an estimate of the standard deviation of error.

Statistical software will do all the work for you. I used the glmnet package
in R (see exercises for details). Figure 512 shows an example, for weight regressed
against height. Notice the regularization doesn’t change the model (plotted in the
figure) all that much. For each value of A (horizontal axis), the method has com-
puted the mean error and standard deviation of error using cross-validation splits,
and displays these with error bars. Notice that A\ = 0 yields poorer predictions
than a larger value; large B really are unreliable. Notice that now there is now no A
that yields the smallest validation error, because the value of error depends on the
random splits used in cross-validation. A reasonable choice of A lies between the
one that yields the smallest error encountered (one vertical line in the plot) and the
largest value whose mean error is within one standard deviation of the minimum
(the other vertical line in the plot).

All this is quite similar to regularizing a classification problem. We started
with a cost function that evaluated the errors caused by a choice of 3, then added
a term that penalized § for being “large”. This term is the squared length of 3, as
a vector. It is sometimes known as the L, norm of the vector. In section R, I
describe the consequences of using other norms.
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FIGURE 5.15: On the left, standardized residuals plotted against predicted value
for weight regressed against all variables for the bodyfat dataset. Four data points
appear suspicious, and I have marked these with a filled in marker. On the right,
standardized residuals plotted against predicted value for weight regressed against
all variables for the bodyfat dataset, but with the four suspicious looking data points
removed. Notice two other points stick out markedly.

Remember this: The performance of a regression can be improved by
regularizing, particularly if some explanatory variables are correlated. The
procedure is similar to that used for classification.

5.4.3 Example: Weight against Body Measurements

We can now look at regressing weight against all body measurements for the bodyfat
dataset. We can’t plot this regression (too many independent variables), but we
can approach the problem in a series of steps.

Finding suspect points: Figure [0.14] shows the R diagnostic plots for a
regression of weight against all body measurements for the bodyfat dataset. We've
already seen there are outliers, so the odd structure of this plot should be no par-
ticular surprise. There are several really worrying points here. As the figure shows,
removing the four points identified in the caption, based on their very high stan-
dardized residuals, high leverage, and high Cook’s distance, yields improvements.
We can get some insight by plotting standardized residuals against predicted value
(Figure [5.9). There is clearly a problem here; the residual seems to depend quite
strongly on the predicted value. Removing the four outliers we have already iden-
tified leads to a much improved plot, also shown in Figure This is banana-
shaped, which is suspicious. There are two points that seem to come from some
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FIGURE 5.16: On the left, standardized residuals plotted against predicted value for
weight regressed against all variables for the bodyfat dataset. I remowved the four
suspicious data points of Figure[5. 10, and the two others identified in that figure.
Notice a suspicious “banana” shape — the residuals are distinctly larger for small and
for large predicted values. This suggests a non-linear transformation of something
might be helpful. I used a Box-Cox transformation, which suggested a value of 0.5
(i.e. regress 2(v/weight — 1)) against all variables. On the right, the standardized
residuals for this regression. Notice that the “banana” has gone, though there is
a suspicious tendency for the residuals to be smaller rather than larger. Notice
also the plots are on different axes. It’s fair to compare these plots by eye; but it’s
not fair to compare details, because the residual of a predicted square root means
something different than the residual of a predicted value.

other model (one above the center of the banana, one below). Removing these
points gives the residual plot shown in Figure

Transforming variables: The banana shape of the plot of standardized
residuals against value is a suggestion that some non-linearity somewhere would
improve the regression. One option is a non-linear transformation of the indepen-
dent variables. Finding the right one might require some work, so it’s natural to
try a Box-Cox transformation first. This gives the best value of the parameter as
0.5 (i.e. the dependent variable should be y/weight, which makes the residuals look
much better (Figure BE.16).

Choosing a regularizing value: Figure[b.I7shows the glmnet plot of cross-
validated error as a function of regularizer weight. A sensible choice of value here
seems to be a bit smaller than -2 (between the value that yields the smallest error
encountered — one vertical line in the plot — and the largest value whose mean error
is within one standard deviation of the minimum — the other vertical line in the
plot). I chose -2.2

How good are the resulting predictions likely to be: the standard-
ized residuals don’t seem to depend on the predicted values, but how good are the
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FIGURE 5.17: Plots of mean-squared error as a function of log reqularization param-
eter (i.e. log\) for a regression of weightl/2 against all variables for the bodyfat
dataset. These plots show mean-squared error averaged over cross-validation folds
with a vertical one standard deviation bar. On the left, the plot for the dataset
with the sixz outliers identified in Figure[8.1] removed. On the right, the plot for the
whole dataset. Notice how the outliers increase the variability of the error, and the
best error.
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FIGURE 5.18: A scatter plot of the predicted weight against the true weight for the
bodyfat dataset. The prediction is made with all variables, but the siz outliers iden-
tified above are omitted. I used a Boxz-Cox transformation with parameter 1/2,
and the regularization parameter that yielded the smallest mean square error in

Figure [5.17
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predictions? We already have some information on this point. Figure B.17 shows
cross-validation errors for regressions of weightl/ % against height for different reg-
ularization weights, but some will find this slightly indirect. We want to predict
weight, not weightl/ 2 I chose the regularization weight that yielded the lowest
mean-square-error for the model of Figure 517, omitting the six outliers previously
mentioned. I then computed the predicted weight for each data point using that
model (which predicts weightl/ 2 remember; but squaring takes care of that). Fig-
ure shows the predicted values plotted against the true values. You should
not regard this plot as a safe way to estimate generalization (the points were used
in training the model; Figure BT is better for that), but it helps to visualize the
errors. This regression looks as though it is quite good at predicting bodyweight
from other measurements.
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Amount of Time in
Hormone Service

Batch A
Amount of Time in
Hormone Service
25.8 99
20.5 152
14.3 293
23.2 155
20.6 196
31.1 53
20.9 184
20.9 171
30.4 52

16.3 376
11.6 385
11.8 402
32.5 29
32.0 76
18.0 296
24.1 151
26.5 177
25.8 209

Batch C
Amount of Time in
Hormone Service
28.8 119
22.0 188
29.7 115
28.9 88
32.8 58
32.5 49
25.4 150
31.7 107
28.5 125

TABLE 5.1: A table showing the amount of hormone remaining and the time in
service for devices from lot A, lot B and lot C. The numbering is arbitrary (i.e.
there’s no relationship between device 8 in lot A and device 3 in lot B). We expect
that the amount of hormone goes down as the device spends more time in service,
so cannot compare batches just by comparing numbers.
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PROBLEMS

Blood pressure against age
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FIGURE 5.19: A regression of blood pressure against age, for 30 data points.

5.1. Figure [B.I9] shows a linear regression of systolic blood pressure against age.

There are 30 data points.

(a) Write e; = y; — x. 3 for the residual. What is the mean ({e}) for this
regression?

(b) For this regression, var ({y}) = 509 and the R? is 0.4324. What is var ({e})
for this regression?

(c) How well does the regression explain the data?

(d) What could you do to produce better predictions of blood pressure (with-
out actually measuring blood pressure)?
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Population vs area for
kittiwake colonies

10000 15000
I I

Population (no. of breeding pairs)
5000

0 1000 2000 3000 4000

Area (km"2)

FIGURE 5.20: A regression of the number of breeding pairs of kittiwakes against the
area of an island, for 22 data points.

5.2. At http://www.statsci.org/data/general/kittiwak.html, you can find a dataset
collected by D.K. Cairns in 1988 measuring the area available for a seabird
(black-legged kittiwake) colony and the number of breeding pairs for a variety
of different colonies. Figure shows a linear regression of the number of
breeding pairs against the area. There are 22 data points.

(a) Write e; = y; — x. 3 for the residual. What is the mean ({e}) for this
regression?

(b) For this regression, var ({y}) = 16491357 and the R? is 0.62. What is
var ({e}) for this regression?

(c) How well does the regression explain the data? If you had a large island,
to what extent would you trust the prediction for the number of kittiwakes
produced by this regression? If you had a small island, would you trust
the answer more?


http://www.statsci.org/data/general/kittiwak.html
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FIGURE 5.21: Left: A regression of the number of breeding pairs of kittiwakes against
the log of area of an island, for 22 data points. Right: A regression of the number
of breeding pairs of kittiwakes against the log of area of an island, for 22 data points,
using a method that ignores two likely outliers.

5.3. At http://www.statsci.org/data/general/kittiwak.html, you can find a dataset
collected by D.K. Cairns in 1988 measuring the area available for a seabird
(black-legged kittiwake) colony and the number of breeding pairs for a variety
of different colonies. Figure [5.2]] shows a linear regression of the number of
breeding pairs against the log of area. There are 22 data points.

(a)
(b)
(c)

(d)

Write e; = y; — x1 3 for the residual. What is the mean ({e}) for this
regression?

For this regression, var ({y}) = 16491357 and the R? is 0.31. What is
var ({e}) for this regression?

How well does the regression explain the data? If you had a large island,
to what extent would you trust the prediction for the number of kittiwakes
produced by this regression? If you had a small island, would you trust
the answer more? Why?

Figure (.21l shows the result of a linear regression that ignores two likely
outliers. Would you trust the predictions of this regression more? Why?


http://www.statsci.org/data/general/kittiwak.html

Sulfate concentration

Sulfate against time for
Brunhilda the baboon
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Residuals against fitted values for
sulfate against time for
Brunhilda the baboon
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FIGURE 5.22: Left: A regression of the concentration of sulfate in the blood of
Brunhilda the baboon against time. Right: For this regression, a plot of residual
against fitted value.

5.4. At http://www.statsci.org/data/general/brunhild.html, you will find a dataset
that measures the concentration of a sulfate in the blood of a baboon named
Brunhilda as a function of time. Figure plots this data, with a linear
regression of the concentration against time. I have shown the data, and also
a plot of the residual against the predicted value. The regression appears to

be unsuccessful.

(a) What suggests the regression has problems?
(b) What is the cause of the problem, and why?
(c) What could you do to improve the problems?


http://www.statsci.org/data/general/brunhild.html

5.5.

5.6.
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Assume we have a dataset where Y = X3 + &, for some unknown § and &.

The term & is a normal random variable with zero mean, and covariance oI

(i.e. this data really does follow our model).

(a) Write B for the estimate of 8 recovered by least squares, and Y for the
values predicted by our model for the training data points. Show that

R -1
Y =X (XTX) xTy

(b) Show that
Elgi —yil =0
for each training data point y;, where the expectation is over the proba-
bility distribution of &.
(c) Show that A
E[(B-B)]=0
where the expectation is over the probability distribution of &.
In this exercise, I will show that the prediction process of chapter ?7(see
page ?77?) is a linear regression with two independent variables. Assume we
have N data items which are 2-vectors (x1,y1),...,(xN,ynN), where N > 1.
These could be obtained, for example, by extracting components from larger
vectors. As usual, we will write Z; for x; in normalized coordinates, and so on.
The correlation coefficient is r (this is an important, traditional notation).
(a) Assume that we have an x,, for which we wish to predict a y value. Show
that the value of the prediction obtained using the method of page 77 is

Wored = S (a0 — mean ({a})) + mean ({4})
:j EZ)T) xo + (mean {y}) — ztj E;; mean ({:c})) .

~—

Il
7N
w0 wn

(b) Show that

mean ({(z — mean ({}))(y — mean ({y}))})
std (z)std (y)

mean ({zy}) — mean ({«})mean ({y})
std (z)std (y) '

(c) Now write

1 1 Y1
x=[" 1| aay=|®
Tn 1 UYn

The coefficients of the linear regression will be 37 where XTXB =xTy.
Show that

_ mean ({22 mean ({z})
' = N( mean (({{:c})}) 1 )

- N ( std (2)? + mean ({z})> mean ({z}) )
mean ({z}) 1
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(d) Now show that

T _ mean ({zy})
Y = N( mean ({y}) )

B N( std (z)std (y)r 4+ mean ({z})mean ({y}) )
mean ({y}) '

(e) Now show that

A | 1 1 —mean ({z})
(X X) " N std (z)? ( —mean ({z}) std (z)? + mean ({z})? )

(f) Now (finally!) show that if 3 is the solution to X7 X3 — XTY =0, then

e
5 std(x
' < mean ({y}) — (2922} mean ({2}) )

and use this to argue that the process of page 77 is a linear regression

with two independent variables.
This exercise investigates the effect of correlation on a regression. Assume we
have N data items, (x;,y;). We will investigate what happens when the data
have the property that the first component is relatively accurately predicted
by the other components. Write x;; for the first component of x;, and X; i
for the vector obtained by deleting the first component of x;. Choose u to
predict the first component of the data from the rest with minimum error, so
that ;1 = x?}u + w;. The error of prediction is w;. Write w for the vector

of errors (i.e. the i’th component of w is w;). Because wl'w is minimized by
choice of u, we have w1 =0 (i.e. the average of the w;’s is zero). Assume that
these predictions are very good, so that there is some small positive number €
so that w’w <e.

(a) Write a = [—1,u]”. Show that

al’xT xa <e.

(b) Now show that the smallest eigenvalue of XT X is less than or equal to e.

(c) Write s, =), 22, and smax for max(si, ..., sq). Show that the largest
eigenvalue of xTx is greater than or equal to smax.

(d) The condition number of a matrix is the ratio of largest to smallest
eigenvalue of a matrix. Use the information above to bound the condition
number of X7 X.

(e) Assume that § is the solution to X7 X3 = XTY. Show that the

(ATY = 21X (5 +2) " (ATY — XTX(f + )
(for a as above) is bounded above by
62(1 + uTu)

(f) Use the last sub exercises to explain why correlated data will lead to a
poor estimate of /3.
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5.8. This exercise explores the effect of regularization on a regression. Assume we
have N data items, (x;,y;). We will investigate what happens when the data
have the property that the first component is relatively accurately predicted
by the other components. Write x;; for the first component of x;, and X; i
for the vector obtained by deleting the first component of x;. Choose u to
predict the first component of the data from the rest with minimum error, so
that x;1 = xgu + w;. The error of prediction is w;. Write w for the vector

of errors (i.e. the i’th component of w is w;). Because wl'w is minimized by

choice of u, we have w1 = 0 (i.e. the average of the w;’s is zero). Assume that
these predictions are very good, so that there is some small positive number €
so that wlw <e.

(a) Show that, for any vector v,

vT (XTX + )\I) v>avly

and use this to argue that the smallest eigenvalue of (XTX + )\I) is
greater than .

(b) Write b for an eigenvector of XT X with eigenvalue \p,. Show that b is
an eigenvector of (XTX + )\I) with eigenvalue Ap + A.

(c) Recall XT X is a dxd matrix which is symmetric, and so has d orthonormal
eigenvectors. Write b; for the i’th such vector, and A, for the correspond-
ing eigenvalue. Show that

xTxp-xTy=o0
is solved by

d T
_ZY Xb;
Bi.l Ab,

1=

(d) Using the notation of the previous sub exercise, show that
xTx+an)p-xTy =0

is solved by

Use this expression to explain why a regularized regression may produce
better results on test data than an unregularized regression.

PROGRAMMING EXERCISES

5.9. At http://www.statsci.org/data/general/brunhild.html, you will find a dataset
that measures the concentration of a sulfate in the blood of a baboon named
Brunhilda as a function of time. Build a linear regression of the log of the
concentration against the log of time.

(a) Prepare a plot showing (a) the data points and (b) the regression line in
log-log coordinates.

(b) Prepare a plot showing (a) the data points and (b) the regression curve
in the original coordinates.


http://www.statsci.org/data/general/brunhild.html

5.10.

5.11.
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(c) Plot the residual against the fitted values in log-log and in original coor-
dinates.

(d) Use your plots to explain whether your regression is good or bad and why.

At http://www.statsci.org/data/oz/physical.html, you will find a dataset of mea-

surements by M. Larner, made in 1996. These measurements include body

mass, and various diameters. Build a linear regression of predicting the body
mass from these diameters.

(a) Plot the residual against the fitted values for your regression.

(b) Now regress the cube root of mass against these diameters. Plot the
residual against the fitted values in both these cube root coordinates and
in the original coordinates.

(c) Use your plots to explain which regression is better.

At https://archive.ics.uci.edu/ml/datasets/Abalone, you will find a dataset of

measurements by W. J. Nash, T. L. Sellers, S. R. Talbot, A. J. Cawthorn and

W. B. Ford, made in 1992. These are a variety of measurements of blacklip

abalone (Haliotis rubra; delicious by repute) of various ages and genders.

(a) Build a linear regression predicting the age from the measurements, ig-
noring gender. Plot the residual against the fitted values.

(b) Build a linear regression predicting the age from the measurements, in-
cluding gender. There are three levels for gender; I'm not sure whether
this has to do with abalone biology or difficulty in determining gender.
You can represent gender numerically by choosing 1 for one level, 0 for
another, and -1 for the third. Plot the residual against the fitted values.

(¢) Now build a linear regression predicting the log of age from the measure-
ments, ignoring gender. Plot the residual against the fitted values.

(d) Now build a linear regression predicting the log age from the measure-
ments, including gender, represented as above. Plot the residual against
the fitted values.

(e) It turns out that determining the age of an abalone is possible, but difficult
(you section the shell, and count rings). Use your plots to explain which
regression you would use to replace this procedure, and why.

(f) Can you improve these regressions by using a regularizer? Use glmnet to
obtain plots of the cross-validated prediction error.


http://www.statsci.org/data/oz/physical.html
https://archive.ics.uci.edu/ml/datasets/Abalone

CHAPTER 6

Regression: Choosing and Managing
Models

6.1 MODEL SELECTION: WHICH MODEL IS BEST?

It is usually quite easy to have many explanatory variables in a regression problem.
Even if you have only one measurement, you could always compute a variety of non-
linear functions of that measurement. As we have seen, inserting variables into a
model will reduce the fitting cost, but that doesn’t mean that better predictions will
result (section (4. We need to choose which explanatory variables we will use.
A linear model with few explanatory variables may make poor predictions because
the model itself is incapable of representing the independent variable accurately (an
effect known as bias). A linear model with many explanatory variables may make
poor predictions because we can’t estimate the coefficients well (an effect known as
variance). Choosing which explanatory variables we will use (and so which model
we will use) requires that we balance these effects, described in greater detail in
section In the following sections, we describe straightforward methods of
doing so.

6.1.1 Bias and Variance

We now look at the process of finding a model in a fairly abstract way. Doing
so makes plain three distinct and important effects that cause models to make
predictions that are wrong. One is irreducible error. Even a perfect choice of
model can make mistake predictions, because more than one prediction could be
correct for the same x. Another way to think about this is that there could be
many future data items, all of which have the same x, but each of which has a
different y. In this case some of our predictions must be wrong, and the effect is
unavoidable.

A second effect is bias. We must use some collection of models. Even the
best model in the collection may not be capable of predicting all the effects that
occur in the data. Errors that are caused by the best model still not being able to
predict the data accurately are attributed to bias.

The third effect is variance. We must choose our model from the collection
of models. The model we choose is unlikely to be the best model. This might occur,
for example, because our estimates of the parameters aren’t exact because we have
a limited amount of data. Errors that are caused by our choosing a model that is
not the best in the family are attributed to variance.

All this can be written out in symbols. We have a vector of predictors x, and
a random variable Y. At any given point x, we have

Y =f(x)+¢

168
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where ¢ is noise and f is an unknown function. We have E[¢] = 0, and E[{“ﬂ =
var ({€}) = oZ; furthermore, ¢ is independent of X. We have some procedure that
takes a selection of training data, consisting of pairs (x;,y;), and selects a model f .
We will use this model to predict values for future x. It is highly unlikely that f is
the same as f; assuming that it is involves assuming that we can perfectly estimate
the best model with a finite dataset, which doesn’t happen.

We need to understand the error that will occur when we use f to predict
for some data item that isn’t in the training set. This is the error that we will
encounter in practice. The error at any point x is

where the expectation is taken over P(Y'|x). This expectation can be written in an
extremely useful form. Recall var ({U}) = E[U?] — E[U ]?. This means we have

B[(v - fX)?] = E[y?]-2E[vf]+E[f?
= var (Y} +E[Y] +var ({f}) + E[fr —2E[Y f].

Now Y = f(X) + &, E[¢{] =0, and ¢ is independent of X so we have E[Y] = E[f]
and var ({Y'}) = var ({¢}) = 0. This yields

var ({Y}) +ELfP +var ({}) +1Em2_21E[ff]
052 +E[(f—f)2} + var ({f})
of + (f—E[ﬂy + var ({f}) (f isn’t random).

E[(Y - f(X))?]

The expected error on all future data is the sum of three terms. The irreducible error
is ag; even the true model must produce this error, on average. The best model
to choose would be IE{ f] (remember, the expectation is over choices of training
data; this model would be the one that best represented all possible attempts to
train). But we don’t have E[ﬂ Instead, we have f The variance is var ({f}) =

E[(f—E[ﬂ)ﬂ This term represents the fact that the model we chose (f) is

different from the mean model (E|f|). The difference arises because our training
data is a subset of all data, and our model is chosen to be good on the training
data, rather than on every possible training set. The bias is (f —E [ﬂ )2. This term

reflects the fact that even the best choice of model (E [ f]) may not be the same as

the true source of data (E[f] which is the same as f, because f is deterministic).
There is usually a tradeoff between bias and variance. Generally, when a
model comes from a “small” or “simple” family, we expect that (a) we can estimate
the best model in the family reasonably accurately (so the variance will be low)
but (b) the model may have real difficulty reproducing the data (meaning the bias
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is large). Similarly, if the model comes from a “large” or “complex” family, the
variance is likely to be high (because it will be hard to estimate the best model in the
family accurately) but the bias will be low (because the model can more accurately
reproduce the data). All modelling involves managing this tradeoff between bias
and variance. I am avoiding being precise about the complexity of a model because
it can be tricky to do. One reasonable proxy is the number of parameters we have
to estimate to determine the model.

You can see a crude version this tradeoff in the perch example of section [.4.1]
and Figure [.T11 Recall that, as I added monomials to the regression of weight
against length, the fitting error went down; but the model that uses length' as
an explanatory variable makes very odd predictions away from the training data.
When I use low degree monomials, the dominant source of error is bias; and when
I use high degree monomials, the dominant source of error is variance. A common
mistake is to feel that the major difficulty is bias, and so to use extremely com-
plex models. Usually the result is poor estimates of model parameters, and huge
variance. Experienced modellers fear variance far more than they fear bias.

The bias-variance discussion suggests it isn’t a good idea simply to use all
the explanatory variables that you can obtain (or think of). Doing so might lead
to a model with serious variance problems. Instead, we must choose a model that
uses a subset of the explanatory variables that is small enough to control variance,
and large enough that the bias isn’t a problem. We need some strategy to choose
explanatory variables. The simplest (but by no means the best; we’ll see better in
this chapter) approach is to search sets of explanatory variables for a good set. The
main difficulty is knowing when you have a good set.

6.1.2 Choosing a Model using Penalties: AIC and BIC

We would like to choose one of a set of models. We cannot do so using just the
training error, because more complex models will tend to have lower training error,
and so the model with the lowest training error will tend to be the most complex
model. Training error is a poor guide to test error, because lower training error is
evidence of lower bias on the models part; but with lower bias, we expect to see
greater variance, and the training error doesn’t take that into account.

One strategy is to penalize the model for complexity. We add some penalty,
reflecting the complexity of the model, to the training error. We then expect to see
the general behavior of figure The training error goes down, and the penalty
goes up as the model gets more complex, so we expect to see a point where the sum
is at a minimum.

There are a variety of ways of constructing penalties. AIC (short for An
Information Criterion) is a method due originally to Akaike, in ****. Rather than
using the training error, AIC uses the maximum value of the log-likelihood of the
model. Write £ for this value. Write k for the number of parameters estimated to
fit the model. Then the AIC is

2k — 2L

and a better model has a smaller value of AIC (remember this by remembering
that a larger log-likelihood corresponds to a better model). Estimating AIC is
straightforward for regression models if you assume that the noise is a zero mean
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Penalized
Negative
Log-Likelihood

Negative

Penalty Log-Likelihood

Y

Number of parameters

FIGURE 6.1: When we add explanatory variables (and so parameters) to a model,
the value of the negative log-likelihood of the best model can’t go up, and usually goes
down. This means that we cannot use the value as a guide to how many explanatory
variables there should be. Instead, we add a penalty that increases as a function
of the number of parameters, and search for the model that minimizes the sum of
negative long-likelihood and penalty. AIC and BIC grow linearly with the number
of parameters, but I am following the usual convention of plotting the penalty as a
curve rather than a straight line.

normal random variable. You estimate the mean-squared error, which gives the
variance of the noise, and so the log-likelihood of the model. You do have to keep
track of two points. First, k is the total number of parameters estimated to fit the
model. For example, in a linear regression model, where you model y as x* 3 + &,
you need to estimate d parameters to estimate B and the variance of £ (to get
the log-likelihood). So in this case k& = d + 1. Second, log-likelihood is usually
only known up to a constant, so that different software implementations often use
different constants. This is wildly confusing when you don’t know about it (why
would AIC and extractAIC produce different numbers on the same model?) but
of no real significance — you’re looking for the smallest value of the number, and
the actual value doesn’t mean anything. Just be careful to compare only numbers
computed with the same routine.
An alternative is BIC (Bayes’ Information Criterion), given by

2klog N — 2L

(where N is the size of the training data set). You will often see this written as
2L — 2klog N; I have given the form above so that one always wants the smaller
value as with AIC. There is a considerable literature comparing AIC and BIC. AIC
has a mild reputation for overestimating the number of parameters required, but is
often argued to have firmer theoretical foundations.
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Worked example 6.1 AIC and BIC

Write My for the model that predicts weight from length for the perch dataset
as Z;zg Bjlength’. Choose an appropriate value of d € [1,10] using AIC and
BIC.

Solution: I used the R functions AIC and BIC, and got the table below.
1 2 3 4 5 6 7 8 9 10
AIC | 677 617 617 613 615 617 617 612 613 614
BIC | 683 625 627 625 629 633 635 633 635 638
The best model by AIC has (rather startlingly!) d = 8. One should not take
small differences in AIC too seriously, so models with d = 4 and d = 9 are fairly
plausible, too. BIC suggests d = 2.

6.1.3 Choosing a Model using Cross-Validation

AIC and BIC are estimates of error on future data. An alternative is to measure
this error on held out data, using a cross-validation strategy (as in section ??). One
splits the training data into F' folds, where each data item lies in exactly one fold.
The case F' = N is sometimes called “leave-one-out” cross-validation. One then
sets aside one fold in turn, fitting the model to the remaining data, and evaluating
the model error on the left-out fold. The model error is then averaged. This process
gives us an estimate of the performance of a model on held-out data. Numerous
variants are available, particularly when lots of computation and lots of data are
available. For example: one might not average over all folds; one might use fewer
or more folds; and so on.

Worked example 6.2 Cross-validation

Write My for the model that predicts weight from length for the perch dataset
as Z;zg Bjlength’. Choose an appropriate value of d € [1, 10] using leave-one-
out cross validation.

Solution: I used the R functions CVlm, which takes a bit of getting used to.
There is sample code in the exercises section. I found:
1 2 3 4 5 6 7 8 9 10
1.9e4 4.0e3 7.2e3 4.5e3 6.0e3 5.6ed 1.2e6 4.0e6 3.9e6 1.9e8
where the best model is d = 2.

6.1.4 A Search Process: Forward and Backward Stagewise Regression

Assume we have a set of explanatory variables and we wish to build a model,
choosing some of those variables for our model. Our explanatory variables could
be many distinct measurements, or they could be different non-linear functions of
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the same measurement, or a combination of both. We can evaluate models relative
to one another fairly easily (AIC, BIC or cross-validation, your choice). However,
choosing which set of explanatory variables to use can be quite difficult, because
there are so many sets. The problem is that you cannot predict easily what adding
or removing an explanatory variable will do. Instead, when you add (or remove) an
explanatory variable, the errors that the model makes change, and so the usefulness
of all other variables changes too. This means that (at least in principle) you have
to look at every subset of the explanatory variables. Imagine you start with a
set of F possible explanatory variables (including the original measurement, and
a constant). You don’t know how many to use, so you might have to try every
different group, of each size, and there are far too many groups to try. There are
two useful alternatives.

In forward stagewise regression, you start with an empty working set
of explanatory variables. You then iterate the following process. For each of the
explanatory variables not in the working set, you construct a new model using
the working set and that explanatory variable, and compute the model evaluation
score. If the best of these models has a better score than the model based on the
working set, you insert the appropriate variable into the working set and iterate.
If no variable improves the working set, you decide you have the best model and
stop. This is fairly obviously a greedy algorithm.

Backward stagewise regression is pretty similar, but you start with a
working set containing all the variables, and remove variables one-by-one and greed-
ily. As usual, greedy algorithms are very helpful but not capable of exact optimiza-
tion. Each of these strategies can produce rather good models, but neither is
guaranteed to produce the best model.

6.1.5 Significance: What Variables are Important?

Imagine you regress some measure of risk of death against blood pressure, whether
someone smokes or not, and the length of their thumb. Because high blood pressure
and smoking tend to increase risk of death, you would expect to see “large” coeffi-
cients for these explanatory variables. Since changes in the thumb length have no
effect, you would expect to see “small” coeflicients for these explanatory variables.
This suggests a regression can be used to determine what effects are important in
building a model.

One difficulty is the result of sampling variance. Imagine that we have an
explanatory variable that has absolutely no relationship to the dependent variable.
If we had an arbitrarily large amount of data, and could exactly identify the correct
model, we’d find that, in the correct model, the coefficient of that variable was zero.
But we don’t have an arbitrarily large amount of data. Instead, we have a sample
of data. Hopefully, our sample is random, so that the reasoning of section [B] can
be applied. Using that reasoning, our estimate of the coefficient is the value of a
random variable whose expected value is zero, but whose variance isn’t. As a result,
we are very unlikely to see a zero. This reasoning applies to each coefficient of the
model. To be able to tell which ones are small, we would need to know the standard
deviation of each, so we can tell whether the value we observe is a small number of
standard deviations away from zero. This line of reasoning is very like hypothesis
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testing. It turns out that the sampling variance of regression coefficients can be
estimated in a straightforward way. In turn, we have an estimate of the extent
to which their difference from zero could be a result of random sampling. R will
produce this information routinely; use summary on the output of 1m.

A second difficulty has to do with practical significance, and is rather harder.
We could have explanatory variables that are genuinely linked to the independent
variable, but might not matter very much. This is a common phenomenon, particu-
larly in medical statistics. It requires considerable care to disentangle some of these
issues. Here is an example. Bowel cancer is an unpleasant disease, which could kill
you. Being screened for bowel cancer is at best embarrassing and unpleasant, and
involves some startling risks. There is considerable doubt, from reasonable sources,
about whether screening has value and if so, how much (as a start point, you could
look at Ransohoff DF. How Much Does Colonoscopy Reduce Colon Cancer Mor-
tality?. Ann Intern Med. 2009). There is some evidence linking eating red or
processed meat to incidence of bowel cancer. A good practical question is: should
one abstain from eating red or processed meat based on increased bowel cancer
risk?

Coming to an answer is tough; the coefficient in any regression is clearly
not zero, but it’s pretty small as these numbers indicate. The UK population in
2012 was 63.7 million (this is a summary figure from Google, using World Bank
data; there’s no reason to believe that it’s significantly wrong). I obtained the
following figures from the UK cancer research institute website, at http://www.
cancerresearchuk.org/health-professional /cancer-statistics/statistics- by-cancer-type/bowel-cancer.
There were 41, 900 new cases of bowel cancer in the UK in 2012. Of these cases,
43% occurred in people aged 75 or over. 57% of people diagnosed with bowel cancer
survive for ten years or more after diagnosis. Of diagnosed cases, an estimated 21%
are linked to eating red or processed meat, and the best current estimate is that
the risk of incidence is between 17% and 30% higher per 100g of red meat eaten
per day (i.e. if you eat 100g of red meat per day, your risk increases by some num-
ber between 17% and 30%; 200g a day gets you twice that number; and — rather
roughly — so on). These numbers are enough to confirm that there is a non-zero
coefficient linking the amount of red or processed meat in your diet with your risk
of bowel cancer (though you’d have a tough time estimating the exact value of
that coefficient from the information here). If you eat more red meat, your risk of
dying of bowel cancer really will go up. But the numbers I gave above suggest that
(a) it won’t go up much and (b) you might well die rather late in life, where the
chances of dying of something are quite strong. The coefficient linking eating red
meat and bowel cancer is clearly pretty small, because the incidence of the disease
is about 1 in 1500 per year. Does it matter? you get to choose, and your choice
has consequences.

6.2 ROBUST REGRESSION

We have seen that outlying data points can result in a poor model. This is caused by
the squared error cost function: squaring a large error yields an enormous number.
One way to resolve this problem is to identify and remove outliers before fitting
a model. This can be difficult, because it can be hard to specify precisely when
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a point is an outlier. Worse, in high dimensions most points will look somewhat
like outliers, and we may end up removing all most all the data. The alternative
solution I offer here is to come up with a cost function that is less susceptible to
problems with outliers. The general term for a regression that can ignore some
outliers is a robust regression.

6.2.1 M-Estimators and Iteratively Reweighted Least Squares

One way to reduce the effect of outliers on a least-squares solution would be to
weight each point in the cost function. We need some method to estimate an
appropriate set of weights. This would use a large weight for errors at points that
are “trustworthy”, and a low weight for errors at “suspicious” points.

We can obtain such weights using an M-estimator, which estimates param-
eters by replacing the negative log-likelihood with a term that is better behaved.
In our examples, the negative log-likelihood has always been squared error. Write
B for the parameters of the model being fitted, and r;(x;, 8) for the residual error
of the model on the ith data point. For us, ; will always be y; — x} . So rather
than minimizing

Z(Ti(xia B))?
3

as a function of 8, we will minimize an expression of the form
> olri(xi, B); 0),
i

for some appropriately chosen function p. Clearly, our negative log-likelihood is
one such estimator (use p(u; o) = u?). The trick to M-estimators is to make p(u; o)
look like u? for smaller values of u, but ensure that it grows more slowly than u?
for larger values of u.

The Huber loss is one important M-estimator. We use

2
p(u;g)_{% Jul<o

olul - %

which is the same as u? for —o < u < o, and then switches to |u| for larger
(or smaller) o (Figure ??). The Huber loss is convex (meaning that there will
be a unique minimum for our models) and differentiable, but its derivative is not
continuous. The choice of the parameter o (which is known as scale) has an effect
on the estimate. You should interpret this parameter as the distance that a point
can lie from the fitted function while still being seen as an inlier (anything that
isn’t even partially an outlier).
Generally, M-estimators are discussed in terms of their influence function.

This is

dp

ou’

Its importance becomes evidence when we consider algorithms to fit B using an
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Robust regressions of weight against height,
bodyfat dataset
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FIGURE 6.2: Comparing three different linear regression strategies on the bodyfat
data, regressing weight against height. Notice that using an M-estimator gives an
answer very like that obtained by rejecting outliers by hand. The answer may well be
“better” because it isn’t certain that each of the four points rejected is an outlier, and
the robust method may benefit from some of the information in these points. I tried
a range of scales for the Huber loss (the k2’ parameter), but found no difference
in the line resulting over scales varying by a factor of 1e4, which is why I plot only
one scale.

M-estimator. Our minimization criterion is

2
= 0.
Now write w; () for
aa(yi — x] B; 0)
yi — %]

We can write the minimization criterion as
> wilB)] (yi — x] B)(—xi) = 0.
i

Now write W(f) for the diagonal matrix whose i’th diagonal entry is w;(8) Then
our fitting criterion is equivalent to

XE W)Y = X7 W(B)] 5.

The difficulty in solving this is that w;(3) depend on 3, so we can’t just solve a
linear system in 5. We could use the following strategy. Use W tries to downweight
points that are suspiciously inconsistent with our current estimate of 8, then update
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histogram of residuals,
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FIGURE 6.3: A robust linear regression of weight against all variables for the bodyfat
dataset, using the Huber loss and all data points. On the left, residual plotted
against fitted value (the residual is not standardized). Notice that there are some
points with very large residual, but most have much smaller residual; this wouldn’t
happen with a squared error. On the right, a histogram of the residual. If one
ignores the extreme residual values, this looks normal. The robust process has been
able to discount the effect of the outliers, without us needing to identify and reject
outliers by hand.

[ using those weights. The strategy is known as iteratively reweighted least
squares, and is very effective.

We assume we have an estimate of the correct parameters B (") and consider
updating it to B("‘H). We compute

0, n).
() g (f) = DuBi = X0 0"50)
y; —x1 B

w,

i

We then estimate 3("*1) by solving

The key to this algorithm is finding good start points for the iteration. One
strategy is randomized search. We select a small subset of points uniformly at
random, and fit some B to these points, then use the result as a start point. If
we do this often enough, one of the start points will be an estimate that is not
contaminated by outliers.

6.2.2 Scale for M-Estimators

The estimators require a sensible estimate of o, which is often referred to as scale.
Typically, the scale estimate is supplied at each iteration of the solution method.
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One reasonable estimate is the MAD or median absolute deviation, given by
o™ = 1.4826 median,| ngn) (z; B~

Another a popular estimate of scale is obtained with Huber’s proposal 2 (that
is what everyone calls it!). Choose some constant k; > 0, and define =(u) =
min (|u|, k1)%. Now solve the following equation for o

(n) (... A(n—1)
-, Ty (X
> :(—( ) ) = Nky

%

o
where ko is another constant, usually chosen so that the estimator gives the right
answer for a normal distribution (exercises). This equation needs to be solved with
an iterative method; the MAD estimate is the usual start point. R provides hubers,
which will compute this estimate of scale (and figures out ko for itself). The choice

of k1 depends somewhat on how contaminated you expect your data to be. As
k1 — o0, this estimate becomes more like the standard deviation of the data.

6.3 GENERALIZED LINEAR MODELS

We have used a linear regression to predict a value from a feature vector, but
implicitly have assumed that this value is a real number. Other cases are important,
and some of them can be dealt with using quite simple generalizations of linear
regression. When we derived linear regression, I said one way to think about the
model was
y=x"B+¢

where £ was a normal random variable with zero mean and variance Ug. Another
way to write this is to think of y as the value of a random variable Y. In this case,
Y has mean x” 3 and variance ag. This can be written as

Y ~ N(x"8,07).

This offers a fruitful way to generalize: we replace the normal distribution with
some other parametric distribution, and predict the parameter using x* 3. Two
examples are particularly important.

6.3.1 Logistic Regression

Assume the y values can be either 0 or 1. You could think of this as a two class clas-
sification problem, and deal with it using an SVM. There are sometimes advantages
to seeing it as a regression problem. One is that we get to see a new classification
method that explicitly models class posteriors, which an SVM doesn’t do.

We build the model by asserting that the y values represent a draw from a
Bernoulli random variable (definition below, for those who have forgotten). The
parameter of this random variable is 6, the probability of getting a one. But
0 <6 <1, so we can’t just model § as x7 3. We will choose some link function
g so that we can model g(f) as x 3. This means that, in this case, g must map
the interval between 0 and 1 to the whole line, and must be 1-1. The link function
maps 6 to x” 3; the direction of the map is chosen by convention. We build our
model by asserting that g(6) = xT 3.



Section 6.3 Generalized Linear Models 179

Definition: 6.1 Bernoulli random variable

A Bernoulli random variable with parameter 6 takes the value 1 with
probability 6§ and 0 with probability 1 — #. This is a model for a coin
toss, among other things.

Notice that, for a Bernoulli random variable, we have that
Py =1/0) 0
log | =—4—=| =log | ——
°8 {P(y:O|6‘) 119

and the logit function g(u) = log [ﬁ] meets our needs for a link function (it

maps the interval between 0 and 1 to the whole line, and is 1-1). This means we
can build our model by asserting that

[R=38)-

then solving for the S that maximizes the log-likelihood of the data. Simple ma-
nipulation yields

xTB

e 1
Py =1lx) = ;g and Py =0[x) = -——7.
In turn, this means the log-likelihood of a dataset will be

£08) = 3 By 0! = 10w (14577

2

You can obtain S from this log-likelihood by gradient ascent (or rather a lot faster
by Newton’s method, if you know that).

A regression of this form is known as a logistic regression. It has the
attractive property that it produces estimates of posterior probabilities. Another
interesting property is that a logistic regression is a lot like an SVM. To see this,
we replace the labels with new ones. Write ¢; = 2y; — 1; this means that g; takes

the values —1 and 1, rather than 0 and 1. Now Ij,—y(y:) = Qigl, SO we can write
i+ 1
-L(B) = —; {y ;_ x!'B —log (1+exiT'8)]
s 41
- Z Y ;— x?B—log(l—i—exiTB)]

=5 g (L
B \EET

= > s (e—f(%“)xfﬁ + e%mx?ﬁ)}
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and we can interpret the term in square brackets as a loss function. If you plot
it, you will notice that it behaves rather like the hinge loss. When ¢; = 1, if x7 3
is positive the loss is very small, but if x” 3 is strongly negative, the loss grows
linearly in x” 3. There is similar behavior when §; = —1. The transition is smooth,
unlike the hinge loss. Logistic regression should (and does) behave well for the same
reasons the SVM behaves well.

Be aware that logistic regression has one annoying quirk. When the data
are linearly separable (i.e. there exists some (3 such that y;x} 3 > 0 for all data
items), logistic regression will behave badly. To see the problem, choose the 8 that
separates the data. Now it is easy to show that increasing the magnitude of g will
increase the log likelihood of the data; there isn’t any limit. These situations arise
fairly seldom in practical data.

6.3.2 Multiclass Logistic Regression

Imagine y € [0,1,...,C —1]. Then it is natural to model p(y|x) with a dis-
crete probability distribution on these values. This can be specified by choosing
(60,01, ...,0c—1) where each term is between 0 and 1 and ), 6; = 1. Our link
function will need to map this constrained vector of # values to a R“~'. We can
do this with a fairly straightforward variant of the logit function, too. Notice that
there are C'— 1 probabilities we need to model (the C’th comes from the constraint
>, 0i =1). We choose one vector 3 for each probability, and write j; for the vector
used to model 6;. Then we can write

0
Tp _ i
<=7

and this yields the model

T
eX Bo
Ply=0xp) = 5SS B
eXTﬁl
Ply=1xp8) = 5SS B
X
Ply=C-1x,p8) = TES R

and we would fit this model using maximum likelihood. The likelihood is easy to
write out, and gradient descent is a good strategy for actually fitting models.

6.3.3 Regressing Count Data

Now imagine that the y; values are counts. For example, y; might have the count
of the number of animals caught in a small square centered on x; in a study region.
As another example, x; might be a set of features that represent a customer, and
y; might be the number of times that customer bought a particular product. The
natural model for count data is a Poisson model, with parameter 6 representing the
intensity (reminder below).
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Definition: 6.2 Poisson distribution

A non-negative, integer valued random variable X has a Poisson distri-
bution when its probability distribution takes the form
GFe?

k!

P({X = k}) =

where 6 > 0 is a parameter often known as the intensity of the distri-
bution.

Now we need 6 > 0. A natural link function is to use
xT B =logb

yielding a model
kxTBe_ekxTﬂ

k!
Now assume we have a dataset. The negative log-likelihood can be written as

— Z log ]
=37 (x5 — e —log(u)) .

P{X =k}) =

T
T ix; B
eYix; 56781/1*1

—L(B)

There isn’t a closed form minimum available, but the log-likelihood is convex, and
gradient descent (or Newton’s method) are enough to find a minimum. Notice that
the log(y;!) term isn’t relevant to the minimization, and is usually dropped.

6.3.4 Deviance

Cross-validating a model is done by repeatedly splitting a data set into two pieces,
training on one, evaluating some score on the other, and averaging the score. But
we need to keep track of what to score. For earlier linear regression models (eg
section R]), we have used the squared error of predictions. This doesn’t really
make sense for a generalized linear model, because predictions are of quite different
form. It is usual to use the deviance of the model. Write y; for the true prediction
at a point, x, for the independent variables we want to obtain a prediction for, B

for our estimated parameters; a generalized linear model yields P(y|x,, 3). For our
purposes, you should think of the deviance as

_210gp(yt|xp73)

(this expression is sometimes adjusted in software to deal with extreme cases, etc.).
Notice that this is quite like the least squares error for the linear regression case,
because there

—210gP(y|xp,B) = (xgﬁ —y)? /o’ + K
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for K some constant.

6.4 L1 REGULARIZATION AND SPARSE MODELS

Forward and backward stagewise regression were strategies for adding independent
variables to, or removing independent variables from, a model. An alternative, and
very powerful, strategy is to construct a model with a method that forces some
coeflicients to be zero. The resulting model ignores the corresponding independent
variables. Models built this way are often called sparse models, because (one
hopes) that many independent variables will have zero coefficients, and so the model
is using a sparse subset of the possible predictors.

In some situations, we are forced to use a sparse model. For example, imagine
there are more independent variables than there are examples. In this case, the
matrix XT X will be rank deficient. We could use a ridge regression (Section [5.2.2)
and the rank deficiency problem will go away, but it would be hard to trust the
resulting model, because it will likely use all the predictors (more detail below).
We really want a model that uses a small subset of the predictors. Then, because
the model ignores the other predictors, there will be more examples than there are
predictors that we use.

There is now quite a strong belief amongst practitioners that using sparse
models is the best way to deal with high dimensional problems (although there are
lively debates about which sparse model to use, etc.). This is sometimes called the
“bet on sparsity” principle: use a sparse model for high dimensional data, because
dense models don’t work well for such problems.

6.4.1 Dropping Variables with L1 Regularization

We have a large set of explanatory variables, and we would like to choose a small
set that explains most of the variance in the independent variable. We could do
this by encouraging § to have many zero entries. In section 5. 4.2 we saw we could
regularize a regression by adding a term to the cost function that discouraged large
values of 3. Instead of solving for the value of 3 that minimized Y, (y; — x; 8)? =
(y — XB8)T(y — XB) (which I shall call the error cost), we minimized

S s = XEB) + 2678 = (v — XB) (y — X8) + 2578
(which I shall call the L2 regularized error). Here A > 0 was a constant chosen
by cross-validation. Larger values of A encourage entries of 8 to be small, but do
not force them to be zero. The reason is worth understanding.
Write Sy for the k’th component of 5, and write S_j, for all the other compo-
nents. Now we can write the L2 regularized error as a function of S:

(a+ N)Bi — 2b(B—) Bk + c(B-k)

where a is a function of the data and b and ¢ are functions of the data and of S_.
Now notice that the best value of 35 will be

b(B_1)

B = (a+A)’
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Notice that A\ doesn’t appear in the numerator. This means that, to force [ to
zero by increasing A, we may have to make )\ arbitrarily large. This is because the
improvement in the penalty obtained by going from a small §; to S8 = 0 is tiny —
the penalty is proportional to 33.

To force some components of 3 to zero, we need a penalty that grows linearly
around zero rather than quadratically. This means we should use the L; norm of

B, given by
180 =" 18kl
k

To choose 3, we must now solve

(y =X (y = XB) + Al By

for an appropriate choice of A\. An equivalent problem is to solve a constrained
minimization problem, where one minimizes

(y — XB)" (y — XB) subject to |31 <t

where t is some value chosen to get a good result, typically by cross-validation.
There is a relationship between the choice of ¢ and the choice of A (with some
thought, a smaller ¢ will correspond to a bigger \) but it isn’t worth investigating
in any detail.

Actually solving this system is quite involved, because the cost function is not
differentiable. You should not attempt to use stochastic gradient descent, because
this will not compel zeros to appear in B (exercises). There are several methods,
which are beyond our scope. As the value of A increases, the number of zeros in
B will increase too. We can choose A in the same way we used for classification;
split the training set into a training piece and a validation piece, train for different
values of A\, and test the resulting regressions on the validation piece. However, one
consequence of modern methods is that we can generate a very good approximation
to the path B (M) for all values of A > 0 about as easily as we can choose B for a
particular value of A.

One way to understand the models that result is to look at the behavior
of cross-validated error as A changes. The error is a random variable, random
because of the random split. It is a fair model of the error that would occur on
a randomly chosen test example (assuming that the training set is “like” the test
set, in a way that I do not wish to make precise yet). We could use multiple splits,
and average over the splits. Doing so yields both an average error for each value
of A\ and an estimate of the standard deviation of error. Figure shows the
result of doing so for two datasets. Again, there is no A that yields the smallest
validation error, because the value of error depends on the random split cross-
validation. A reasonable choice of A lies between the one that yields the smallest
error encountered (one vertical line in the plot) and the largest value whose mean
error is within one standard deviation of the minimum (the other vertical line in
the plot). It is informative to keep track of the number of zeros in B as a function
of A, and this is shown in Figure
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FIGURE 6.4: Plots of mean-squared error as a function of log reqularization parame-
ter (i.e. log\) for a regression of weight against all variables for the bodyfat dataset
using an L1 regularizer (i.e. a lasso). These plots show mean-squared error aver-
aged over cross-validation folds with a vertical one standard deviation bar. On the
left, the plot for the dataset with the siz outliers identified in Figure [ removed.
On the right, the plot for the whole dataset. Notice how the outliers increase the
variability of the error, and the best error. The top row of numbers gives the number
of non-zero components in B Notice how as X increases, this number falls (there
are 15 explanatory variables, so the largest model would have 15 variables). The
penalty ensures that explanatory variables with small coefficients are dropped as A
gets bigger.

Worked example 6.3 Building an L1 regularized regression

Fit a linear regression to the bodyfat dataset, predicting weight as a function of
all variables, and using the lasso to regularize. How good are the predictions?
Do outliers affect the predictions?

Solution: T used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
~hastie/glmnet/glmnet_alpha.html. You can see from Figure [6.7 that (a) for the
case of outliers removed, the predictions are very good and (b) the outliers
create problems. Note the magnitude of the error, and the low variance, for
good cross validated choices. The main point of this example is to give you a
start on producing R code, and I have put a code snippet in example

Another way to understand the models is to look at how B changes as A

changes. We expect that, as A gets smaller, more and more coefficients become
non-zero. Figure shows plots of coefficient values as a function of log A for a
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Listing 6.1: R code used for the lasso regression example of worked example

setwd(’/users/daf/Current/courses/Probcourse/Regression/RCode/HeightWei
library (gdata)

bfd<-read. xls ( ’'BodyFat . xls ")

library (glmnet)
xmat<—as.matrix(bfd[,—c(1, 5, 18)])
ymat<—as.matrix(bfd [, 5])

# keeping in the outliers

dmodel<—cv . glmnet (xmat, ymat, alpha=0)
plot (dmodel)

# without owutliers

cbfd<—bfd[—c (216, 39, 41, 42, 221, 163),]
xmat<—as . matrix(cbfd[,—c(1, 5, 18)])
ymat<—as.matrix (cbfd [, 5])

modek—cv . glmnet (xmat, ymat, alpha=0)
plot (model)

ght

regression of weight against all variables for the bodyfat dataset, penalised using
the L; norm. For different values of A, one gets different solutions for B . When
A is very large, the penalty dominates, and so the norm of B must be small. In
turn, most components of B are zero. As A gets smaller, the norm of j falls and
some components of become non-zero. At first glance, the variable whose coefficient
grows very large seems important. Look more carefully; this is the last component
introduced into the model. But Figure implies that the right model has 7
components. This means that the right model has log A ~ 1.3, the vertical line
shown in the detailed figure. In the best model, that coefficient is in fact zero.

The L; norm can sometimes produce an impressively small model from a
large number of variables. In the UC Irvine Machine Learning repository, there is
a dataset to do with the geographical origin of music (https://archive.ics.uci.edu/
ml/datasets/Geographical+Original4+-of+Music). The dataset was prepared by Fang
Zhou, and donors were Fang Zhou, Claire Q, and Ross D. King. Further details
appear on that webpage, and in the paper: “Predicting the Geographical Origin
of Music” by Fang Zhou, Claire Q and Ross. D. King, which appeared at ICDM
in 2014. There are two versions of the dataset. One has 116 explanatory variables
(which are various features representing music), and 2 independent variables (the
latitude and longitude of the location where the music was collected). Figure
shows the results of a regression of latitude against the independent variables using
L4 regularization. Notice that the model that achieves the lowest cross-validated
prediction error uses only 38 of the 116 variables.

Regularizing a regression with the L; norm is sometimes known as a lasso. A
nuisance feature of the lasso is that, if several explanatory variables are correlated,
it will tend to choose one for the model and omit the others (example in exercises).
This can lead to models that have worse predictive error than models chosen using
the Lo penalty. One nice feature of good minimization algorithms for the lasso is

)5
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FIGURE 6.5: Plots of coefficient values as a function of log\ for a regression of
weight against all variables for the bodyfat dataset, penalised using the L1 norm. In
each case, the six outliers identified in Figure [ were removed. On the left, the
plot of the whole path for each coefficient (each curve is one coefficient). On the
right, a detailed version of the plot. The vertical line shows the value of log A the
produces the model with smallest cross-validated error (look at Figure[6.4). Notice
that the variable that appears to be important, because it would have a large weight
with A = 0, does not appear in this model.

that it is easy to use both an L; penalty and an Lo penalty together. One can form

(%) (Z@i —x?ﬁ>2> +oa (“ ~) 51,2 +a||ﬁ||1)

%

Error + Regularizer

where one usually chooses 0 < o < 1 by hand. Doing so can both discourage large
values in § and encourage zeros. Penalizing a regression with a mixed norm like this
is sometimes known as elastic net. It can be shown that regressions penalized with
elastic net tend to produce models with many zero coefficients, while not omitting
correlated explanatory variables. All the computation can be done by the glmnet
package in R (see exercises for details).
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FIGURE 6.6: Mean-squared error as a function of log reqularization parame-
ter (i.e. log\) for a regression of latitude against features describing mu-
sic (details in text), using the dataset at https://archive.ics.uci.edu/ml/datasets/
Geographical+ Original+of+Music and penalized with the L1 norm. The plot on the
left shows mean-squared error averaged over cross-validation folds with a vertical
one standard deviation bar. The top row of numbers gives the number of non-zero
components in B Notice how as A increases, this number falls. The penalty ensures
that explanatory variables with small coefficients are dropped as A\ gets bigger. On
the right, a plot of the coefficient values as a function of log X for the same regres-
sion. The vertical line shows the value of log A the produces the model with smallest
cross-validated error. Only 38 of 116 explanatory variables are used by this model.

Worked example 6.4 Building an elastic net regression

Fit a linear regression to the bodyfat dataset, predicting weight as a function
of all variables, and using the elastic net to regularize. How good are the
predictions? Do outliers affect the predictions?

Solution: T used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
~hastie/glmnet/glmnet_alpha.html. The package will do ridge, lasso and elastic
net regressions. One adjusts a parameter in the function call, «, that balances
the terms; a = 0 is ridge and o = 1 is lasso. You can see from Figure
that (a) for the case of outliers removed, the predictions are very good and
(b) the outliers create problems. Note the magnitude of the error, and the low
variance, for good cross validated choices. The main point of this example is
to give you a start on producing R code, and I have put a code snippet in
example
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FIGURE 6.7: Plots of mean-squared error as a function of log reqularization parame-
ter (i.e. log\) for a regression of weight against all variables for the bodyfat dataset
using an elastic net reqularizer for various choices of a. The case o = 1 corresponds
to a lasso; o = 0 corresponds to a ridge; and o = 0.5 is one possible choice yielding
an elastic net. These plots show mean-squared error averaged over cross-validation
folds with a vertical one standard deviation bar. On the left, the plot for the dataset
with the six outliers identified in Figure[81 removed. On the right, the plot for the
whole dataset. Notice how the outliers increase the variability of the error, and the
best error. The top row of numbers gives the number of non-zero components in B.
Notice how as X increases, this number falls (there are 15 explanatory variables, so
the largest model would have 15 variables). The penalty ensures that explanatory
variables with small coefficients are dropped as A gets bigger.

6.4.2 Wide Datasets

Now imagine we have more independent variables than examples (this is some-
times referred to as a “wide” dataset). This occurs quite often for a wide range
of datasets; it’s particularly common for biological datasets and natural language
datasets. Unregularized linear regression must fail, because X7 X must be rank
deficient. Using an L2 (ridge) regularizer will produce an answer that should seem
untrustworthy. The estimate of S is constrained by the data in some directions,
but in other directions it is constrained only by the regularizer.

An estimate produced by L1 (lasso) regularization should look more reliable to
you. Zeros in the estimate of 8 mean that the corresponding independent variables
are ignored. Now if there are many zeros in the estimate of 3, the model is being
fit with a small subset of the independent variables. If this subset is small enough,
then the number of independent variables that are actually being used is smaller
than the number of examples. If the model gives low enough error, it should seem
trustworthy in this case. There are some hard questions to face here (eg does the
model choose the “right” set of variables?) that we can’t deal with.
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Listing 6.2: R code used for the elastic net regression example of worked example
0.4]

setwd(’/users/daf/Current/courses/Probcourse/Regression/RCode/HeightWei
library (gdata)

bfd<-read. xls ( ’'BodyFat . xls ")

library (glmnet)

library (pls)

x<—as.matrix(bfd[,—c(1, 5, 18)])
y<—as.matrix(bfd [, 5])

foldid=sample (1:10, size=length (y),replace=ITRUE)
cvl=cv.glmnet (x,y, foldid=foldid ,alpha=1)
cv.5=cv.glmnet(x,y, foldid=foldid ,alpha=.5)
cv0=cv.glmnet (x,y, foldid=foldid , alpha=0)

par (mfrow=c (2,2))

plot(cvl);

legend (7 top”, legend="alpha=1")
plot(cv.5)

legend (7 top”, legend="alpha=.5");
plot(cv0)

legend (7 top”, legend="alpha=0")
plot (log(cvl$lambda),cvl$cvm,pch=19,col="red” ,
xlab="1og (Lambda)” , ylab=cv1$name)
points (log(cv.58lambda),cv.58cvim, pch=19,col="grey”)
points (log(cv0$lambda) ,cv08cvm, pch=19,col="blue”)
legend (” topleft”
legend=c(” alpha=1” ,” alpha=.5" ;” alpha=0"),
pch=19,col=c(”red” ,” grey” ,” blue”))

ght ) ;

Worked example 6.5 L1 regularized regression for a “wide” dataset

The gasoline dataset has 60 examples of near infrared spectra for gasoline of
different octane ratings. The dataset is due to John H. Kalivas, and was origi-
nally described in the article “T'wo Data Sets of Near Infrared Spectra”, in the
journal Chemometrics and Intelligent Laboratory Systems, vol. 37, pp. 255259,
1997. Each example has measurements at 401 wavelengths. I found this dataset
in the R library pls. Fit a regression of octane against infrared spectrum using
L1 regularized logistic regression.

Solution: I used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
~hastie/glmnet/glmnet_alpha.html. The package will do ridge, lasso and elastic
net regressions. One adjusts a parameter in the function call, «, that balances
the terms; o = 0 is ridge and o = 1 is lasso. Not surprisingly, the ridge isn’t
great. I tried a = 0.1, @« = 0.5 and a = 1. Results in Figure suggest fairly
strongly that very good predictions should be available with the lasso using
quite a small regularization constant; there’s no reason to believe that the best
ridge models are better than the best elastic net models, or vice versa. The
models are very sparse (look at the number of variables with non-zero weights,
plotted on the top).
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FIGURE 6.8: On the left, a comparison between three values of « in a glmnet
regression predicting octane from NIR spectra (see Example[62). The plots show
cross-validated error against log reqularization coefficient for « = 1 (lasso) and two
elastic-net cases, « = 0.5 and o = 0.1. I have plotted these curves separately,
with error bars, and on top of each other but without error bars. The values at the
top of each separate plot show the number of independent variables with non-zero
coefficients in the best model with that regularization parameter. On the right, a
ridge regression for comparison. Notice that the error is considerably larger, even
at the best value of the reqularization parameter.

6.4.3 Using Sparsity Penalties with Other Models

A really nice feature of using an L1 penalty to enforce sparsity in a model is that
it applies to a very wide range of models. For example, we can obtain a sparse
SVM by replacing the L2 regularizer with an L1 regularizer. Most SVM packages
will do this for you, although I'm not aware of any compelling evidence that this
produces an improvement in most cases. All of the generalized linear models I
described can be regularized with an L1 regularizer. For these cases, glmnet will
do the computation required. The worked example shows using a multinomial (i.e.
multiclass) logistic regression with an L1 regularizer.



Section 6.4 L1 Regularization and Sparse Models 191

136 127 120 107 96 83 76 62 53 42 32 25 16 8 0 O 177 167 152 133 118 100 85 78 64 53 45 30 21 1 O

Multinomial Deviance
Multinomial Deviance

T T T T T T T T T T
-10 -8 -6 -4 -2 -10 -8 -6 -4 -2

log(Lambda) log(Lambda)

FIGURE 6.9: Multiclass logistic regression on the MNIST data set, using a lasso and
elastic net reqularizers. On the left, deviance of held out data on the digit data set
(worked example[60), for different values of the log reqularization parameter in the
lasso case. On the right, deviance of held out data on the digit data set (worked
example [60), for different values of the log regularization parameter in the elastic
net case, a = 0.5.

Worked example 6.6 Multiclass logistic regression with an L1 regularizer

The MNIST dataset consists of a collection of handwritten digits, which must
be classified into 10 classes (0,...9). There is a standard train/test split. This
dataset is often called the zip code dataset because the digits come from zip
codes, and has been quite widely studied. Yann LeCun keeps a record of the per-
formance of different methods on this dataset at http://yann.lecun.com/exdb/
mnist/. Obtain the Zip code dataset from http://statweb.stanford.edu/~tibs/
ElemStatLearn/, and use a multiclass logistic regression with an L1 regularizer
to classifiy it.

Solution: The dataset is rather large, and on my computer the fitting process
takes a little time. Figure shows what happens with the lasso, and with
elasticnet with o = 0.5 on the training set, using glmnet to predict and cross
validation to select A values. For the lasso, I found an error rate on the held
out data of 8.5%, which is OK, but not great compared to other methods. For
elastic net, I found a slightly better error rate (8.2%); I believe even lower error
rates are possible with these codes.



http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/

Section 6.5 You should 192

Listing 6.3: R code used for the digit example of worked example

setwd(’/users/daf/Current/courses/Probcourse/Regression/RCode/Digits’);
library (glmnet)

digdat<-read.table(’zip.train’, sep=’.’, header=FALSE)
y<—as.factor(digdat$Vl)

x<—as.matrix(digdat[,—c(1, 258)])

mod<—cv . glmnet (x, y, family="multinomial” , alpha=1)
plot (mod)

# ok mow we need to predict
digtest<-read.table(’zip.test’, sep=’"_’, header=FALSE)

ytest<—as.factor(digtest$V1)

xtest<—as.matrix(digtest[,—c (1, 258)])

Impredn<—predict (mod, xtest, type=’class’, s=’lambda.min’)
llpredn<—predict (mod, xtest, type=’class’, s=’lambda.lse’)
nmright<-sum(ytest=—=Ilmpredn)

errratem<—(l—nmright /dim(lmpredn))
nlright<-sum(ytest=Ilmpredn)
errratel<—(1—nlright/dim(lmpredn))

mod.5<—cv.glmnet (x, y, family="multinomial”, alpha=0.5)

plot (mod.5)

# ok mow we need to predict

digtest<-read.table(’zip.test’, sep=’.’, header=FALSE)
ytest<—as.factor(digtest$V1)

xtest<—as.matrix(digtest|[,—c (1, 258)])

Impredn .5<—predict(mod.5, xtest, type=’class’, s=’lambda.min’)
llpredn.5<—predict(mod.5, xtest, type=’class’, s=’lambda.lse’)
nmright . 5<-sum(ytest=—=Ilmpredn.5)

errratem .5<—(l—nmright.5/dim(lmpredn.5))

nlright .5<sum(ytest=—=lmpredn.5)

errratel .5<—(1—nlright.5/dim(lmpredn.5))

6.5 YOU SHOULD

6.5.1 remember:
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CHAPTER 7

Markov Chains and Hidden Markov
Models

There are many situations where one must work with sequences. Here is a
simple, and classical, example. We see a sequence of words, but the last word
is missing. I will use the sequence “I had a glass of red wine with my grilled
xxxx”. What is the best guess for the missing word? You could obtain one possible
answer by counting word frequencies, then replacing the missing word with the
most common word. This is “the”, which is not a particularly good guess because
it doesn’t fit with the previous word. Instead, you could find the most common pair
of words matching “grilled xxxx”, and then choose the second word. If you do this
experiment (I used Google Ngram viewer, and searched for “grilled *”), you will
find mostly quite sensible suggestions (I got “meats”, “meat”, “fish”, “chicken”,
in that order). If you want to produce random sequences of words, the next word
should depend on some of the words you have already produced.

7.1 MARKOV CHAINS

A sequence of random variables X,, is a Markov chain if it has the property that,
P(X,, = j|values of all previous states) = P(X,, = j|Xn—1),

or, equivalently, only the last state matters in determining the probability of the
current state. The probabilities P(X, = j|X,,—1 = ¢) are the transition prob-
abilities. We will always deal with discrete random variables here, and we will
assume that there is a finite number of states. For all our Markov chains, we will
assume that

P(X, =j|Xn-1=1)=P(Xp—1 =j|Xn_2=1).

Formally, we focus on discrete time, time homogenous Markov chains in a finite
state space. With enough technical machinery one can construct many other kinds
of Markov chain.

One natural way to build Markov chains is to take a finite directed graph and
label each directed edge from node ¢ to node j with a probability. We interpret
these probabilities as P(X,, = j|X,,—1 = %) (so the sum of probabilities over outgoing
edges at any node must be 1). The Markov chain is then a biased random walk
on this graph. A bug (or any other small object you prefer) sits on one of the graph’s
nodes. At each time step, the bug chooses one of the outgoing edges at random.
The probability of choosing an edge is given by the probabilities on the drawing
of the graph (equivalently, the transition probabilities). The bug then follows that
edge. The bug keeps doing this until it hits an end state.

194



Section 7.1 Markov Chains 195

H H

@ O

FIGURE 7.1: A directed graph representing the coin flip example. By convention, the
end state is a double circle, and the start state has an incoming arrow. I’'ve labelled
the arrows with the event that leads to the transition, but haven’t bothered to put in
the probabilities, because each is 0.5.

Worked example 7.1 Multiple Coin Flips

You choose to flip a fair coin until you see two heads in a row, and then stop.
Represent the resulting sequence of coin flips with a Markov chain. What is
the probability that you flip the coin four times?

Solution: Figure[T.]]shows a simple drawing of the directed graph that repre-
sents the chain. The last three flips must have been THH (otherwise you’d go
on too long, or end too early). But, because the second flip must be a T, the
first could be either H or T'. This means there are two sequences that work:
HTHH and TTHH. So P(4 flips) = 2/8 = 1/4. We might want to answer
significantly more interesting questions. For example, what is the probability
that we must flip the coin more than 10 times? It is often possible to answer
these questions by analysis, but we will use simulations.

Worked example 7.2 Umbrellas

I own one umbrella, and I walk from home to the office each morning, and back
each evening. If it is raining (which occurs with probability p, and my umbrella
is with me), I take it; if it is not raining, I leave the umbrella where it is. We
exclude the possibility that it starts raining while I walk. Where I am, and
whether I am wet or dry, forms a Markov chain. Draw a state machine for this
Markov chain.

Solution: Figure gives this chain. A more interesting question is with
what probability I arrive at my destination wet? Again, we will solve this with
simulation.

Notice an important difference between examples [[.1] and In the coin flip
case, the sequence of random variables can end (and your intuition likely tells you
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FIGURE 7.2: A directed graph representing the umbrella example. Notice you can’t
arrive at the office wet with the umbrella at home (you’d have taken it), and so on.
Labelling the edges with probabilities is left to the reader.

it should do so reliably). We say the Markov chain has an absorbing state — a
state that it can never leave. In the example of the umbrella, there is an infinite
sequence of random variables, each depending on the last. Each state of this chain
is recurrent — it will be seen repeatedly in this infinite sequence. One way to have
a state that is not recurrent is to have a state with outgoing but no incoming edges.

Worked example 7.3 The gambler’s ruin

Assume you bet 1 a tossed coin will come up heads. If you win, you get 1 and
your original stake back. If you lose, you lose your stake. But this coin has
the property that P(H) = p < 1/2. You have s when you start. You will keep
betting until either (a) you have 0 (you are ruined; you can’t borrow money)
or (b) the amount of money you have accumulated is j, where j > s. The coin
tosses are independent. The amount of money you have is a Markov chain.
Draw the underlying state machine. Write P(ruined, starting with s|p) = ps.
It is straightforward that pg = 1, p; = 0. Show that

Ps = PPst1 + (1 — P)ps—1.

Solution: Figure illustrates this example. The recurrence relation follows
because the coin tosses are independent. If you win the first bet, you have s+ 1
and if you lose, you have s — 1.

The gambler’s ruin example illustrates some points that are quite character-
istic of Markov chains. You can often write recurrence relations for the probability
of various events. Sometimes you can solve them in closed form, though we will
not pursue this thought further.
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FIGURE 7.3: A directed graph representing the gambler’s ruin example. I have la-
belled each state with the amount of money the gambler has at that state. There
are two end states, where the gambler has zero (is ruined), or has j and decides
to leave the table. The problem we discuss is to compute the probability of being
ruined, given the start state is s. This means that any state except the end states
could be a start state. I have labelled the state transitions with “W?” (for win) and
“L7” for lose, but have omitted the probabilities.

Useful Facts: 7.1 Markov chains

A Markov chain is a sequence of random variables X,, with the property
that,

P(X,, = j|values of all previous states) = P(X,, = j|X;,_1).

7.1.1 Transition Probability Matrices

Define the matrix P with p;; = P(X,, = j|X,—1 = ). Notice that this matrix has
the properties that p;; > 0 and
> pig =1

J

because at the end of each time step the model must be in some state. Equivalently,
the sum of transition probabilities for outgoing arrows is one. Non-negative matrices
with this property are stochastic matrices. By the way, you should look very
carefully at the i’s and j’s here — Markov chains are usually written in terms of
row vectors, and this choice makes sense in that context.
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FIGURE 7.4: A wirus can exist in one of 3 strains. At the end of each year, the virus
mutates. With probability «, it chooses uniformly and at random from one of the 2
other strains, and turns into that; with probability 1 — «, it stays in the strain it is
in. For this figure, we have transition probabilities p = (1 — «) and ¢ = («/2).

Worked example 7.4 Viruses

Write out the transition probability matrix for the virus of Figure[.4] assuming
that a = 0.2.

Solution: We have P(X,, = 1|X,,_1 = 1) = (1 —a) = 0.8, and P(X, =
2|X,-1=1)=a/2=P(X, =3|X,-1=1); so we get

0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 08

Now imagine we do not know the initial state of the chain, but instead have
a probability distribution. This gives P(Xy = 4) for each state ¢. It is usual to take
these k probabilities and place them in a k-dimensional row vector, which is usually
written 7. From this information, we can compute the probability distribution over
the states at time 1 by

P(X;=j) = ZP(XI =7, X0 =1)

Y P(Xy = j|Xo = i)P(Xo = i)
sz‘jm-

If we write p(™ for the row vector representing the probability distribution of the
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state at step n, we can write this expression as
p = aP.
Now notice that

P(Xy=j) = ZP(Xz =j, X1 =1)

ZP(X2 =j|X1 =9)P(X1 =)

= Zpij (ZPM‘M) .
i ki
so that
p™ = 7P,

This expression is useful for simulation, and also allows us to deduce a variety of
interesting properties of Markov chains.

Useful Facts: 7.2 Transition probability matrices

A finite state Markov chain can be represented with a matrix P of tran-
sition probabilities, where the i, j’th element p;; = P(X,, = j|Xp—1 =
i). This matrix is a stochastic matrix. If the probability distribution of
state X,,_1 is represented by m,_1, then the probability distribution of
state X, is given by w1 ,P.

7.1.2  Stationary Distributions
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Worked example 7.5 Viruses

We know that the virus of Figure [T4] started in strain 1. After two state
transitions, what is the distribution of states when o = 0.2?7 when a = 0.97
What happens after 20 state transitions? If the virus starts in strain 2, what
happens after 20 state transitions?

Solution: If the virus started in strain 1, then 7 = [1,0,0]. We must
compute m(P(a))?. This yields [0.66,0.17,0.17] for the case a = 0.2 and
[0.4150,0.2925,0.2925] for the case « = 0.9. Notice that, because the virus
with small « tends to stay in whatever state it is in, the distribution of states
after two years is still quite peaked; when « is large, the distribution of states is
quite uniform. After 20 transitions, we have [0.3339,0.3331,0.3331] for the case
a = 0.2 and [0.3333,0.3333,0.3333] for the case « = 0.9; you will get similar
numbers even if the virus starts in strain 2. After 20 transitions, the virus has
largely “forgotten” what the initial state was.

In example [Z5] the distribution of virus strains after a long interval appears
not to depend much on the initial strain. This property is true of many Markov
chains. Assume that our chain has a finite number of states. Assume that any
state can be reached from any other state, by some sequence of transitions. Such
chains are called irreducible. Notice this means there is no absorbing state, and
the chain cannot get “stuck” in a state or a collection of states. Then there is a
unique vector s, usually referred to as the stationary distribution, such that for
any initial state distribution m,

lim
n — 0o

aP™ =s.

Equivalently, if the chain has run through many steps, it no longer matters what
the initial distribution is. The probability distribution over states will be s.

The stationary distribution can often be found using the following property.
Assume the distribution over states is s, and the chain goes through one step. Then
the new distribution over states must be s too. This means that

sP=s

so that s is an eigenvector of PT, with eigenvalue 1. It turns out that, for an
irreducible chain, there is exactly one such eigenvector.

The stationary distribution is a useful idea in applications. It allows us to
answer quite natural questions, without conditioning on the initial state of the
chain. For example, in the umbrella case, we might wish to know the probability
I arrive home wet. This could depend on where the chain starts (example [7.0)).
If you look at the figure, the Markov chain is irreducible, so there is a stationary
distribution and (as long as I've been going back and forth long enough for the
chain to “forget” where it started), the probability it is in a particular state doesn’t
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Home

Umbrella

Office

Home Office

FIGURE 7.5: In this umbrella example, there can’t be a stationary distribution; what
happens depends on the initial, random choice of buying/not buying an umbrella.

depend on where it started. So the most sensible interpretation of this probability
is the probability of a particular state in the stationary distribution.

Worked example 7.6 Umbrellas, but without a stationary distribution

This is a different version of the umbrella problem, but with a crucial difference.
When I move to town, I decide randomly to buy an umbrella with probability
0.5. I then go from office to home and back. If I have bought an umbrella, I
behave as in example If T have not, I just get wet. Illustrate this Markov
chain with a state diagram.

Solution: Figure does this. Notice this chain isn’t irreducible. The state
of the chain in the far future depends on where it started (i.e. did I buy an
umbrella or not).

Useful Facts: 7.3 Many Markov chains have stationary distributions

If a Markov chain has a finite set of states, and if it is possible to get
from any state to any other state, then the chain will have a stationary
distribution. A sample state of the chain taken after it has been running
for a long time will be a sample from that stationary distribution. Once
the chain has run for long enough, it will visit states with a frequency
corresponding to that stationary distribution, though it may take many
state transitions to move from state to state.
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7.1.3 Example: Markov Chain Models of Text

Imagine we wish to model English text. The very simplest model would be to
estimate individual letter frequencies (most likely, by counting letters in a large
body of example text). We might count spaces and punctuation marks as letters.
We regard the frequencies as probabilities, then model a sequence by repeatedly
drawing a letter from that probability model. You could even punctuate with this
model by regarding punctuation signs as letters, too. We expect this model will
produce sequences that are poor models of English text — there will be very long
strings of ’a’s, for example. This is clearly a (rather dull) Markov chain. It is
sometimes referred to as a 0-th order chain or a 0-th order model, because each
letter depends on the 0 letters behind it.

A slightly more sophisticated model would be to work with pairs of letters.
Again, we would estimate the frequency of pairs by counting letter pairs in a body
of text. We could then draw a first letter from the letter frequency table. Assume
this is an ’a’. We would then draw the second letter by drawing a sample from
the conditional probability of encountering each letter after ’a’, which we could
compute from the table of pair frequencies. Assume this is an 'n’. We get the third
letter by drawing a sample from the conditional probability of encountering each
letter after 'n’, which we could compute from the table of pair frequencies, and so
on. This is a first order chain (because each letter depends on the one letter behind
it).

Second and higher order chains (or models) follow the general recipe, but
the probability of a letter depends on more of the letters behind it. You may be
concerned that conditioning a letter on the two (or k) previous letters means we
don’t have a Markov chain, because I said that the n’th state depends on only the
n — 1’th state. The cure for this concern is to use states that represent two (or k)
letters, and adjust transition probabilities so that the states are consistent. So for
a second order chain, the string “abcde” is a sequence of four states, “ab”, “bc”,
“cd”, and “de”.
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Worked example 7.7 Modelling short words

Obtain a text resource, and use a trigram letter model to produce four letter
words. What fraction of bigrams (resp. trigrams) do not occur in this resource?
What fraction of the words you produce are actual words?

Solution: I used the text of a draft of this chapter. I ignored punctuation
marks, and forced capital letters to lower case letters. I found 0.44 of the
bigrams and 0.90 of the trigrams were not present. I built two models. In one,
I just used counts to form the probability distributions (so there were many
zero probabilities). In the other, I split a probability of 0.1 between all the
cases that had not been observed. A list of 20 word samples from the first
model is: “ngen”, “ingu”, “erms”, “isso”, “also”, “plef”, “trit”, “issi”, “stio”,
“esti”, “coll”, “tsma”, “arko”, “llso”, “bles”, “uati”, “namp”, “call”, “riat”,
“eplu”; two of these are real English words (three if you count “coll”, which I
don’t; too obscure), so perhaps 10% of the samples are real words. A list of 20
word samples from the second model is: “hate”, “ther”, “sout”, “vect”, “nces”,
“ffer”, “msua’”, “ergu”, “blef’, “hest”, “assu”, “thsp”, “ults”, “lend”, ”lIsoc”,
“fysj”, “user”, “ithi”, “prow”, “lith”; four of these are real English words (you
might need to look up “lith”, but I refuse to count “hest” as being too archaic),
so perhaps 20% of the samples are real words. In each case, the samples are
too small to take the fraction estimates all that seriously.

Letter models can be good enough for (say) evaluating communication devices,
but they’re not great at producing words (example [[7)). More effective language
models are obtained by working with words. The recipe is as above, but now we
use words in place of letters. It turns out that this recipe applies to such domains
as protein sequencing, dna sequencing and music synthesis as well, but now we use
amino acids (resp. base pairs; notes) in place of letters. Generally, one decides what
the basic item is (letter, word, amino acid, base pair, note, etc.). Then individual
items are called unigrams and 0’th order models are unigram models; pairs are
bigrams and first order models are bigram models; triples are trigrams, second
order models trigram models; and for any other n, groups of n in sequence are
n-grams and n — 1’th order models are n-gram models.
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Worked example 7.8 Modelling text with n-grams of words

Build a text model that uses bigrams (resp. trigrams, resp. n-grams) of words,
and look at the paragraphs that your model produces.

Solution: This is actually a fairly arduous assignment, because it is hard
to get good bigram frequencies without working with enormous text re-
sources. Google publishes n-gram models for English words with the year
in which the n-gram occurred and information about how many differ-
ent books it occurred in. So, for example, the word “circumvallate” ap-
peared 335 times in 1978, in 91 distinct books — some books clearly felt
the need to use this term more than once. This information can be found
starting at http://storage.googleapis.com/books/ngrams/books/datasetsv2.html.
The raw dataset is huge, as you would expect. There are numerous n-
gram language models on the web. Jeff Attwood has a brief discus-
sion of some models at https://blog.codinghorror.com/markov-and-you/; So-
phie Chou has some examples, and pointers to code snippets and text
resources, at http://blog.sophiechou.com/2013/how-to-model-markov-chains/.
Fletcher Heisler, Michael Herman, and Jeremy Johnson are authors of
RealPython, a training course in Python, and give a nice worked ex-
ample of a Markov chain language generator at https://realpython.com/
blog/python/lyricize-a-flask-app-to-create-lyrics-using-markov-chains/.  Markov
chain language models are effective tools for satire.  Garkov is Josh
Millard’s tool for generating comics featuring a well-known cat (at
http://joshmillard.com/garkov/). There’s a nice Markov chain for review-
ing wines by Tony Fischetti at http://www.onthelambda.com/2014/02/20/
how-to-fake-a-sophisticated-knowledge-of-wine-with-markov-chains/

It is usually straightforward to build a unigram model, because it is usually
easy to get enough data to estimate the frequencies of the unigrams. There are
many more bigrams than unigrams, many more trigrams than bigrams, and so on.
This means that estimating frequencies can get tricky. In particular, you might
need to collect an immense amount of data to see every possible n-gram several
times. Without seeing every possible n-gram several times, you will need to deal
with estimating the probability of encountering rare n-grams that you haven’t seen.
Assigning these n-grams a probability of zero is unwise, because that implies that
they never occur, as opposed to occur seldom.

There are a variety of schemes for smoothing data (essentially, estimating
the probability of rare items that have not been seen). The simplest one is to
assign some very small fixed probability to every n-gram that has a zero count.
It turns out that this is not a particularly good approach, because, for even quite
small n, the fraction of n-grams that have zero count can be very large. In turn,
you can find that most of the probability in your model is assigned to n-grams you
have never seen. An improved version of this model assigns a fixed probability to
unseen n-grams, then divides that probability up between all of the n-grams that
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have never been seen before. This approach has its own characteristic problems. It
ignores evidence that some of the unseen n-grams are more common than others.
Some of the unseen n-grams have (n-1) leading terms that are (n-1)-grams that
we have observed. These (n-1)-grams likely differ in frequency, suggesting that n-
grams involving them should differ in frequency, too. More sophisticated schemes
are beyond our scope, however.

7.2 ESTIMATING PROPERTIES OF MARKOV CHAINS

Many problems in probability can be worked out in closed form if one knows enough
combinatorial mathematics, or can come up with the right trick. Textbooks are
full of these, and we’ve seen some. Explicit formulas for probabilities are often
extremely useful. But it isn’t always easy or possible to find a formula for the
probability of an event in a model. Markov chains are a particularly rich source
of probability problems that might be too much trouble to solve in closed form.
An alternative strategy is to build a simulation, run it many times, and count the
fraction of outcomes where the event occurs. This is a simulation experiment.

7.2.1 Simulation

Imagine we have a random variable X with probability distribution P(X) that
takes values in some domain D. Assume that we can easily produce independent
simulations, and that we wish to know E[f], the expected value of the function f
under the distribution P(X).

The weak law of large numbers tells us how to proceed. Define a new random
variable ' = f(X). This has a probability distribution P(F'), which might be
difficult to know. We want to estimate E[f], the expected value of the function f
under the distribution P(X). This is the same as E[F]. Now if we have a set of
IID samples of X, which we write z;, then we can form a set of IID samples of F'
by forming f(x;) = f;. Write

N
FN — Zz]:vl fZ'

This is a random variable, and the weak law of large numbers gives that, for any
positive number €
Jim_ P({|Fy ~ E[F]] > ¢}) = 0.

You can interpret this as saying that, that for a set of IID random samples z;, the
probability that
N
2 iz (i)

N
is very close to E[f] is high for large N
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Worked example 7.9 Computing an Expectation

Assume the random variable X is uniformly distributed in the range [0 — 1],
and the random variable Y is uniformly distributed in the range [0 — 10]. X
and Z are independent. Write Z = (Y — 5X)3 — X2. What is var ({Z})?

Solution: With enough work, one could probably work this out in closed
form. An easy program will get a good estimate. We have that var ({Z}) =
E[Z?] - IE[Z]2. My program computed 1000 values of Z (by drawing X and Y
from the appropriate random number generator, then evaluating the function).
I then computed E[Z] by averaging those values, and IE[Z]2 by averaging their
squares. For a run of my program, I got var ({Z}) = 2.76 x 10

You can compute a probability using a simulation, too, because a probabil-
ity can be computed by taking an expectation. Recall the property of indicator
functions that

E[lig] = P(€)

(Section ?7). This means that computing the probability of an event £ involves
writing a function that is 1 when the event occurs, and 0 otherwise; we then estimate
the expected value of that function.

Worked example 7.10 Computing a Probability for Multiple Coin Flips

You flip a fair coin three times. Use a simulation to estimate the probability
that you see three H’s.

Solution: You really should be able to work this out in closed form. But it’s
amusing to check with a simulation. I wrote a simple program that obtained a
1000x3 table of uniformly distributed random numbers in the range [0 —1]. For
each number, if it was greater than 0.5 I recorded an H and if it was smaller,
I recorded a T'. Then I counted the number of rows that had 3 H’s (i.e. the
expected value of the relevant indicator function). This yielded the estimate
0.127, which compares well to the right answer.
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Worked example 7.11 Computing a Probability

Assume the random variable X is uniformly distributed in the range [0 — 1],
and the random variable Y is uniformly distributed in the range [0 — 10]. Write
Z = (Y —5X)3— X2, What is P({Z > 3})?

Solution: With enough work, one could probably work this out in closed form.
An easy program will get a good estimate. My program computed 1000 values
of Z (by drawing X and Y from the appropriate random number generator,
then evaluating the function) and counted the fraction of Z values that was
greater than 3 (which is the relevant indicator function). For a run of my
program, I got P({Z > 3}) ~ 0.619

For all the examples we will deal with, producing an IID sample of the relevant
probability distribution will be straightforward. You should be aware that it can
be very hard to produce an IID sample from an arbitrary distribution, particularly
if that distribution is over a continuous variable in high dimensions.

7.2.2 Simulation Results as Random Variables

The estimate of a probability or of an expectation that comes out of a simulation
experiment is a random variable, because it is a function of random numbers. If
you run the simulation again, you’ll get a different value, unless you did something
silly with the random number generator. Generally, you should expect this ran-
dom variable to have a normal distribution. You can check this by constructing a
histogram over a large number of runs. The mean of this random variable is the
parameter you are trying to estimate. It is useful to know that this random variable
tends to be normal, because it means the standard deviation of the random variable
tells you a lot about the likely values you will observe.

Another helpful rule of thumb, which is almost always right, is that the stan-
dard deviation of this random variable behaves like

C

VN

where C'is a constant that depends on the problem and can be very hard to evaluate,
and NN is the number of runs of the simulation. What this means is that if you want
to (say) double the accuracy of your estimate of the probability or the expectation,
you have to run four times as many simulations. Very accurate estimates are tough
to get, because they require immense numbers of simulation runs.

Figure shows how the result of a simulation behaves when the number of
runs changes. I used the simulation of example [[.T1] and ran multiple experiments
for each of a number of different samples (i.e. 100 experiments using 10 samples;
100 using 100 samples; and so on).
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FIGURE 7.6: Estimates of the probability from example[7.11], obtained from different
runs of my simulator using different numbers of samples. In each case, I used 100
runs; the number of samples is shown on the horizontal axis. You should notice that
the estimate varies pretty widely when there are only 10 samples in each run, but the
variance (equivalently, the size of the spread) goes down sharply as the number of
samples per run increases to 1000. Because we expect these estimates to be roughly
normally distributed, the variance gives a good idea of how accurate the original
probability estimate is.

Worked example 7.12 Getting 14’s with 20-sided dice

You throw 3 fair 20-sided dice. Estimate the probability that the sum of the
faces is 14 using a simulation. Use N = [lel, 1e2,1e3, led, 1eb, 1le6]. Which
estimate is likely to be more accurate, and why?

Solution: You need a fairly fast computer, or this will take a long time.
I ran ten versions of each experiment for N = [lel, 1le2, 1e3, led, 1eb, 1leb],
yielding ten probability estimates for each N. These were different for
each version of the experiment, because the simulations are random. I got
means of [0,0.0030,0.0096,0.0100,0.0096,0.0098], and standard deviations of
[00.00670.00330.00090.00020.0001]. This suggests the true value is around
0.0098, and the estimate from N = 1le6 is best. The reason that the esti-
mate with N = lel is 0 is that the probability is very small, so you don’t
usually observe this case at all in only ten trials.

Small probabilities can be rather hard to estimate, as we would expect. In
the case of example [[.11] let us estimate P({Z > 950}). A few moments with a
computer will show that this probability is of the order of 1e-3 to le-4. I obtained
a million different simulated values of Z from my program, and saw 310 where
Z > 950. This means that to know this probability to, say, three digits of numerical
accuracy might involve a daunting number of samples. Notice that this does not
contradict the rule of thumb that the standard deviation of the random variable
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defined by a simulation estimate behaves like \/%; it’s just that in this case, C' is
very large indeed.

Useful Facts: 7.4 The properties of simulations

You should remember that

e The weak law of large numbers means you can estimate expecta-
tions and probabilities with a simulation.

e The result of a simulation is usually a normal random variable.

e The expected value of this random variable is usually the true
value of the expectation or probability you are trying to simulate.

e The standard deviation of this random variable is usually \/_CN’
where N is the number of examples in the simulation and C' is a
number usually too hard to estimate.

Worked example 7.13 Comparing simulation with computation

You throw 3 fair six-sided dice. You wish to know the probability the sum is
3. Compare the true value of this probability with estimates from six runs of
a simulation using N = 10000. What conclusions do you draw?

Solution: I ran six simulations with N = 10000, and got
[0.0038,0.0038,0.0053,0.0041, 0.0056, 0.0049]. The mean is 0.00458, and the
standard deviation is 0.0007, which suggests the estimate isn’t that great, but
the right answer should be in the range [0.00388,0.00528] with probability
about 0.68. The true value is 1/216 ~ 0.00463. The estimate is tolerable, but
not super accurate.

7.2.3  Simulating Markov Chains

We will always assume that we know the states and transition probabilities of
the Markov chain. Properties that might be of interest in this case include: the
probability of hitting an absorbing state; the expected time to go from one state to
another; the expected time to hit an absorbing state; and which states have high
probability under the stationary distribution.
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Worked example 7.14 Coin Flips with End Conditions

I flip a coin repeatedly until I encounter a sequence HTHT, at which point I
stop. What is the probability that I flip the coin nine times?

Solution: You might well be able to construct a closed form solution to this
if you follow the details of example and do quite a lot of extra work. A
simulation is really straightforward to write; notice you can save time by not
continuing to simulate coin flips once you've flipped past nine times. I got
0.0411 as the mean probability over 10 runs of a simulation of 1000 experiments
each, with a standard deviation of 0.0056.

Worked example 7.15 A Queue

A bus is supposed to arrive at a bus stop every hour for 10 hours each day. The
number of people who arrive to queue at the bus stop each hour has a Poisson
distribution, with intensity 4. If the bus stops, everyone gets on the bus and
the number of people in the queue becomes zero. However, with probability
0.1 the bus driver decides not to stop, in which case people decide to wait. If
the queue is ever longer than 15, the waiting passengers will riot (and then
immediately get dragged off by the police, so the queue length goes down to
zero). What is the expected time between riots?

Solution: I'm not sure whether one could come up with a closed form solution
to this problem. A simulation is completely straightforward to write. I get
a mean time of 441 hours between riots, with a standard deviation of 391.
It’s interesting to play around with the parameters of this problem; a less
conscientious bus driver, or a higher intensity arrival distribution, lead to much
more regular riots.
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Worked example 7.16 Inventory

A store needs to control its stock of an item. It can order stocks on Fri-
day evenings, which will be delivered on Monday mornings. The store is old-
fashioned, and open only on weekdays. On each weekday, a random number of
customers comes in to buy the item. This number has a Poisson distribution,
with intensity 4. If the item is present, the customer buys it, and the store
makes 100; otherwise, the customer leaves. Each evening at closing, the store
loses 10 for each unsold item on its shelves. The store’s supplier insists that it
order a fixed number k of items (i.e. the store must order k items each week).
The store opens on a Monday with 20 items on the shelf. What k should the
store use to maximise profits?

Solution: I'm not sure whether one could come up with a closed form solution
to this problem, either. A simulation is completely straightforward to write.
To choose k, you run the simulation with different k& values to see what hap-
pens. I computed accumulated profits over 100 weeks for different k£ values,
then ran the simulation five times to see which k was predicted. Results were
21,19, 23,20, 21. I'd choose 21 based on this information.

For example [[.T6] you should plot accumulated profits. If k is small, the store
doesn’t lose money by storing items, but it doesn’t sell as much stuff as it could;
if k£ is large, then it can fill any order but it loses money by having stock on the
shelves. A little thought will convince you that k& should be near 20, because that is
the expected number of customers each week, so k = 20 means the store can expect
to sell all its new stock. It may not be exactly 20, because it must depend a little
on the balance between the profit in selling an item and the cost of storing it. For
example, if the cost of storing items is very small compared to the profit, an very
large k£ might be a good choice. If the cost of storage is sufficiently high, it might
be better to never have anything on the shelves; this point explains the absence of
small stores selling PC’s.

Quite substantial examples are possible. The game “snakes and ladders”
involves random walk on Markov chain. If you don’t know this game, look it up;
it’s sometimes called “chutes and ladders”, and there is an excellent Wikipedia
page. The state is given by where each players’ token is on the board, so on a
10x10 board one player involves 100 states, two players 100? states, and so on.
The set of states is finite, though big. Transitions are random, because each player
throws dice. The snakes (resp. ladders) represent extra edges in the directed graph.
Absorbing states occur when a player hits the top square. It is straightforward to
compute the expected number of turns for a given number of players by simulation,
for example. For one commercial version, the Wikipedia page gives the crucial
numbers: for two players, expected number of moves to a win is 47.76, and the first
player wins with probability 0.509. Notice you might need to think a bit about how
to write the program if there were, say, 8 players on a 12x12 board — you would
likely avoid storing the entire state space.
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7.3 EXAMPLE: RANKING THE WEB BY SIMULATING A MARKOV CHAIN

Perhaps the most valuable technical question of the last thirty years has been:
Which web pages are interesting? Some idea of the importance of this question is
that it was only really asked about 20 years ago, and at least one gigantic technology
company has been spawned by a partial answer. This answer, due to Larry Page
and Sergey Brin, and widely known as PageRank, revolves around simulating the
stationary distribution of a Markov chain.

You can think of the world wide web as a directed graph. Each page is a
state. Directed edges from page to page represent links. Count only the first link
from a page to another page. Some pages are linked, others are not. We want to
know how important each page is.

One way to think about importance is to think about what a random web
surfer would do. The surfer can either (a) choose one of the outgoing links on a
page at random, and follow it or (b) type in the URL of a new page, and go to
that instead. This is a random walk on a directed graph. We expect that this
random surfer should see a lot of pages that have lots of incoming links from other
pages that have lots of incoming links that (and so on). These pages are important,
because lots of pages have linked to them.

For the moment, ignore the surfer’s option to type in a URL. Write r(¢) for
the importance of the i’th page. We model importance as leaking from page to page
across outgoing links (the same way the surfer jumps). Page i receives importance
down each incoming link. The amount of importance is proportional to the amount
of importance at the other end of the link, and inversely proportional to the number
of links leaving that page. So a page with only one outgoing link transfers all its
importance down that link; and the way for a page to receive a lot of importance
is for it to have a lot of important pages link to it alone. We write

r(j)sz(Tﬂ)

i—J

where || means the total number of links pointing out of page i. We can stack the
r(j) values into a row vector r, and construct a matrix P, where

L if i points to j
pij =14 M )
0 otherwise

With this notation, the importance vector has the property
r=rpP

and should look a bit like the stationary distribution of a random walk to you,
except that P isn’t stochastic — there may be some rows where the row sum of P
is zero, because there are no outgoing links from that page. We can fix this easily
by replacing each row that sums to zero with (1/n)1, where n is the total number of
pages. Call the resulting matrix G (it’s quite often called the raw Google matrix).

The web has pages with no outgoing links (which we’ve dealt with), pages
with no incoming links, and even pages with no links at all. A random walk could
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get trapped by moving to a page with no outgoing links. Allowing the surfer to
randomly enter a URL sorts out all of these problems, because it inserts an edge of
small weight from every node to every other node. Now the random walk cannot
get trapped.
There are a variety of possible choices for the weight of these inserted edges.

The original choice was to make each inserted edge have the same weight. Write
1 for the n dimensional column vector containing a 1 in each component, and let
0 < a < 1. We can write the matrix of transition probabilities as

117

Gla) = a(T) +(1-a)g

where G is the original Google matrix. An alternative choice is to choose a weight
for each web page. This weight could come from a query; from advertising revenues;
or from page visit statistics. Google keeps quiet about the details. Write this weight
vector v, and require that 17v = 1 (i.e. the coefficients sum to one). Then we
could have "

1v

Gla,v) = a(—n) + (1 - a)g.

Now the importance vector r is the (unique, though I won’t prove this) row vector
r such that

r =rG(a,v).

How do we compute this vector? One natural algorithm is to estimate r with
a random walk, because r is the stationary distribution of a Markov chain. If we
simulate this walk for many steps, the probability that the simulation is in state j
should be r(j), at least approximately.

This simulation is easy to build. Imagine our random walking bug sits on a
web page. At each time step, it transitions to a new page by either (a) picking
from all existing pages at random, using v as a probability distribution on the
pages (which it does with probability «); or (b) chooses one of the outgoing links
uniformly and at random, and follows it (which it does with probability 1 — «).
The stationary distribution of this random walk is r. Another fact that I shall not
prove is that, when « is sufficiently large, this random walk very quickly “forgets”
it’s initial distribution. As a result, you can estimate the importance of web pages
by starting this random walk in a random location; letting it run for a bit; then
stopping it, and collecting the page you stopped on. The pages you see like this
are independent, identically distributed samples from r; so the ones you see more
often are more important, and the ones you see less often are less important.

7.4 HIDDEN MARKOV MODELS AND DYNAMIC PROGRAMMING

Imagine we wish to build a program that can transcribe speech sounds into text.
Each small chunk of text can lead to one, or some, sounds, and some randomness
is involved. For example, some people pronounce the word “fishing” rather like
“fission”. As another example, the word “scone” is sometimes pronounced rhyming
with “stone”, and sometimes rhyming with “gone”. A Markov chain supplies a
model of all possible text sequences, and allows us to compute the probability of
any particular sequence. We will use a Markov chain to model text sequences, but
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what we observe is sound. We must have a model of how sound is produced by
text. With that model and the Markov chain, we want to produce text that (a) is
a likely sequence of words and (b) is likely to have produced the sounds we hear.

Many applications contain the main elements of this example. We might
wish to transcribe music from sound. We might wish to understand American
sign language from video. We might wish to produce a written description of how
someone moves from video observations. We might wish to break a substitution
cipher. In each case, what we want to recover is a sequence that can be modelled
with a Markov chain, but we don’t see the states of the chain. Instead, we see
noisy measurements that depend on the state of the chain, and we want to recover
a state sequence that is (a) likely under the Markov chain model and (b) likely to
have produced the measurements we observe.

7.4.1 Hidden Markov Models

Assume we have a finite state, time homogenous Markov chain, with S states. This
chain will start at time 1, and the probability distribution P(X; = i) is given by
the vector w. At time w, it will take the state X,,, and its transition probability
matrix is p;; = P(Xyu41 = j|Xu = ). We do not observe the state of the chain.
Instead, we observe some Y,,. We will assume that Y, is also discrete, and there
are a total of O possible states for Y, for any u. We can write a probability
distribution for these observations P(Y,|X, = i) = ¢;(Y,). This distribution is
the emission distribution of the model. For simplicity, we will assume that the
emission distribution does not change with time.

We can arrange the emission distribution into a matrix Q. A hidden Markov
model consists of the transition probability distribution for the states, the rela-
tionship between the state and the probability distribution on Y, and the initial
distribution on states, that is, (P, Q, 7). These models are often dictated by an
application. An alternative is to build a model that best fits a collection of observed
data, but doing so requires technical machinery we cannot expound here.

I will sketch how one might build a model for transcribing speech, but you
should keep in mind this is just a sketch of a very rich area. We can obtain the
probability of a word following some set of words using n-gram resources, as in
section [.T.3] We then build a model of each word in terms of small chunks of word
that are likely to correspond to common small chunks of sound. We will call these
chunks of sound phonemes. We can look up the different sets of phonemes that
correspond to a word using a pronunciation dictionary. We can combine these two
resources into a model of how likely it is one will pass from one phoneme inside a
word to another, which might either be inside this word or inside another word.
We now have P. We will not spend much time on 7, and might even model it as a
uniform distribution. We can use a variety of strategies to build Q. One is to build
discrete features of a sound signal, then count how many times a particular set of
features is produced when a particular phoneme is played.

7.4.2 Picturing Inference with a Trellis

Assume that we have a sequence of N measurements Y; that we believe to be
the output of a known hidden Markov model. We wish to recover the “best”
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corresponding sequence of X;. Doing so is inference. We will choose to recover a
sequence X; that maximises

IOgP(Xl,XQ,---,XN|}/1,}/2,---,YN,P,Q,7T)

which is

log(P(X17X27'"7XN7Y'17Y727"'7YN|,P7Q77T))

P(}/l;}/QaaYN)

and this is
10gP(X1,X2,.. .7XN,Y1,}/2,. .. ,YN|P, Q,?T) —logP(Y:[,}/Q,.. ,YN)

Notice that P(Y1,Ys,...,Yy) doesn’t depend on the sequence of X,, we choose, and
so the second term can be ignored. What is important here is that we can decom-
pose log P(X1, Xo, ..., XN, Y1,Ys,..., Yy|P, Q, ) in a very useful way, because the
X, form a Markov chain. We want to maximise

logP(XlaXQa'"aXN7}/17}/27"'7YN|P7 Qaﬂ-)
but this is

log P(X1) + log P(Y1|X1) +
log P(X3|X1) + log P(Y2]| X2) +

log P(Xn|Xpn—1) +log P(Yn|XN)-

Notice that this cost function has an important structure. It is a sum of terms.
There are terms that depend on a single X; (unary terms) and terms that depend
on two (binary terms). Any state X; appears in at most two binary terms.

We can illustrate this cost function in a structure called a trellis. This is a
weighted, directed graph consisting of IV copies of the state space, which we arrange
in columns. There is a column corresponding to each measurement. We add a
directed arrow from any state in the w’th column to any state in the u+1’th column
if the transition probability between the states isn’t 0. This represents the fact that
there is a possible transition between these states. We then label the trellis with
weights. We weight the node representing the case that state X,, = j in the column
corresponding to Y, with log P(Y,|X, = j). We weight the arc from the node
representing X,, = i to that representing X, 11 = j with log P(X,+1 = j| X, = 7).

The trellis has two crucial properties. Each directed path through the trellis
from the start column to the end column represents a legal sequence of states.
Now for some directed path from the start column to the end column, sum all the
weights for the nodes and edges along this path. This sum is the log of the joint
probability of that sequence of states with the measurements. You can verify each
of these statements easily by reference to a simple example (try Figure [7)

There is an efficient algorithm for finding the path through a trellis which
maximises the sum of terms. The algorithm is usually called dynamic program-
ming or the Viterbi algorithm. I will describe this algorithm both in narrative,
and as a recursion. We want to find the best path from each node in the first
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FIGURE 7.7: At the top left, a simple state transition model. Each outgoing edge has
some probability, though the topology of the model forces two of these probabilities
to be 1. Below, the trellis corresponding to that model. FEach path through the trellis
corresponds to a legal sequence of states, for a sequence of three measurements. We
weight the arcs with the log of the transition probabilities, and the nodes with the
log of the emission probabilities. I have shown some weights

column to each node in the last. There are S such paths, one for each node in the
first column. Once we have these paths, we can choose the one with highest log
joint probability. Now consider one of these paths. It passes through the i’th node
in the u’th column. The path segment from this node to the end column must,
itself, be the best path from this node to the end. If it wasn’t, we could improve
the original path by substituting the best. This is the key insight that gives us an
algorithm.

Start at the final column of the tellis. We can evaluate the best path from
each node in the final column to the final column, because that path is just the
node, and the value of that path is the node weight. Now consider a two-state
path, which will start at the second last column of the trellis (look at panel T in
Figure [[.§]). We can easily obtain the value of the best path leaving each node in
this column. Consider a node: we know the weight of each arc leaving the node
and the weight of the node at the far end of the arc, so we can choose the path
segment with the largest value of the sum; this arc is the best we can do leaving
that node. This sum is the best value obtainable on leaving that node—which is
often known as the cost to go function.

Now, because we know the best value obtainable on leaving each node in the
second-last column, we can figure out the best value obtainable on leaving each
node in the third-last column (panel IT in Figure [[8). At each node in the third-
last column, we have a choice of arcs. Each of these reaches a node from which we
know the value of the best path. So we can choose the best path leaving a node in
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FIGURE 7.8: An example of finding the best path through a trellis. The probabilities
of leaving a node are uniform (and remember, In2 =~ —0.69). Details in the text.

the third-last column by finding the path that has the best value of: the arc weight
leaving the node; the weight of the node in the second-last column the arc arrives
at; and the value of the path leaving that node. This is much more easily done
than described. All this works just as well for the fourth-last column, etc. (panel
IIT in Figure [.8)) so we have a recursion. To find the value of the best path with
X, =i, we go to the corresponding node in the first column, then add the value of
the node to the value of the best path leaving that node (panel IV in Figure [Z.g).
Finally, to find the value of the best path leaving the first column, we compute the
maximum value over all nodes in the first column.

We can also get the path with the maximum likelihood value. When we
compute the value of a node, we erase all but the best arc leaving that node. Once
we reach the first column, we simply follow the path from the node with the best
value. This path is illustrated by dashed edges in Figure
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7.4.3 Dynamic Programming for HMM's: Formalities

We will formalize the recursion of the previous section with two ideas. First, we
define Cy, (j) to be the cost of the best path segment to the end of the trellis leaving
the node representing X,, = j. Second, we define B, (j) to be the node in column
w + 1 that lies on the best path leaving the node representing X,, = j. So Cy(j)
tells you the cost of the best path, and B,(j) tells you what node is next on the
best path.

Now it is straightforward to find the cost of the best path leaving each node
in the second last column, and also the path. In symbols, we have

Cn-1(j) = max[log P(Xn = u[Xn-1 = j) +1og P(YN| XN = u)]

and

. argmax
Byoi(j)= M8

[10gP(XN = ’U,|XN71 :]) +10gP(YN|XN = u)]
You should check this against step I of Figure [Z.§

Once we have the best path leaving each node in the w + 1’th column and
its cost, it’s straightforward to find the best path leaving the w’th column and its
cost. In symbols, we have

Cw(]) = ml?‘x [IOg P(Xw-i-l = U|Xw = .7) + IOgP(Yw-l-lle-i-l = u) + Cw-l-l(u)]

and

argmax

Buy(j) = [log P(Xuwi1 = ulXy = j) +log P(Yiy1|Xwi1 = u) + Cuyr(u)].

Check this against steps IT and IIT in Figure [[.8

7.4.4 Example: Simple Communication Errors

Hidden Markov models can be used to correct text errors. We will simplify some-
what, and assume we have text that has no punctuation marks, and no capital
letters. This means there are a total of 27 symbols (26 lower case letters, and a
space). We send this text down some communication channel. This could be a
telephone line, a fax line, a file saving procedure or anything else. This channel
makes errors independently at each character. For each location, with probability
1 —p the output character at that location is the same as the input character. With
probability p, the channel chooses randomly between the character one ahead or
one behind in the character set, and produces that instead. You can think of this
as a simple model for a mechanical error in one of those now ancient printers where
a character strikes a ribbon to make a mark on the paper. We must reconstruct
the transmission from the observations.

I built a unigram model, a bigram model, and a trigram model. I stripped the
text of this chapter of punctuation marks and mapped the capital letters to lower
case letters. I used an HMM package (in my case, for Matlab; but there’s a good one
for R as well) to perform inference. The main programming here is housekeeping
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* e t i a o S n T h

1.9e-1 | 9.7e-2 | 7.9e-2 | 6.6e-2 | 6.5e-2 | 5.8e-2 | 5.5e-2 | 5.2e-2 | 4.8e-2 | 3.7e-2

TABLE 7.1: The most common single letters (unigrams) that I counted from a draft
of this chapter, with their probabilities. The '*’ stands for a space. Spaces are
common in this text, because I have tended to use short words (from the probability
of the "*’, average word length is between five and six letters).

Lead char
* *t (2.7e-2) | *a (1.7e-2) | *i (1.5e-2) | *s (1.4e-2) | *o (1.le-2)
e e* (3.8e-2) | er (9.2e-3) | es (8.6e-3) | en (7.7e-3) | el (4.9e-3)
¢ th (2.2e-2) | t* (1.6e-2) | ti (9.6e-3) | te (9.3¢-3) | to (5.3¢-3)
i n (1.4e-2) | is (9.1e-3) | it (8.7¢-3) | io (5.6e-3) | im (3.4e-3)
a at (1.2e-2) | an (9.0e-3) | ar (7.5e-3) | a* (6.4e-3) | al (5.8e-3)
o n (9.4e-3) | or (6.7e-3) | of (6.3e-3) | o* (6.1e-3) | ou (4.9e-3)
s s* (2.6e-2) | st (9.4e-3) | se (5.9e-3) | si (3.8e-3) | su (2.2e-3)
n n* (1.9e-2) nd (6.7e-3) | ng (5.0e-3) | ns (3.6e-3) | nt (3.6e-3)
r re (1.1e-2) | r* (7.4e-3) | ra (5.6e-3) | ro (5.3e-3) | ri (4.3e-3)
h he (1.4e-2) | ha (7.8e-3) h* (5.3¢-3) | hi (5.1e-3) | ho (2.1e-3)

TABLE 7.2: The most common bigrams that I counted from a draft of this chapter,
with their probabilities. The " stands for a space. For each of the 10 most common
letters, I have shown the five most common bigrams with that letter in the lead. This
gives a broad view of the bigrams, and emphasizes the relationship between unigram
and bigram frequencies. Notice that the first letter of a word has a slightly different
frequency than letters (top row; bigrams starting with a space are first letters).
About 40% of the possible bigrams do not appear in the text.

to make sure the transition and emission models are correct. About 40% of the
bigrams and 86% of the trigrams did not appear in the text. I smoothed the
bigram and trigram probabilities by dividing the probability 0.01 evenly between
all unobserved bigrams (resp. trigrams). The most common unigrams, bigrams
and trigrams appear in the tables. As an example sequence, I used

“the trellis has two crucial properties each directed path through the
trellis from the start column to the end column represents a legal se-
quence of states now for some directed path from the start column to
the end column sum all the weights for the nodes and edges along this
path this sum is the log of the joint probability of that sequence of states
with the measurements you can verify each of these statements easily
by reference to a simple example”

(which is text you could find in a draft of this chapter). There are 456 characters
in this sequence.
When I ran this through the noise process with p = 0.0333, I got

“theztrellis has two crucial properties each directed path through the
tqdllit from the start column to the end coluln represents a legal se-
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*th the he* is* *of of* on* es* *a* ion
1.7e-2 | 1.2e-2 | 9.8e-3 | 6.2e-3 | 5.6e-3 | H.4e-3 | 4.9e-3 | 4.9e-3 | 4.9¢-3 | 4.9e-3
tio e*t in* *st *in at* ng* ing *to *an
4.6e-3 | 4.5e-3 | 4.2e-3 | 4.1e-3 | 4.1e-3 | 4.0e-3 | 3.9e-3 | 3.9e-3 | 3.8e-3 | 3.7e-3

TABLE 7.3: The most frequent 10 trigrams in a draft of this chapter, with their

proba

i3

bilities. Again, stands for space. You can see how common ’the’ and

kg F

are; ‘he*’ is common because *the*’ is common. About 80% of possible trigrams
do not appear in the text.

quencezof states now for some directed path from the start column to
thf end column sum aml the veights for the nodes and edges along this
path this sum is the log of the joint probability oe that sequence of
states wish the measurements youzcan verify each of these statements
easily by reference to a simple examgle”

which is mangled but not too badly (13 of the characters are changed, so 443
locations are the same).

The unigram model produces

“the trellis has two crucial properties each directed path through the
tqdllit from the start column to the end coluln represents a legal se-
quence of states now for some directed path from the start column to
thf end column sum aml the veights for the nodes and edges along this
path this sum is the log of the joint probability oe that sequence of
states wish the measurements you can verify each of these statements
easily by reference to a simple examgle”

which fixes three errors. The unigram model only changes an observed character
when the probability of encountering that character on its own is less than the

(13

probability it was produced by noise. This occurs only for “z”, which is unlikely on
its own and is more likely to have been a space. The bigram model produces

“she trellis has two crucial properties each directed path through the
trellit from the start column to the end coluln represents a legal sequence
of states now for some directed path from the start column to the end
column sum aml the veights for the nodes and edges along this path
this sum is the log of the joint probability oe that sequence of states
wish the measurements you can verify each of these statements easily
by reference to a simple example”

This is the same as the correct text in 449 locations, so somewhat better than the

noisy

text. The trigram model produces

“the trellis has two crucial properties each directed path through the
trellit from the start column to the end column represents a legal se-
quence of states now for some directed path from the start column to
the end column sum all the weights for the nodes and edges along this
path this sum is the log of the joint probability of that sequence of states
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with the measurements you can verify each of these statements easily
by reference to a simple example”
which corrects all but one of the errors (look for “trellit”).
7.5 YOU SHOULD

7.5.1 remember these definitions:

7.5.2 remember these terms:

raw Googe matrixl . ... L 204

lemission distributionl . . . . . . .. ... 206

7.5.3 remember these facts:

7.5.4 be able to:

e Estimate various probabilities and expectations for a Markov chain by simu-
lation.

e Evaluate the results of multiple runs of a simple simulation.
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e Set up a simple HMM and use it to solve problems.

PROBLEMS

7.1. Multiple die rolls: You roll a fair die until you see a 5, then a 6; after that,
you stop. Write P(N) for the probability that you roll the die N times.

(a) What is P(1)?

(b) Show that P(2) = (1/36).

(¢) Draw a directed graph encoding all the sequences of die rolls that you
could encounter. Don’t write the events on the edges; instead, write their
probabilities. There are 5 ways not to get a 5, but only one probability,
so this simplifies the drawing.

(d) Show that P(3) = (1/36).

(e) Now use your directed graph to argue that P(N) = (5/6)P(N — 1) +
(25/36)P(N — 2).

7.2. More complicated multiple coin flips: You flip a fair coin until you see
either HT'H or T'HT', and then you stop. We will compute a recurrence relation

for P(N).

(a) Draw a directed graph for this chain.

(b) Think of the directed graph as a finite state machine. Write X for some
string of length N accepted by this finite state machine. Use this finite
state machine to argue that Sigmay has one of four forms:

TTSN_»
HHYN_3

THHS N
HTTY N3

L

(c¢) Now use this argument to show that P(N) = (1/2)P(N —2)+(1/4)P(N —
3).

7.3. For the umbrella example of worked example[Z.2] assume that with probability
0.7 it rains in the evening, and 0.2 it rains in the morning. I am conventional,
and go to work in the morning, and leave in the evening.

(a) Write out a transition probability matrix.

(b) What is the stationary distribution? (you should use a simple computer
program for this).

(c) What fraction of evenings do I arrive at home wet?

(d) What fraction of days do I arrive at my destination dry?

PROGRAMMING EXERCISES

7.4. A dishonest gambler has two dice and a coin. The coin and one die are both
fair. The other die is unfair. It has P(n) = [0.5,0.1,0.1,0.1,0.1,0.1] (where n
is the number displayed on the top of the die). The gambler starts by choosing
a die. Choosing a die is by flipping a coin; if the coin comes up heads, the
gambler chooses the fair die, otherwise, the unfair die. The gambler rolls the
chosen die repeatedly until a 6 comes up. When a 6 appears, the gambler
chooses again (by flipping a coin, etc), and continues.

(a) Model this process with a hidden markov model. The emitted symbols
should be 1,...,6. Doing so requires only two hidden states (which die is
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(b)
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in hand). Simulate a long sequence of rolls using this model. What is the
probability the emitted symbol is 17

Use your simulation to produce 10 sequences of 100 symbols. Record the
hidden state sequence for each of these. Now recover the hidden state
using dynamic programming (you should likely use a software package for
this; there are many good ones for R and Matlab). What fraction of the
hidden states is correctly identified by your inference procedure?

Does inference accuracy improve when you use sequences of 1000 symbols?

Warning: this exercise is fairly elaborate, though straightforward.
We will correct text errors using a hidden Markov model.

(a)

(b)

(c)

(d)

(e)

Obtain the text of a copyright-free book in plain characters. One natural
source is Project Gutenberg, at https://www.gutenberg.org. Simplify this
text by dropping all punctuation marks except spaces, mapping capital
letters to lower case, and mapping groups of many spaces to a single space.
The result will have 27 symbols (26 lower case letters and a space). From
this text, count unigram, bigram and trigram letter frequencies.

Use your counts to build models of unigram, bigram and trigram let-
ter probabilities. You should build both an unsmoothed model, and at
least one smoothed model. For the smoothed models, choose some small
amount of probability € and split this between all events with zero count.
Your models should differ only by the size of e.

Construct a corrupted version of the text by passing it through a process
that, with probability pe, replaces a character with a randomly chosen
character, and otherwise reports the original character.

For a reasonably sized block of corrupted text, use an HMM inference
package to recover the best estimate of your true text. Be aware that
your inference will run more slowly as the block gets bigger, but you
won’t see anything interesting if the block is (say) too small to contain
any errors.

For pe = 0.01 and p. = 0.1, estimate the error rate for the corrected text
for different values of e. Keep in mind that the corrected text could be
worse than the corrupted text.


https://www.gutenberg.org

CHAPTER 8

Clustering using Probability Models

8.1 THE MULTIVARIATE NORMAL DISTRIBUTION

All the nasty facts about high dimensional data, above, suggest that we need to use
quite simple probability models. By far the most important model is the multivari-
ate normal distribution, which is quite often known as the multivariate gaussian
distribution. There are two sets of parameters in this model, the mean p and the
covariance Y. For a d-dimensional model, the mean is a d-dimensional column
vector and the covariance is a d x d dimensional matrix. The covariance is a sym-
metric matrix. For our definitions to be meaningful, the covariance matrix must be
positive definite.
The form of the distribution p(x|u, ¥) is

1 1 Ty—1
o (~56-mms - ).
where ¥ is a positive definite matrix. Notice that if 3 is not positive definite, then
we cannot have a probability distribution, because there are some directions d such
that exp (—3(td — p)"S 7 (td — 1)) does not fall off to zero as ¢ limits to infinity.
In turn, this means we can’t compute the integral, and so can’t normalize.
The following facts explain the names of the parameters:

p(x|pu, ) =

Useful Facts: 8.1 Parameters of a Multivariate Normal Distribution

Assuming a multivariate normal distribution, we have
e E[x]| = p, meaning that the mean of the distribution is .

o E[(x — p)(x — p)T] = X, meaning that the entries in ¥ represent
covariances.

Assume I know have a dataset of items x;, where ¢ runs from 1 to N, and we
wish to model this data with a multivariate normal distribution. The maximum
likelihood estimate of the mean, fi, is

A Zi X
H=TN
(which is quite easy to show). The maximum likelihood estimate of the covariance,

Y, is .
& (X — )% — 1)
X = N

)

224
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(which is rather a nuisance to show, because you need to know how to differentiate
a determinant). You should be aware that this estimate is not guaranteed to be
positive definite, even though the covariance matrix of a gaussian must be positive
definite. We deal with this problem by checking the estimate. If its smallest
eigenvalue is too close to zero, then we add some small positive constant times the
identity to get a positive definite matrix.

8.1.1 Affine Transformations and Gaussians

Gaussians behave very well under affine transformations. In fact, we’ve already
worked out all the math. Assume I have a dataset {x} with N data points x;, each
a d-dimensional vector. The mean of the maximum likelihood gaussian model is
mean ({x}), and the covariance is Covmat ({x}). We assume that this is positive
definite, or adjust it as above.

I can now transform the data with an affine transformation, to get y; =
Ax; +b. We assume that A is a square matrix with full rank, so that this trans-
formation is 1-1. The mean of the maximum likelihood gaussian model for the
transformed dataset is mean ({y}) = Amean ({x}) + b. Similarly, the covariance is
Covmat ({y}) = ACovmat ({x})AT.

A very important point follows in an obvious way. I can apply an affine
transformation to any multivariate gaussian to obtain one with (a) zero mean and
(b) independent components. In turn, this means that, in the right coordinate
system, any gaussian is a product of zero mean, unit standard deviation, one-
dimensional normal distributions. This fact is quite useful. For example, it means
that simulating multivariate normal distributions is quite straightforward — you
could simulate a standard normal distribution for each component, then apply an
affine transformation.

8.1.2 Plotting a 2D Gaussian: Covariance Ellipses

There are some useful tricks for plotting a 2D Gaussian, which are worth knowing
both because they’re useful, and they help to understand Gaussians. Assume we
are working in 2D; we have a Gaussian with mean p (which is a 2D vector), and
covariance % (which is a 2x2 matrix). We could plot the collection of points x that
has some fixed value of p(x|u,X). This set of points is given by:

S (=S - p) =

where c is some constant. I will choose ¢? = %, because the choice doesn’t matter,

and this choice simplifies some algebra. You might recall that a set of points x that
satisfies a quadratic like this is a conic section. Because ¥ (and so ¥ 7!) is positive
definite, the curve is an ellipse. There is a useful relationship between the geometry
of this ellipse and the Gaussian.

This ellipse — like all ellipses — has a major axis and a minor axis. These
are at right angles, and meet at the center of the ellipse. We can determine the
properties of the ellipse in terms of the Gaussian quite easily. The geometry of the
ellipse isn’t affected by rotation or translation, so we will translate the ellipse so
that © = 0 (i.e. the mean is at the origin) and rotate it so that ¥~ is diagonal.
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Writing x = [z, y] we get that the set of points on the ellipse satisfies

1,1 1, 1
2@ g =3

where k% and k% are the diagonal elements of ¥ . We will assume that the ellipse
1 2

has been rotated so that k1 < ko. The points (k1,0) and (—kq,0) lie on the ellipse,
as do the points (0, k2) and (0, —k2). The major axis of the ellipse, in this coordinate
system, is the x-axis, and the minor axis is the y-axis. In this coordinate system,
x and y are independent. If you do a little algebra, you will see that the standard
deviation of x is abs (k1) and the standard deviation of y is abs (k2). So the ellipse
is longer in the direction of largest standard deviation and shorter in the direction
of smallest standard deviation.

Now rotating the ellipse is means we will pre- and post-multiply the covariance
matrix with some rotation matrix. Translating it will move the origin to the mean.
As a result, the ellipse has its center at the mean, its major axis is in the direction
of the eigenvector of the covariance with largest eigenvalue, and its minor axis is
in the direction of the eigenvector with smallest eigenvalue. A plot of this ellipse,
which can be coaxed out of most programming environments with relatively little
effort, gives us a great deal of information about the underlying Gaussian. These
ellipses are known as covariance ellipses.

8.2 MIXTURE MODELS AND CLUSTERING

It is natural to think of clustering in the following way. The data was created by
a collection of distinct models (one per cluster). For each data item, something
(nature?) chose which model was to produce a point, and then the model produced
a point. We see the results: crucially, we’d like to know what the models were,
but we don’t know which model produced which point. If we knew the models, it
would be easy to decide which model produced which point. Similarly, if we knew
which point went to which model, we could determine what the models were.

One encounters this situation — or problems that can be mapped to this sit-
uation — again and again. It is very deeply embedded in clustering problems. It is
pretty clear that a natural algorithm is to iterate between estimating which model
gets which point, and the model parameters. We have seen this approach before,
in the case of k-means.

A particularly interesting case occurs when the models are probabilistic. There
is a standard, and very important, algorithm for estimation here, called EM (or
expectation maximization, if you want the long version). I will develop this
algorithm in two simple cases, and we will see it in a more general form later.

Notation: This topic lends itself to a glorious festival of indices, limits of
sums and products, etc. I will do one example in quite gory detail; the other
follows the same form, and for that we’ll proceed more expeditiously. Writing the
limits of sums or products explicitly is usually even more confusing than adopting
a compact notation. When I write ) . or [[,, I mean a sum (or product) over all
values of . When I write }°, 5 or []; 5, I mean a sum (or product) over all values
of i except for the j’th item. I will write vectors, as usual, as x; the ¢’th such vector
in a collection is x;, and the k’th component of the i’th vector in a collection is ;.
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In what follows, I will construct a vector §; corresponding to the ’th data item x;
(it will tell us what cluster that item belongs to). I will write § to mean all the ¢;
(one for each data item). The j’'th component of this vector is §;;. When I write
>_s,» I mean a sum over all values that d, can take. When I write ) 5, I mean a
sum over all values that each ¢ can take. When I write ;s » , I mean a sum over
all values that all § can take, omitting all cases for the v’th vector §,.

8.2.1 A Finite Mixture of Blobs

A blob of data points is quite easily modelled with a single normal distribution.
Obtaining the parameters is straightforward (estimate the mean and covariance
matrix with the usual expressions). Now imagine I have ¢ blobs of data, and I know
t. A normal distribution is likely a poor model, but I could think of the data as being
produced by ¢ normal distributions. I will assume that each normal distribution has
a fixed, known covariance matrix 3, but the mean of each is unknown. Because the
covariance matrix is fixed, and known, we can compute a factorization ¥ = AAT.
The factors must have full rank, because the covariance matrix must be positive
definite. This means that we can apply A~! to all the data, so that each blob
covariance matrix (and so each normal distribution) is the identity.

Write p; for the mean of the j'th normal distribution. We can model a
distribution that consists of ¢ distinct blobs by forming a weighted sum of the
blobs, where the j’th blob gets weight 7;. We ensure that Zj m; = 1, so that we
can think of the overall model as a probability distribution. We can then model
the data as samples from the probability distribution

p(X[ps ooy e, 1, ) = Zﬂj [\/(%T)d exp (—%(X—M)T(X—M)ﬂ :

The way to think about this probability distribution is that a point is generated by
first choosing one of the normal distributions (the j’th is chosen with probability
7j), then generating a point from that distribution. This is a pretty natural model
of clustered data. Each mean is the center of a blob. Blobs with many points in
them have a high value of 7;, and blobs with few points have a low value of ;.
We must now use the data points to estimate the values of 7; and p; (again, I am
assuming that the blobs — and the normal distribution modelling each — have the
identity as a covariance matrix). A distribution of this form is known as a mixture
of normal distributions.

Writing out the likelihood will reveal a problem: we have a product of many
sums. The usual trick of taking the log will not work, because then you have a sum
of logs of sums, which is hard to differentiate and hard to work with. A much more
productive approach is to think about a set of hidden variables which tell us which
blob each data item comes from. For the i'th data item, we construct a vector
d;. The j’th component of this vector is d;;, where d;; = 1 if x; comes from blob
(equivalently, normal distribution) j and zero otherwise. Notice there is exactly
one 1 in d;, because each data item comes from one blob. I will write § to mean all
the d; (one for each data item). Assume we know the values of these terms. T will
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write 0 = (u1, ..., bk, 71, - - ., 7)) for the unknown parameters. Then we can write

5
p(x]04,0) = H [\/ﬁ exp (‘%(Xz‘ — )" (xi — Nj))]

(because 0;; = 1 means that x; comes from blob j, so the terms in the product are
a collection of 1’s and the probability we want). We also have

p(0ij = 110) = 7;

allowing us to write
p(%:10) = [T (w5
J
(because this is the probability that we select blob j to produce a data item; again,
the terms in the product are a collection of 1’s and the probability we want). This
means that

54
(i 6il6) = { [ﬁ exi (= 0 1) - wﬂ 70}

J

and we can write a log-likelihood. The data are the observed values of x and §
(remember, we pretend we know these; I'll fix this in a moment), and the parameters
are the unknown values of pq,..., ugr and 71, ..., 7. We have

L1y oy ey Ty TR X, 0) = L(0;%,0)

> { [(—%(Xz‘ — )T (x _M)H +1og7rj}6ij + K

j

where K is a constant that absorbs the normalizing constants for the normal dis-
tributions. You should check this expression gives the right answer. I have used
the §;; as a “switch” — for one term, d;; = 1 and the term in curly brackets is “on”,
and for all others that term is multiplied by zero. The problem with all this is that
we don’t know ¢§. I will deal with this when we have another example.

8.2.2 Topics and Topic Models

We cluster documents together if they come from the same topic. Imagine we
know which document comes from which topic. Then we could estimate the word
probabilities using the documents in each topic. Now imagine we know the word
probabilities for each topic. Then we could tell (at least in principle) which topic
a document comes from by looking at the probability each topic generates the
document, and choosing the topic with the highest probability. This should strike
you as being a circular argument. It has a form you should recognize from k-means,
though the details of the distance have changed.

To construct a probabilistic model, we will assume that a document is gener-
ated in two steps. We will have t topics. First, we choose a topic, choosing the j’th
topic with probability 7;. Then we will obtain a set of words by repeatedly drawing
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IID samples from that topic, and record the count of each word in a count vector.
Assume we have N vectors of word counts, and write x; for the i’th such vector.
Each topic is a multinomial probability distribution. Write p; for the vector of
word probabilities for the j’th topic. We assume that words are generated inde-
pendently, conditioned on the topic. Write x; for the k’th component of x;, and
so on. Notice that x!'1 is the sum of entries in x;, and so the number of words in
document i. Then the probability of observing the counts in x; when the document
was generated by topic j is

p(xilp;) = (%) Pl

We can now write the probability of observing a document. Again, we write 6 =
(P1,.-.,Pt,T1,-..,m) for the vector of unknown parameters. We have

p(xil0) = ) p(x;[topic is 1)p(topic is 1/0)
l

- (]

l

This model is widely called a topic model; be aware that there are many kinds
of topic model, and this is a simple one. The expression should look unpromising,
in a familiar way. If you write out a likelihood, you will see a product of sums;
and if you write out a log-likelihood, you will see a sum of logs of sums. Neither
is enticing. We could use the same trick we used for a mixture of normals. Write
0;; = 1 if x; comes from topic j, and d;; = 0 otherwise. Then we have

st =10 (S22 1]

(because 0;; = 1 means that x; comes from topic j). This means we can write

(xI'1)! i "
p(xild;, 0) = IZI{ l<H:xiv!) Hpj&“] }

u

(because §;; = 1 means that x; comes from topic j, so the terms in the product are
a collection of 1’s and the probability we want). We also have

p(0ij = 110) = 7;

ecause this 1s the probability that we select topic 7 to produce a data item),
b this is th bability th lect topic j d data it
allowing us to write
51"
p(6:16) = I ] )
J
agaln, the terms in the product are a collection ot 1's an e probability we want).
gain, th in th duct llecti f1’s and th babili

This means that

T 3
p(xi.6:00) = | [(ﬁ‘;)',) 11 @5 wj]

J
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and we can write a log-likelihood. The data are the observed values of x and §
(remember, we pretend we know these for the moment), and the parameters are
the unknown values collected in . We have

LO:;x,8)=> 4> lz Ty 108 Pju +10g7fj1 bij ¢ + K

A 7 u

where K is a term that contains all the

log (f—i Zi?,)

terms. This is of no interest to us, because it doesn’t depend on any of our pa-
rameters. It takes a fixed value for each dataset. You should check this expression,
noticing that, again, I have used the d;; as a “switch” — for one term, d;; = 1 and
the term in curly brackets is “on”, and for all others that term is multiplied by
zero. The problem with all this, as before, is that we don’t know d;;. But there is
a recipe.

8.3 THE EM ALGORITHM

There is a straightforward, natural, and very powerful recipe. In essence, we will
average out the things we don’t know. But this average will depend on our estimate
of the parameters, so we will average, then re-estimate parameters, then re-average,
and so on. If you lose track of what’s going on here, think of the example of k-means
with soft weights (section BT} this is what the equations for the case of a mixture
of normals will boil down to). In this analogy, the § tell us which cluster center a
data item came from. Because we don’t know the values of the §, we assume we
have a set of cluster centers; these allow us to make a soft estimate of the §; then
we use this estimate to re-estimate the centers; and so on.

This is an instance of a general recipe. Recall we wrote 6 for a vector of
parameters. In the mixture of normals case, f contained the means and the mixing
weights; in the topic model case, it contained the topic distributions and the mixing
weights. Assume we have an estimate of the value of this vector, say (™. We could
then compute p(6|#(™, x). In the mixture of normals case, this is a guide to which
example goes to which cluster. In the topic case, it is a guide to which example
goes to which topic.

We could use this to compute the expected value of the likelihood with respect
to . We compute

Q8;6™) =Y L(8:x,8)p(6]6™, x)
0

(where the sum is over all values of §). Notice that Q(0;60™) is a function of 0
(because £ was), but now does not have any unknown § terms in it. This Q(8; (™))
encodes what we know about ¢.

For example, assume that p(5]6("), x) has a single, narrow peak in it, at (say)
§ = Y. In the mixture of normals case, this would mean that there is one allocation
of points to clusters that is significantly better than all others, given (™). For this
example, Q(#;60™) will be approximately £(6;x, 6°).
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Now assume that p(5]6™), x) is about uniform. In the mixture of normals
case, this would mean that any particular allocation of points to clusters is about
as good as any other. For this example, Q(0; 9(")) will average L over all possible
0 values with about the same weight for each.

We obtain the next estimate of § by computing

p(n+1) _ arg;nax Q6; ™)

and iterate this procedure until it converges (which it does, though I shall not prove
that). The algorithm I have described is extremely general and powerful, and is
known as expectation maximization or (more usually) EM. The step where
we compute Q(6;0™) is called the E step; the step where we compute the new
estimate of 6 is known as the M step.

One trick to be aware of: it is quite usual to ignore additive constants in the log-
likelihood, because they have no effect. When you do the E-step, taking the expectation of
a constant gets you a constant; in the M-step, the constant can’t change the outcome. As
a result, I will tend to be careless about it. In the mixture of normals example, below, I've
tried to keep track of it; for the mixture of multinomials, I've ignored it.

8.3.1 Example: Mixture of Normals: The E-step

Now let us do the actual calculations for a mixture of normal distributions. The E
step requires a little work. We have

Q6;0™) =" L(0:x,6)p(50™), x)
1)

If you look at this expression, it should strike you as deeply worrying. There are
a very large number of different possible values of ¢. In this case, there are N x ¢
cases (there is one J; for each data item, and each of these can have a one in each
of t locations). It isn’t obvious how we could compute this average.

But notice
_ p(6,x]0™)
— p(x[0™)
and let us deal with numerator and denominator separately. For the numerator,
notice that the x; and the ¢; are independent, identically distributed samples, so
that

p(36™, x)

p(0,x|0™) = Hp(éi,xiw(")).
The denominator is slightly more work. We have

p(x[0™) = p(s,x[6™)
0

= Z [H p(di, Xi|6‘(n))]

o

0

i
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You should check the last step; one natural thing to do is check with N = 2 and
t = 2. This means that we can write

p(6,x|6™)
p(x[0()
Hi p(5i, X |9("))
IL [25 p(8;,%;]00™))

p(86™, x)

- H 61, Xl|9 )
a 25 p 5“x1|9(n))
= Hp (6ifxi,0)
Now we need to look at the log-likelihood. We have
1
L(0;x,0) = { [(—5(&' — )" (xi — Mj))} + 10g7fg} 0ij + K.
j

The K term is of no interest — it will result in a constant — but we will try to
keep track of it. To simplify the equations we need to write, I will construct a ¢
dimensional vector ¢; for the i'th data point. The j’th component of this vector

will be
{ [(—%(Xi = p3) " (xi = uj))] + 10g7rj}

L(0;x,9) ZCT5 + K.

SO we can write

Now all this means that

Q(0;6™) = Zc (6;%,6)p(6]6™, x)

<Zc 5 +K> (816", x)

5

> (z b+ K> TLr(6ulo).x

5 u

> <cT51 [[p(u16™) %) + ... ckén Hp(5u|9("),x)> .
5 u u

We can simplify further. We have that Zéip(5i|xi,9(”)) = 1, because this is a
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probability distribution. Notice that, for any index v,

Z(cfévﬂp(éuw("),x)) = Z(cfsvp(avwwx)) S [Lp0.10, %)

) 0w 5, 85, P

>~ (cFoup(a.]o™.x)
Ou

u

So we can write

Q(0;6™) = > L(6;x,6)p(5]6™,x)
§

i

0

= Y Z{[(—%(Xi—My‘)T(Xi—Mj))+10g7fj]wij} +K

oL\ 7
where
wiy = 1p(d;; =10, x) + 0p(d;; = 0[6™, x)
p(6;; = 110", x).

Now
p(x,0;; = 1]6™)
p(x[0(™)

p(x,0i; = 1]6™)
> p(x, 0 = 1]6()

p(xi, 05 = 10 T, 5 p(%u, 8u/6)

(Z[p(xv 0it = 1|9(n))) Hujp(xuv 5u|9)

p(xi, 85 = 110™)
> p(x, 0 = 1]6)
If the last couple of steps puzzle you, remember we obtained p(x, 6|6) = [[, p(x;, 6;|6).

Also, look closely at the denominator; it expresses the fact that the data must have
come from somewhere. So the main question is to obtain p(x;, d;; = 1|§(™). But

p(xi, 6y = 110M) = p(xildi; = 1,00)p(65; = 116™)

exp (-%(Xz‘ — )" (xi — Mj))] 7

p(0y; = 110", x) =

L 1
- [ven?
Substituting yields
[exp (=5 (xi — )" (xi — )] 7;
Zk [GXP (—%(Xi — )T (xi — Mk))] Tk

p(0y; =116, x) =

= Wij-.
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8.3.2 Example: Mixture of Normals: The M-step
The M-step is more straightforward. Recall

Q0;0™) = | Y { K—%(Xi — )" (xi — uj))] + 10g7rj} wij + K

ij

and we have to maximise this with respect to ¢ and 7, and the terms w;; are known.
This maximization is easy. We compute

u(.nJrl) _ Zz TiWij
! > Wi

and
() _ 2 Wij
J N
You should check these expressions by differentiating and setting to zero. When you
do so, remember that, because 7 is a probability distribution, > ;T = 1 (otherwise
you'll get the wrong answer).

8.3.3 Example: Topic Model: The E-Step

We need to work out two steps. The E step requires a little calculation. We have

Q0;0M) = Y L(0:%,8)p(5]0", x)
)

+10g7Tj} 517‘ p(5|9("),x)

- 3 (2 { [T

§ ij u

+ log ﬂ'j} Wy

= > { [Z i 10g pj &

ij k

Here the last two steps follow from the same considerations as in the mixture of
normals. The x; and d; are IID samples, and so the expectation simplifies as in
that case. If you're uncertain, rewrite the steps of section B3Il The form of this Q
function is the same as that (a sum of ¢ §; terms, but using a different expression
for ¢;). In this case, as above,

p(8ij = 1]6", x).

Again, we have
p(xi, 0y = 116™)
p(xil6™)
p(xi,6i; = 110)
> p(xi, 6y = 1]6)

p(0i; = 10M,x) =




Section 8.3 The EM Algorithm 235

and so the main question is to obtain p(x;,d;; = 1/0™). But

p(xi, 05 = 100") = p(xildi; = 1,00)p(6;; = 1]0)

= [H p}”,’ic] ;.
k

Substituting yields
[Hk pf'%} T

P8y = 160, x) = =2 L
> [Hk p?fc} T

8.3.4 Example: Topic Model: The M-step
The M-step is more straightforward. Recall

Q(;6™) = Z { lz Tk log pjk

1] k

+ log ﬂ'j} Wy

and we have to maximise this with respect to p and 7, and the terms w;; are known.
This maximization is easy, but remember that the probabilities sum to one, so you
need either to use a Lagrange multiplier or to set one probability to (1 —all others).
You should get

(n+1) Zz X;Wij

S SR T

and

) _ i Wig

J N

You should check these expressions by differentiating and setting to zero.

8.3.5 EM in Practice

The algorithm we have seen is amazingly powerful; I will use it again, ideally with
less notation. Omne could reasonably ask whether it produces a “good” answer.
Slightly surprisingly, the answer is yes. The algorithm produces a local minimum
of p(x]0), the likelihood of the data conditioned on parameters. This is rather
surprising because we engaged in all the activity with § to avoid directly dealing
with this likelihood (which in our cases was an unattractive product of sums). I
did not prove this, but it’s true anyway.

There are some practical issues. First, how many cluster centers should there
be? Mostly, the answer is a practical one. We are usually clustering data for a
reason (vector quantization is a really good reason), and then we search for a k
that yields the best results.

Second, how should one start the iteration? This depends on the problem
you want to solve, but for the two cases I have described, a rough clustering using
k-means usually provides an excellent start. In the mixture of normals problem,
you can take the cluster centers as initial values for the means, and the fraction of
points in each cluster as initial values for the mixture weights. In the topic model
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problem, you can cluster the count vectors with k-means, use the overall counts
within a cluster to get an initial estimate of the multinomial model probabilities,
and use the fraction of documents within a cluster to get mixture weights. You need
to be careful here, though. You really don’t want to initialize a topic probability
with a zero value for any word (otherwise no document containing that word can
ever go into the cluster, which is a bit extreme). For our purposes, it will be enough
to allocate a small value to each zero count, then adjust all the word probabilies to
be sure they sum to one. More complicated approaches are possible.

Third, we need to avoid numerical problems in the implementation. Notice
that you will be evaluating terms that look like

Wke—(xi—uk)T(Xi—Mk)ﬂ

Zu Ty e~ Kim )T (i—pa) /2

Imagine you have a point that is far from all cluster means. If you just blithely
exponentiate the negative distances, you could find yourself dividing zero by zero,
or a tiny number by a tiny number. This can lead to trouble. There’s an easy
alternative. Find the center the point is closest to. Now subtract the square of this
distance (dfnin for concreteness) from all the distances. Then evaluate

- [(xi_ﬂk)T(xi_Hk)_dinin} /2

L€
-T2 ]2
S, Tue { min
N . . . —d? . /2
which is a better way of estimating the same number (notice the e min’" terms

cancel top and bottom).

The last problem is more substantial. EM will get me to a local minimum of
p(x]0), but there might be more than one local minimum. For clustering problems,
the usual case is there are lots of them. One doesn’t really expect a clustering
problem to have a single best solution, as opposed to a lot of quite good solutions.
Points that are far from all clusters are a particular source of local minima; placing
these points in different clusters yields somewhat different sets of cluster centers,
each about as good as the other. It’s not usual to worry much about this point. A
natural strategy is to start the method in a variety of different places (use k means
with different start points), and choose the one that has the best value of @ when
it has converged.

However, EM isn’t magic. There are problems where computing the expecta-
tion is hard, typically because you have to sum over a large number of cases which
don’t have the nice independence structure that helped in the examples I showed.
There are strategies for dealing with this problem — essentially, you can get away
with an approximate expectation — but they’re beyond our reach at present.



Section 8.4 You should 237

8.4 YOU SHOULD

8.4.1 remember:
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PROGRAMMING EXERCISES

8.1. Obtain the activities of daily life dataset from the UC Irvine machine learning
website (https://archive.ics.uci.edu/ml/datasets/Dataset-+for4+ADL+Recognition+with+Wrist-worn+Acceleron
data provided by Barbara Bruno, Fulvio Mastrogiovanni and Antonio Sgor-
bissa).

(a) Build a classifier that classifies sequences into one of the 14 activities pro-
vided. To make features, you should vector quantize, then use a histogram
of cluster centers (as described in the subsection; this gives a pretty ex-
plicit set of steps to follow). You will find it helpful to use hierarchical
k-means to vector quantize. You may use whatever multi-class classifier
you wish, though I'd start with R’s decision forest, because it’s easy to
use and effective. You should report (a) the total error rate and (b) the
class confusion matrix of your classifier.

(b) Now see if you can improve your classifier by (a) modifying the number
of cluster centers in your hierarchical k-means and (b) modifying the size
of the fixed length samples that you use.


https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer

CHAPTER 9

Mean Field Inference

Bayesian inference is an important and useful tool, but it comes with a serious
practical problem. It will help to have some notation. Write X for a set of observed
values, H for the unknown (hidden) values of interest, and recall Bayes’ rule has

X|H)P(H) Likelihood x Prior

B(
PH|X) = = .
(HIX) P(X) Normalizing constant

The problem is that it is usually very difficult to form posterior distributions,
because the normalizing constant is hard to evaluate for almost every model. This
point is easily dodged in first courses. For MAP inference, we can ignore the
normalizing constant. A careful choice of problem and of conjugate prior can make
things look easy (or, at least, hide the real difficulty). But most of the time we
cannot compute

P(X) = /P(X|H)P(H)dX.

Either the integral is too hard, or — in the case of discrete models — the marginal-
ization requires an unmanageable sum. In such cases, we must approximate.

Warning: The topics of this chapter allow a great deal of room for mathe-
matical finicking, which I shall try to avoid. Generally, when I define something
I'm going to leave out the information that it’s only meaningful under some cir-
cumstances, etc. None of the background detail I'm eliding is difficult or significant
for anything we do. Those who enjoy this sort of thing can supply the ifs ands and
buts without trouble; those who don’t won’t miss them. I will usually just write
an integral sign for marginalization, and I'll assume that, when the variables are
discrete, everyone’s willing to replace with a sum.

9.1 USEFUL BUT INTRACTABLE EXAMPLES
9.1.1 Boltzmann Machines

Here is a formal model we can use. A Boltzmann machine is a distribution model
for a set of binary random variables. Assume we have N binary random variables
U;, which take the values 1 or —1. The values of these random variables are not
observed (the true values of the pixels). These binary random variables are not
independent. Instead, we will assume that some (but not all) pairs are coupled.
We could draw this situation as a graph (Figure @.1]), where each node represents
a U; and each edge represents a coupling. The edges are weighted, so the coupling
strengths vary from edge to edge.

Write N (i) for the set of random variables whose values are coupled to that

239
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FIGURE 9.1: On the left, a simple Boltzmann machine. Fach U; has two possible
states, so the whole thing has 16 states. Different choices of the constants coupling
the U’s along each edge lead to different probability distributions. On the right,
this Boltzmann machine adapted to denoising binary images. The shaded nodes
represent the known pizel values (X; in the text) and the open nodes represent the
(unknown, and to be inferred) true pizvel values H;. Notice that pizels depend on
their neighbors in the grid.

of 7 — these are the neighbors of ¢ in the graph. The joint probability model is

log P(U0) = | > > 0,U:U;| —log Z(0) = —E(U0) — log Z(0).
i JEN()

Now U;U; is 1 when U, and U; agree, and —1 otherwise (this is why we chose U;
to take values 1 or —1). The 6;; are the edge weights; notice if 6;; > 0, the model
generally prefers U; and U; to agree (as in, it will assign higher probability to states
where they agree, unless other variables intervene), and if 6;; < 0, the model prefers
they disagree.

Here E(U|0) is sometimes referred to as the energy (notice the sign - higher
energy corresponds to lower probability) and Z(6) ensures that the model normal-
izes to 1, so that

D)

Z(0) = all values of U

[exp (=E(U10))] -

9.1.2 Denoising Binary Images with Boltzmann Machines

Here is a simple model for a binary image that has been corrupted by noise. At
each pixel, we observe the corrupted value, which is binary. Hidden from us are the
true values of each pixel. The observed value at each pixel is random, but depends
only on the true value. This means that, for example, the value at a pixel can
change, but the noise doesn’t cause blocks of pixels to, say, shift left. This is a
fairly good model for many kinds of transmission noise, scanning noise, and so on.
The true value at each pixel is affected by the true value at each of its neighbors —
a reasonable model, as image pixels tend to agree with their neighbors.
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We can apply a Boltzmann machine. We split the U into two groups. One
group represents the observed value at each pixel (I will use X;, and the convention
that @ chooses the pixel), and the other represents the hidden value at each pixel
(I will use H;). Each observation is either 1 or —1. We arrange the graph so that
the edges between the H; form a grid, and there is a link between each X; and its
corresponding H; (but no other - see Figure [0.]).

Assume we know good values for . We have

exp(—E(H,X10))/ 7 () exp(—E(H, X|0))

PHIX6) = 5 [0 (“EHX10)/z(0)] S exp (—E(H, X|0))

so posterior inference doesn’t require evaluating the normalizing constant. This
isn’t really good news. Posterior inference still requires a sum over an exponential
number of values. Unless the underlying graph is special (a tree or a forest) or very
small, posterior inference is intractable.

9.1.3 MAP Inference for Boltzmann Machines is Hard

You might think that focusing on MAP inference will solve this problem. Recall
that MAP inference seeks the values of H to maximize P(H|X,#) or equivalently,
maximizing the log of this function. We seek

ML log P(H|X,0) = (~E(H, X)) — log [Sx exp (—B(H, X10))]
but the second term is not a function of H, so we could avoid the intractable
sum. This doesn’t mean the problem is tractable. Some pencil and paper work
will establish that there is some set of constants a;; and b; so that the solution is
obtained by solving

argmax

= (Zij aijhihj) +225b5h
subject to h; € {—1,1}

This is a combinatorial optimization problem with considerable potential for un-
pleasantness. How nasty it is depends on some details of the a;;, but with the right
choice of weights a;;, the problem is max-cut, which is NP-complete.

9.1.4 A Discrete Markov Random Field

Boltzmann machines are a simple version of a much more complex device widely
used in computer vision and other applications. In a Boltzmann machine, we took
a graph and associated a binary random variable with each node and a coupling
weight with each edge. This produced a probability distribution. We obtain a
Markov random field by placing a random variable (doesn’t have to be binary,
or even discrete) at each node, and a coupling function (almost anything works)
at each edge. Write U; for the random variable at the i’th node, and 6(U;, U;) for
the coupling function associated with the edge from i to j (the arguments tell you
which function; you can have different functions on different edges).
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We will ignore the possibility that the random variables are continuous. A
discrete Markov random field has all U; discrete random variables with a finite
set of possible values. Write U; for the random variable at each node, and 0(U;, U;)
for the coupling function associated with the edge from ¢ to j (the arguments tell
you which function; you can have different functions on different edges). For a
discrete Markov random field, we have

log P(UI0) = | > > 60U, U;) | —log Z().
i JEN(4)

It is usual — and a good idea — to think about the random variables as indicator
functions, rather than values. So, for example, if there were three possible values
at node i, we represent U; with a 3D vector containing one indicator function for
each value. One of the components must be one, and the other two must be zero.
Vectors like this are sometimes know as one-hot vectors. The advantage of this
representation is that it helps keep track of the fact that the wvalues that each
random variable can take are not really to the point; it’s the interaction between
assignments that matters. Another advantage is that we can easily keep track of
the parameters that matter. I will adopt this convention in what follows.

I will write u; for the random variable at location i represented as a vector.
All but one of the components of this vector are zero, and the remaining component
is 1. If there are #(U;) possible values for U; and #(U,) possible values for U;, we
can represent 0(U;,U;) as a #(U;) x #(U;) table of values. I will write 6(9) for

the table representing 0(U;, U,), and 9,,%) for the m, n’th entry of that table. This
entry is the value of 0(U;, U7) when U; takes its m’th value and U; takes its n’th

value. T write ©09) for a matrix whose m, n’th component is 5. In this notation,
I write

0(U;,U;) = u] ©)uy.

All this does not simplify computation of the normalizing constant. We have

_ Z T o) .
Z(0) = all values of u <P Zul O™y,
ij
Note that the collection of all values of u has rather nasty structure, and is very
big — it consists of all possible one-hot vectors representing each U.

9.1.5 Denoising and Segmenting with Discrete MRF's

A simple denoising model for images that aren’t binary is just like the binary
denoising model. We now use a discrete MRF. We split the U into two groups, H
and X. We observe a noisy image (the X values) and we wish to reconstruct the
true pixel values (the H). For example, if we are dealing with grey level images
with 256 different possible grey values at each pixel, then each H has 256 possible
values. The graph is a grid for the H and one link from an X to the corresponding
H (like Figure @.1). Now we think about P(H|X,#). As you would expect, the
model is intractable — the normalizing constant can’t be computed.
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Worked example 9.1 A simple discrete MRF for image denoising.

Set up an MRF for image denoising.

Solution: Construct a graph that is a grid. The grid represents the true value
of each pixel, which we expect to be unknown. Now add an extra node for each
grid element, and connect that node to the grid element. These nodes represent
the observed value at each pixel. As before, we will separate the variables U
into two sets, X for observed values and H for hidden values (Figure @.]). In
most grey level images, pixels take one of 256 (= 28) values. For the moment,
we work with a grey level image, so each variable takes one of 256 values. There
is no reason to believe that any one pixel behaves differently from any other
pixel, so we expect the §(H;, H;) not to depend on the pixel location; there’ll
be one copy of the same function at each grid edge. By far the most usual case
has

0 it H; = H;

o(Hi’ Hj) ~ | ¢ otherwise

where ¢ > 0. Representing this function using one-hot vectors is straightfor-
ward. There is no reason to believe that the relationship between observed and
hidden values depends on the pixel location. However, large differences between
observed and hidden values should be more expensive than small differences.
Write X; for the observed value at node j, where j is the observed value node
corresponding to H;. We usually have

O(H;, X;) = (H; — X;)?.

If we think of H; as an indicator function, then this function can be represented
as a vector of values; one of these values is picked out by the indicator. Notice
there is a different vector at each H; node (because there may be a different
X, at each).

Now write h; for the hidden variable at location i represented as a vector, etc.

Remember, all but one of the components of this vector are zero, and the remaining
component is 1. The one-hot vector representing an observed value at location ¢ is

X I
write

and

write ©() for a matrix who’s m, n’th component is 6. In this notation, I
6(H;, Hj) = h] 09k,

0(H;, X;) = h70@x; = h!'g,.

In turn, we have

logp(H|X) = || Y _h/0W@h; | +> hip;| +logZ.

)
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Worked example 9.2 Denoising MRF - 11

Write out ©() for the 6(H;, H;) with the form given in example [I.]] using the
one-hot vector notation.

Solution: This is more a check you have the notation. ¢Z is the answer.

Worked example 9.3 Denoising MRF - II1

Assume that we have X; = 128 and 6(H;, X;) = (H; — X;)?. What is 31 using
the one-hot vector notation? Assume pixels take values in the range [0, 255].

Solution: Again, a check you have the notation. We have

1282 first component
B =] (i—128)? 4’th component
1272

FIGURE 9.2: The graph of an MRF adapted to image segmentation. The shaded
nodes represent the known pizel values (X; in the text) and the open nodes represent
the (unknown, and to be inferred) labels H;. A particular hidden node may depend
on many pixels, because we will use all these pizel values to compute the cost of
labelling that node in a particular way.

Segmentation is another application that fits this recipe. We now want to
break the image into a set of regions. Each region will have a label (eg “grass”,
“sky”, “tree”, etc.). The X; are the observed values of each pixel value, and the
H; are the labels. In this case, the graph may have quite complex structure (eg
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figure [02]). We must come up with a process that computes the cost of labelling
a given pixel location in the image with a given label. Notice this process could
look at many other pixel values in the image to come up with the label, but not at
other labels. There are many possibilities. For example, we could build a logistic
regression classifier that predicts the label at a pixel from image features around
that pixel (if you don’t know any image feature constructions, assume we use the
pixel color; if you do, you can use anything that pleases you). We then model
the cost of a having a particular label at a particular point as the negative log
probability of the label under that model. We obtain the 6(H;, H;) by assuming
that labels on neighboring pixels should agree with one another, as in the case of
denoising.

9.1.6 MAP Inference in Discrete MRF's can be Hard

As you should suspect, focusing on MAP inference doesn’t make the difficulty go
away for discrete Markov random fields.

Worked example 9.4 Useful facts about MREF"s.

Show that, using the notation of the text, we have: (a) for any i, 17h; = 1;
(b) the MAP inference problem can be expressed as a quadratic program, with
linear constraints, on discrete variables.

Solution: For (a) the equation is true because exactly one entry in h; is 1,
the others are zero. But (b) is more interesting. MAP inference is equivalent
to maximizing log p(H|X). Recall log Z does not depend on the h. We seek

— Tolip. Tpn
P Z h; ©h; | + th Bi| +logZ
i 3
subject to very important constraints. We must have 17h; = 1 for all i.

Furthermore, any component of any h; must be either 0 or 1. So we have a
quadratic program (because the cost function is quadratic in the variables),
with linear constraints, on discrete variables.

Example [04lis a bit alarming, because it implies (correctly) that MAP infer-
ence in MRF’s can be very hard. You should remember this. Gradient descent is no
use here because the idea is meaningless. You can’t take a gradient with respect to
discrete variables. If you have the background, it’s quite easy to prove by producing
(eg from example [0.4]) an MRF where inference is equivalent to max-cut, which is
NP hard.
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Worked example 9.5 MAP inference for MRFE'’s is a linear program

Show that, using the notation of the text, the MAP inference for an MRF prob-
lem can be expressed as a linear program, with linear constraints, on discrete
variables.

Solution: If you have two binary variables z; and z; both in {0, 1}, then write
Qij = ZiZj- We have that Qij < zi, qij < Zj, Qij € {0, 1}, and Qij >z + Zj — 1.
You should check (a) these inequalities and (b) that g;; is uniquely identified by
these inequalities. Now notice that each h; is just a bunch of binary variables,
and the quadratic term h] ©(h; is linear in ¢;;.

Example is the start of an extremely rich vein of approximation math-
ematics, which we shall not mine. If you are of a deep mathematical bent, you
can phrase everything in what follows in terms of approximate solutions of linear
programs. For example, this makes it possible to identify MRF’s for which MAP
inference can be done in polynomial time; the family is more than just trees. We
won’t go there.

9.2 VARIATIONAL INFERENCE

We could just ignore intractable models, and stick to tractable models. This isn’t a
good idea, because intractable models are often quite natural. The discrete Markov
random field model of an image is a fairly natural model. Image labels should
depend on pixel values, and on neighboring labels. It is better to try and deal with
the intractable model. One really successful strategy for doing so is to choose a
tractable parametric family of probability models Q(H;6), then adjust 6 to find
an element that is “close” in the right sense to P(H|X). This process is known as
variational inference.

9.2.1 The KL Divergence: Measuring the Closeness of Probability Distributions

Assume we have two probability distributions P(X) and Q(X). A measure of their
similarity is the KL-divergence (or sometimes Kullback-Leibler divergence)
written POX)
D(PIQ) = [ P(X)lox il ax
(you've clearly got to be careful about zeros in P and @ here). This likely strikes
you as an odd measure of similarity, because it isn’t symmetric. It is not the case
that D(P| Q) is the same as D(Q | P), which means you have to watch your P’s
and Q’s. Furthermore, some work will demonstrate that it does not satisfy the
triangle inequality, so KL divergence lacks two of the three important properties of
a metric.
KL divergence has some nice properties, however. First, we have

D(P| Q) =0
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with equality only if P and @ are equal almost everywhere (i.e. except on a set of
measure zero).

Second, there is a suggestive relationship between KL divergence and maxi-
mum likelihood. Assume that X; are IID samples from some unknown P(X), and
we wish to fit a parametric model Q(X6) to these samples. This is the usual situ-
ation we deal with when we fit a model. Now write H(P) for the entropy of P(X),
defined by

H(P)= —/P(X) log P(X)dx = —Ep[log P].

The distribution P is unknown, and so is its entropy, but it is a constant. Now we
can write

D(P| Q) = Ep[log P] — Ep[log Q]
Then

Ep(x)[log Q(X10)]

= H(P)-D(P|Q)(®).

£(0) = Y10 QUXi10) ~ / P(X) log Q(X|0)dX

Recall P doesn’t change (though it’s unknown), so H(P) is also constant (though
unknown). This means that when £(6) goes up, D(P| Q)(#) must go down. When
L(0) is at a maximum, D(P| Q)(#) must be at a minimum. All this means that,
when you choose 6 to maximize the likelihood of some dataset given 6 for a para-
metric family of models, you are choosing the model in that family with smallest
KL divergence from the (unknown) P(X).

9.2.2 The Variational Free Energy

We have a P(H|X) that is hard to work with (usually because we can’t evaluate
P(X)) and we want to obtain a Q(H) that is “close to” P(H|X). A good choice
of “close to” is to require that

D(QH)| P(H|X))
is small. Expand the expression for KL divergence, to get

D(Q(H)| P(H|X)) = Egllog@Q]—Eqg[log P(H|X)]
Eqlog Q] — Eqllog P(H, X)] + Eq[log P(X)]
Eq|log Q] — Egllog P(H, X)] + log P(X)

which at first glance may look unpromising, because we can’t evaluate P(X). But
log P(X) is fixed (although unknown). Now rearrange to get

log P(X) = D(Q(H)| P(H|X)) - (Eqllog Q] — Eqllog P(H, X))
— D(QUH)| P(H|X)) - Eq.

Here
Eq = (Eqllog @] — Eq[log P(H, X)])
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is referred to as the variational free energy. We can’t evaluate D(Q(H) | P(H|X)).
But, because log P(X) is fixed, when Eq goes down, D(Q(H)| P(H|X)) must
go down too. Furthermore, a minimum of Eg will correspond to a minimum of
D(Q(H)| P(H|X)). And we can evaluate Eg.

We now have a strategy for building approximate Q(H ). We choose a family of
approximating distributions. From that family, we obtain the Q(H) that minimises
E¢ (which will take some work). The result is the Q(H) in the family that minimizes
D(Q(H)| P(H|X)). We use that Q(H) as our approximation to P(H|X), and

extract whatever information we want from Q(H).

9.3 EXAMPLE: VARIATIONAL INFERENCE FOR BOLTZMANN MACHINES

We want to construct a Q(H) that approximates the posterior for a Boltzmann
machine. We will choose Q(H) to have one factor for each hidden variable, so
Q(H) = q1(H1)q2(Hz) ... qn(Hy). We will then assume that all but one of the
terms in ) are known, and adjust the remaining term. We will sweep through the
terms doing this until nothing changes.

The 7’th factor in @ is a probability distribution over the two possible values
of H;, which are 1 and —1. There is only one possible choice of distribution. Each
¢; has one parameter m; = P({H; = 1}). We have

(1+H;) (A—H;)
¢i(Hi) = (m) 7 (1—m) 72
Notice the trick; the power each term is raised to is either 1 or 0, and I have used
this trick as a switch to turn on or off each term, depending on whether H; is 1
or —1. So ¢;(1) = m; and ¢;(—1) = (1 — m;). This is a standard, and quite useful,
trick. We wish to minimize the variational free energy, which is
Eq = (Eqllog Q] — Eq[log P(H, X))).

We look at the Eg[log Q] term first. We have

EqgllogQ] = Eq (a,)...qn ) l0gq1 (H1) + ... log gy (HN)]
= Egmllogqi(H1)] + ... Eqy iy [log gy (Hn)]

where we get the second step by noticing that
Eq, (a1)...qn (sx) 108 @1 (H1)] = By, (1, [log g1 (H1)]

(write out the expectations and check this if you're uncertain).
Now we need to deal with Eg[log P(H|X)]. We have

logp(H,X) = —E(H,X)-logZ
i€H jeN()NH iEH jEN(H)NX

(where K doesn’t depend on any H and is so of no interest). Assume all the ¢’s are
known except the ¢'th term. Write @; for the distribution obtained by omitting ¢;
from the product, so Qi = g2(H2)q3(H3)...qn(Hn), etc. Notice that

Z(—l)E %[10 P(Hl,...,Hi:—l,...,H |X)]+
Eqllog P(H|X)] = ( ! qi(l)Ié?Q%[lggP(Hl,...,Hi = 1,...,HNN|X)] >
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This means that if we fix all the ¢ terms ezcept q; (H;), we must choose g; to minimize

qi(—1)logqi(—1) + qi(1)log gi(1) —
qi(l)EQg[logP(Hl, N ,Hi = 1, N ,HN|X)]
subject to the constraint that ¢;(1) 4+ ¢i(—1) = 1. Introduce a Lagrange multiplier

to deal with the constraint, differentiate and set to zero, and get

1
a(l) = = exp(Eq,[log P(Hy, . 1., Hy|X)])

L Hy =
1

qz(_l) = Eexp (EQ;[logP(HlaaH’L - _175HN|X)])

where ¢ = exp (Eq.[log P(Hy,...,H; = —1,..., Hy|X)]) +
exp (Eq,[log P(Hy,...,H; =1,..., Hy|X)]).

In turn, this means we need to know Eq.[log P(Hy,. .., H; = —1,..., Hy|X)], etc.
only up to a constant. Equivalently, we need to compute only log ¢;(H;) + K for K
some unknown constant (because ¢;(1) + ¢;(—1) = 1). Now we compute

Eq.[log P(H,y,...,H; = —1,..., Hy|X)].

This is equal to

Eq. Z 0;;(—1)H; + Z 0;;(—1)X; + terms not containing H;
JEN(I)NH JEN()NX

which is the same as

> 0(—DEq[Hl+ Y. 0(-1)X; + K
JEN(I)NH JEN()NX

and this is the same as

o O+ A -m) D))+ Y 6(-DX + K

JEN(I)NH JEN(GH)NX

and this is

S0 eRm -1+ Y (DX, + K.

JEN(i)NH JEN(I)NX
If you thrash through the case for

Eq.[log P(H,y,...,H;=1,..., Hy|X)]
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(which works the same) you will get

loggi(1) = Egq,[logP(Hy,....,H;=1,...,Hy,X)|+ K
= Y yem -+ Y X+ K
JEN(I)NH JEN (i)NX
and
loggi(—=1) = Egq.[logP(Hy,...,Hi=~1,....,Hy,X)|+ K
= Y [Fuem -0+ > [0 X+ K
JEN (i)NH JEN ()NX

All this means that

(EjEN(i) [91']‘ (Qﬂjfl)ﬁ’ein]‘])

e

e (Eje,r\r(i) [—0i;(2m; *1)+*‘9in1']) Te (Eje.'\/(i) [0 (Qﬂjfl)Jrﬁinj])

T, =

After this blizzard of calculation, our inference algorithm is straightforward. We
visit each hidden node in turn, set the associated m; to the value of the expression
above assuming all the other m; are fized at their current values, and repeat until
convergence. We test convergence by evaluating the variational free energy.

We can now do anything to Q(H) that we would have done to P(H|X).
For example, we might compute the values of H that maximize Q(H) for MAP
inference. It is wise to limit ones ambition here, because Q(H) is an approximation.
It’s straightforward to set up and describe, but it isn’t particularly good. The main
problem is that the variational distribution is unimodal. Furthermore, we chose a
variational distribution by assuming that each H; was independent of all others.
This means that computing, say, covariances will likely lead to the wrong numbers
(although it’s easy — almost all are zero, and the remainder are easy). Obtaining
an approximation by assuming that H; is independent of all others is often called
a mean field method.



CHAPTER 10

Variational Inference and Topic

Models

10.1 LATENT DIRICHLET ALLOCATION
10.1.1 A Tool: The Dirichlet Distribution

We need a new tool to write out the next model. To generate a document, we we
will need to obtain a distribution of topics, which will be a vector of fixed dimension
that represents a probability distribution (i.e. it’s non-negative, and sums to one).
This vector will need to be a sample from a probability distribution (so we can
build a probability model). This means we need a probability distribution over
such vectors.

The Dirichlet distribution on K categories is a parametric probability dis-
tribution on vectors of fixed dimension K which represent probability distributions.
Such vectors have non-negative entries, and their components sum to one. The dis-
tribution has K parameters, ac; > 0,...,a, > 0. Write x for a K dimensional
vector such that (a) 17x = 1 and (b) x > 0 (such a vector is often referred to as
being in the K-simplex). Then the probability density at x is given by

Hilil x?i_l
B(a)

where B(a) (the normalizing constant) is given by

[T, Dlas).
F(Hfil )

Here T'(;) is the gamma function; we won’t use the normalizing constant in any
significant way, so you can probably just take this on trust. I will write Dirg ()
for the Dirichlet distribution on K dimensional vectors representing probability
distributions with parameter o (but sometimes drop the K if it’s obvious).

The Dirichlet distribution is particularly useful as a prior in counting prob-
lems. Imagine we have a s-sided die. We roll this die N times, and we wish to
estimate P({roll gets w}). This is a s dimensional vector (one entry for each side)
representing a probability distribution, which I shall write p. Our rolls yield an
s-dimensional count vector ¢, where the w’th entry is the count of the number of
times side w came up. A (reasonable) estimate of p is

B(a) =

c _c
N  17¢

but this estimate may be poor if the number of rolls is small — in the case N = 1,

for example, we don’t really wish to model the die as having zero probability of

251
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coming up with all but one face. So we introduce a prior. We will use a Dirichlet
prior, P(p) = Dirs(a). We have

Plple) = TR
* P(elp)P(p)
| o] P55

(H pgiteiT ) term that doesn’t depend on p)
= Dirs(c+ @)

so the posterior is a Dirichlet distribution, and MAP inference is a matter of adding
some number of fake counts to each ¢;. We expect something like this to be true,
because the posterior is a distribution on discrete distributions (which is what a
Dirichlet distribution is).

Remember this: We wish to estimate p, a probability distribution on
s discrete symbols. Choose P(p) = Dirs(a). We observe a count vector ¢
of counts (one per symbol, for a total of s distinct counts). Then

P(p|c, @) = Dir(c + a).

Here is one last, useful, fact about Dirichlet distributions that I shall not
prove. Assume that x is distributed as Dirg(a). Some relatively straightforward
technical manoeuvering with tricks to do with exponential families will yield certain
expectations easily. The one we will care about is

Epir, (a)log zi] = ¥(a;) — ‘I’(Z k)
%

where U(q;) is known as the digamma function. This is the derivative of the log
of the gamma function, which I've also treated rather vaguely. For our purposes,
it’s quite sufficient that most numerical environments will evaluate it for you.
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Remember this:  Assume x ~ Dirg(a). Then
Ellog2;] = ¥(a;) — \II(Z ag)
k

where ¥ is known as the digamma function.

10.1.2 Latent Dirichlet Allocation

In the topic model T described (section B), a document was represented as a bag
of words. The order of the words was irrelevant, only the count mattered. A docu-
ment was obtained by: choose a topic from a topic distribution; now choose words
from the topic. This isn’t a great model for a document. Even the most obsessive
writers drift. This means the topic will change somewhat within a document of any
length, so the model of one topic per document will not represent most documents
particularly well. There is another practical problem. The model yields relatively
unhelpful representations of documents. You could describe a document under this
model by giving either the topic of the document (which would be vector quantiza-
tion), but this is not a rich description. Alternatively, you could it with a vector of
probabilities of obtaining the document under each of the topics. Experience shows
that these vectors tend to have one large value and all other values small; they’re
not a great deal better than simply giving the topic.

Here is a better model. We will still represent documents as bags of words, but
we will allow words in any particular document to come from more than one topic.
We start with a fixed set of topics, each of which is represented by a distribution
over words. Different documents may have more or fewer words from a particular
topic, so each document needs to have its own distribution from which topics are
chosen. This means we obtain a document by:

e choosing a fixed set of topics, which are distributions over words;
e now, for each document,

— choosing a distribution of topics for that document;
— now for each word in the document,

* choose a topic from the document’s distribution of topics;

* choose a word from the word distribution under that particular
topic.

As aresult, the words in the document can be generated from many different topics.
We can then represent a particular document by (say) the distribution of topics for
that document.

This model is known as latent dirichlet allocation. It yields very effective
clusterings of documents, and very effective representations of documents. However,
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it presents us with a significant inference problem: given a set of documents, we
must recover (a) the word distributions for each topic and (b) the distribution of
topics for each document.

We can now give a formal model, with notation and all the accoutrements.
We assume that the number of topics 7" is known. There are D documents, and the
J’th document has W (j) words. T will write Dirg (e) for the Dirichlet distribution
with parameter o on K categories; I will occasionally drop the subscript if the
dimension is obvious or not worth discussing. I will write x ~ Dir(«) for a vector x
obtained by drawing a sample from this distribution. Similarly, I will write Mult(8)
for a multinomial distribution with probability distribution 6.

If you followed the description above, you will have noticed that the same
word in a given document could be generated by different topics. In turn, this
means that we cannot represent documents by word counts — we need to treat each
instance of every word in a document individually. It will be helpful to keep track
of two pieces of information. We will have a 3-dimensional table Z, where the ¢, d,
w’th entry is 27, , and where

+ | 1 if the w’th word in the d’th document comes from topic ¢
Faw =) 0 otherwise

and for each document, we will have a 3-dimensional table ), where the v, d, w’th
entry is yj,,, and where

» _ | 1 if the wth word in the d’th document is the v’th word in the vocabulary
Yaw =7 0 otherwise

Notice that we observe ), but we do not observe Z. It is occasionally useful to
know which word in the vocabulary appears as the w’th word in the d’th document
(i.e. for which v is ¢y, = 1). I will write y4, to represent the v for which y3,, = 1;
context will tell you what is intended. I will also write z4, to represent the ¢ for
which 2!, = 1.
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Procedure: 10.1 Generating documents under the LDA model

We assume that the number of topics T is known. There are D doc-
uments, and the j’th document has W(j) words. The vocabulary has
V words in it. We choose 7 (a V-dimensional hyperparameter for the
Dirichlet distribution) and « (a T-dimensional hyperparameter for the
Dirichlet distribution). The observations will be represented by a 3-D
table ) where where v}, is 1 if the w’th word in the d’th document
is the v’th word in the vocabulary, and 0 otherwise. A table of latent
variables, Z, is useful for bookkeeping; we have 2z}, is 1 if the w’th word
in the d’th document comes from topic ¢, and 0 otherwise. We obtain
Y as below. Write yq., to represent the v for which yj, = 1; context
will tell you what is intended. Write z4, to represent the ¢ for which
2, =1

Set Z and )Y to zero.

1. For each of T topics, draw a word distribution from a Dirichlet
distribution. Write ¢ for the word distribution for the #th topic.
This is a probability distribution on V' words. Write 3¢ for the
probability of generating the v’th word in the vocabulary from the
t’th topic. We have ¢ ~ Dir(n).

2. For documents d from 1 to D:

(a) Draw a topic distribution from a Dirichlet distribution.
Write 8% for the distribution of topics in the d’th document.
This is a probability distribution on 7' topics. Write 8¢ for
the probability of generating the ¢’th topic in the vocabulary
in the d’th document. We have 6% ~ Dir(a).

(b) For word w from 1 to W (d):

i. Draw a topic index (equivalently, choose a topic) from
the topic distribution, to get ¢ ~ 69. Set z, = 1.

ii. Draw a word index (equivalently, choose a word) from
the word distribution of topic ¢, sov ~ . Set y3, = 1.

The text description above is relatively easily turned into a likelihood model.
This is
pYIot,...0", 8, ... 8T) = P()],0,8).
I will write out this model, because the steps are useful, but it will turn out to be
intractable. Notice that

P(Y],0,8)=>_ P(,2|.0,5)
Z
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and this sum will be very difficult to manage, because there is an unreasonable
number of terms. But we will use P(), Z|,6, 8), and it is quite easy to derive an
expression. First, notice that P(z}, = 1|6, 3) is the probability that the w’th word
in the d’th document comes from the ¢’th topic, so

P(zh, =1]0,3) = 6¢.

Now P(y4,, = 1]z, = 1,6,5) is the probability of getting the v’th word in the
vocabulary for the w’th word in the d’th document, if the w’th word in the d’th
document comes from the ¢’th topic, so

This means that
P(y4, = 1,24, =116, 8) = 6{8}.

The probability of a whole document is a product of the probability of the words,
which are independent conditioned on topic and topic weights; the probability of the
collection is the product of the probability of documents, which are independent.
This means that writing P(), Z16, 3) is mainly a matter of notation. We could
write

uv

[Wdw?Zdwl
P, 210.8) =[] lH 95/33]

dw

This works because only one of the V' different yj,, terms indexed by the dummy
variable v is one (the others are zero), and similarly only one 2%, is one. The power
acts as a switch, and the product over the dummy variables is a product of ones
together with the right term. Some people find this devious trick rather opaque.
An alternative is to write ¥4, to mean the word v that has y3,, = 1, apply the same
t0 Z4w, and get
P, 216,5) =[] [62,.55:]
dw

The Z should suggest to you that we could extract maximum likelihood estimates
of 8 and # using EM here. It turns out this is possible. When you know which
topic each word comes from, inference is straightforward. This means the Z here
are like the § in Chapter B} you might be able to use that chapter and a great deal
of pencil-and-paper work to figure out EM for LDA if you really wanted to. But
we want to work with the posterior,

P(Y, Z|B,0)P(B|n)P(0]a)
P(Y|a,n)

and this is intractable, because we can’t recover the normalizing constant.

P(B,0,Z|Y,a,n) =

10.2 A MORE GENERAL VIEW OF VARIATIONAL INFERENCE

The main difficulties here are: choosing an appropriate Q for variational inference;
and performing the calculations required to obtain a minimum of the variational
free energy. It turns out that there are great advantages to choosing a () that
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is a product of (well-chosen) factors, as in the mean-field example. There’s no
particular reason the choice of form should be obvious yet, but we will be able to
exploit the form to get various simplifications We will fit this model with the same
overall strategy we used for mean field inference. But we will need a variety of
tricks to be able to choose the best solution for a given term.

The VFE for Factored Distributions

Assume we have P(H, X), and we wish to approximate P(H|X) with a variational
model Q(H). One way to proceed is to break up the H into independent groups,
because this results in a simple and effective procedure for maximizing the varia-
tional free energy. We assume there are g groups, and write H; for the j’th group.

Then we choose
H) =[] aH))
J

We then adopt the following strategy: assume that all the factors are known except
one. Solve for the unknown factor. Now sweep this process through the factors
until convergence.

Obtaining a solution for one factor is (relatively!) straightforward. Assume
that we know all of the g; except g;. I will use the notation

H) = qu(H)
j#i

Remember, @); is known and we are seeking ¢;. 1 will write f for marginalization,
but if the variables are discrete, you should interpret this as a sum. The variational
free energy for ¢; will be

Eoq = EgllogQ(H)] —Eqllog P(H, X)]

_ / Q(H)log Q(H)dH — Eqllog P(H, X))
- /q1 (HY)...q0(H,) log qi(Hy1) + ... log 4y (H,)| dH — Eqllog P(H, X)]
_ / log q;(Hy)dH; + C — Eo[log P(H, X)]
_ /ql ) log g:(H )dHi+C+/q1(H1)...qi(Hi)logP(H,X)dH
_ /ql Vlog g;(H )dHi—i-C—i—/ /Q Ylog P(H, X)dH;dH,
- / ¢:(H,) log q;(H:)dH; + C + / J(H;) [Eq.llog P(H, X)]|] dH;

where

C= EQ; [log Q{]

does not depend on H;. Recall we assumed we knew all the ¢; except g¢;, which
means we know [EQz [log P(H, X)]]. Writing this term out explicitly shows that it
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is a function of H;, so
f(H;) = [Eq,[log P(H,X)]]
= /qu log P(Hy, Hy, ..., Hy, X)dH; ... (omitting H;)...dH,.
J#i

Using this notation, the free energy takes the form

e, = [ aH)loga(H)dH:+C — [ a0 f(H:)a,

= Eth [logQi(Hi)] +C - Eth [f(Hl)]
= Eth [logqi(Hi)] +C - Eth [(EQI [IOgP(Hv X)])]

and we need a strategy to find the ¢; (H;) that maximizes this variational free energy.

Optimizing a Factor

In all the cases I will deal with, the H are discrete random variables, so the integral
means a sum. In this case, ¢;(H;) is a finite dimensional vector (one value for each
possible state of H;). I will write q for this vector, and f for a vector representing
f(H;). We must maximize

h(q) = —q" logg—C +q"f

subject to q71 = 1 and q > 0. It turns out that the inequality constraints are
inactive, and we will ignore them. We can ignore D, because it doesn’t affect which
q is the maximum. Introduce a Lagrange multiplier A\ for the constraint, and write
the Lagrangian

la;A) =—q"loga+q"f = A(q"1-1)

Differentiate and set to zero; choose the value of the Lagrange multiplier to ensure
the constraint is met; and you will find

_ expf
=37 (expf)’
This gives us an important fact. The factor distribution is proportional to
exp [Eq, [log P(H, X)]] .

In turn, this means the major problem in each case will be computing E¢. [log P(H, X)]
up to a constant.

10.3 VARIATIONAL INFERENCE FOR LDA

We choose a variational model that has the form

T D W (d)

QB.0,2) =[] 80" | [T 200 | T] a(zawin™)

t=1 d=1 w=1
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where b? is a vector of parameters for the ¢ distribution for ¢, and so on. We will
proceed with our established recipe of iterate: assume all factors but one are right,
update that factor, and sweep through the factors. We now need to know how to
update the set of parameters for each kind of factor.

We can be specific about what kind of distribution each factor represents.
The factor q(z4, = k;n%™) is a discrete distribution on 7' symbols (one per topic),
and so can be represented as a normalized vector of non-negative values. Recall
B is itself a probability distribution, the probability with which words are chosen
by the t'th topic. Also,#? is itself a probability distribution, the probability with
which topics are chosen by the d’th document. This means the factors ¢(3%; b?)
and ¢(0;h?) are distributions over discrete distributions. These factors will be
Dirichlet distributions.

Updating the Per-document Topic Distributions

We look at the ¢(6%; h?) factor. Write Qja for the variational model omitting this
factor. We need to minimize

Eq(04:ne) = Eq(gana) [log g(0%:h?)] — Eq,, [log P(8,0, Z, V)]
and we know that the minimizing distribution will be proportional to
exp [EQéd [1ng(ﬁv 97 Zv y)]] .
Now notice that
[Eq,,log P(8,6,Z,Y)]] = [Eq,,[logP(6%61,...(omitting 6),....67, 3, Z,)]]
+ [Eq,, [log P(6:,. .. (omitting 6%),...,6", 8, Z,)]]

= [IEQéd [log P(6%6,, ... (omitting 8),...,07, 3, Z, y)}]
+K

(where K does not depend on 6%, and so does not matter).
We need to know

P00y, ... (omitting #%),...,07,5,Z,,a,n).

Now assume we know Z. We can obtain a count of the number of times each topic
is used in the d’th document from Z. The only other conditioning variable that
affects 0% are the prior hyperparameters . So we have

P(0?0y, ... (omitting 6%),...,07,5,2,Y,a,1) = P(8%Z,a).

The number of times each topic is used in the d’th document is a count vector
whose tth component is Y, 2%, . Now we have a situation that is familiar; we have
a count vector, and a Dirichlet prior. Using the reasoning of section [34] we have

o Zdw

P04 2, o) = Dir( .
> Zauw

+ ).
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Now the variational factor distribution q(zg,;n®") is a discrete distribution
on T symbols (one for each topic). A natural representation is to have n be a T
dimensional vector of non-negative terms, and interpret this vector by q(2g,; n®) =
n® /(1Tn®). T symbols (one for each topic). So

q(@d; hd) X exp [EQéd [log P(9d|Z, a)“
o exp [Ey) [log P(#Y|z, )] ]

I (041 + Zw Zéw - 1) log 9111
o< exp |Eye e
(aT + Zw Zgw - 1) log 9%
(o1 + [, nbw] — 1) log 6
(ar + [>, nk,] — 1) log 64

(Xw Mdw)

(X M)
We can write this in terms of the parameters of the variational distribution as

(50 1)
(S0 70,

X exp

= Dir(a+

h'=a +

Updating the Topic Distributions

We look at the ¢(/3*; b) factor. This will work very much like the #¢ case. Write
Q gt for the variational model omitting this factor. We need to minimize

Eq(ptmt) = Eq(praney [log q(85h")] — Eq,, [log P(8,6, Z, V)]
and we know that the minimizing distribution will be proportional to
exp [EQBf [log P(5,6, Z, y)]} .
Now notice that
Eq,, [log P(ﬁ,e,z,y)]] - {E%t [log P(8!|1,. .. (omitting BY),..., BT,e,z,y)]]
+ [Eq,. [log P81, ... (omitting 8°),..., 57,0, 2,7)]]

_ {E%t [log P(8|B1, .. . (omitting BY),.. .,ﬂT,H,Z,y)”
K

(where K does not depend on /3, and so does not matter).
We need to know

P(BB1, . .. (omitting 8),..., 87,0, Z,,a,n).
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Now assume we know Z and ). We can obtain a count of the number of times each
word is used by the t’th topic using Z and ). The only other conditioning variable
that affects 8¢ are the prior hyperparameters 7. So we have

P(Bt|ﬁlu' N (Omlttlng Bt)u' N 7BT76727y7a777) = P(Bt|zayun)

The number of times the v’th word in the vocabulary is used in the t’th topic
is a count vector whose tth component is >, 25 y4 . Now (again!) we have a
situation that is familiar; we have a count vector, and a Dirichlet prior. Using the
reasoning of section B4l we have

t o1
Zdw ZdwY dw
P(B'2,Y,a) = Dir( . + ).
v
Zdw Zéwydw
Now the variational factor distribution q(za,;n®”) is a discrete distribution
on T symbols (one for each topic). A natural representation is to have n? be a T
dimensional vector of non-negative terms, and interpret this vector by q(2g,; n®) =
n? /(1Tn®™). T symbols (one for each topic). So

a(B'sh') o« exp [Eqy, [log P32, )]

X exp [Eq(z) [log P(ﬂﬂZ,a)”

[ (01 + gy ZawYaw — 1) log B
o< exp |Eye .

(v + X Zau Y — 1) 108 B,
(o1 + [C g nlrw¥in] — 1) log 54
(v + [ g l¥i] — 1) log By
(Edw ntdwyéw)
(Edw ngwy(‘i/w)
We can write this in terms of the parameters of the variational distribution as

(Zdw nfiw y;w)

(Zdw ngw yé/w)

X exp

= Dir(a+

h! = a +

Updating the latent variables
Finally, we consider zq,. Write Q for ¢(8,0, Z)/q(24w; n%) (i.e. Q, but omitting
the factor we are interested in). Then

q(Zaw = k;ndw) o exp {EQ log P(zaw = t|2s,,,5,0,Y) + K]

where log P(zqy = t|Zz,,,5,0,)) = loge + log Bédw + K. Now recall from sec-
tion ?? that ¢(6%;h?) and ¢(B8%;b?) are both Dirichlet. So we get the expectation
from section [34], and find

d(za = tn™) ocoxp U (1) — & (1) W (b)) ~ W (17h1)]
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Actually, one more simplification is available (and likely, you're glad to hear this is
the last!). Notice that

1Th? =170 + Z n%,, = number of words in document d

wt

which doesn’t depend on ¢, so can be absorbed into the constant. So we get that
the t’th component of n® is

exp [¥ () + ¥ (by,,) — ¥ (17D)]

(remember, we normalize this vector to get the distribution). I have put the most
important equations from this lot into a box.

Procedure: 10.2 Variational Inference for LDA

We wish to represent the posterior for LDA with a variational distribu-
tion of the form

q(B,0, Z)

T D W (d)
IT [a356Y [T] a0%n) | T a(zawin™)
=il d=1 w=1

where each ¢(3%;bt) factor is a Dirichlet distribution; each ¢(6%; h?)
factor is a Dirichlet distribution; and each g(zg,; n%) is a multinomial
distribution. We choose initial values for each n?® (which is a 7' dimen-
sional vector of soft counts); for each h?(which is a T dimensional vector
of non-negative parameters); and for each b? (which is a D dimensional
vector of non-negative parameters). We choose prior values o and 7
for the Dirichlet distributions on topic weights and topics, respectively.

Write U(u) for the digamma function. We now iterate:
nd®  — exp A4 (hf) + v (b;dw) - (lTbt)]

o Zdw nzlwycllw

b* — n+ e
v

Zdw nfiwydw

(5 7
()

Convergence can be tested by checking that updates make no change
to parameters (or by other methods).

h* - a+

10.3.4 Using the Results of LDA
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We will build complex classification systems out of simple units. A unit takes a
vector x of inputs and uses a vector w of parameters (known as the weights), a
scalar b (known as the bias), and a nonlinear function F' to form its output, which
is

F(whx +10).
Over the years, a wide variety of nonlinear functions have been tried. Current best
practice is to use the RELU (for rectified linear unit), where

F(u) = max (0, u).

For example, if x was a point on the plane, then a single unit would represent a
line, chosen by the choice of w and b. The output for all points on one side of the
line would be zero. The output for points on the other side would be a positive
number that is larger for points that are further from the line.

Units are sometimes referred to as neurons, and there is a large and rather
misty body of vague speculative analogy linking devices built out of units to neu-
roscience. I deprecate this practice; what we are doing here is quite useful and
interesting enough to stand on its own without invoking biological authority. Also,
if you want to see a real neuroscientist laugh, explain to them how your neural
network is really based on some gobbet of brain tissue or other.

Building a Classifier out of Units: The Cost Function

We will build a multiclass classifier out of units by modelling the class posterior
probabilities using the outputs of the units. Each class will get the output of a
single unit. Write o; for the output of the i’th unit, and 6 for all the parameters in
all the units. We will organize these units into a vector o, whose i’th component
is 0;. We want to use that unit to model the probability that the input is of class
J, which T will write p(class = j|x, ). To build this model, I will use the softmax
function. This is a function that takes a C' dimensional vector and returns a C'
dimensional vector. T will write s(u) for the softmax function, and the dimension
C will always be the number of classes. We have

e

s(w) = (Z:e“k) .

ete

(recall u; is the ¢’th component of u). We then use the model

p(class = i|x, 6) = s;(o(x, §)).

263
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Class 1 Class 2

O2 \

Class 1 Class 2

Either class

<
<

FIGURE 11.1: On the left, two units observing an input vector, and providing out-
puts. On the right, the decision boundary for two units classifying a point on
the plane into one of two classes. The angle of the dashed line depends on the
magnitudes of wy and ws.

Notice that this expression passes important tests for a probability model. Each
value is between 0 and 1, and the sum over classes is 1.

In this form, the classifier is not super interesting. For example, imagine that
the features x are points on the plane, and we have two classes. Then we have two
units, one for each class. There is a line corresponding to each unit; on one side
of the line, the unit produces a zero, and on the other side, the unit produces a
positive number that increases as with perpendicular distance from the line. We
can get a sense of what the decision boundary will be like from this. When a point
is on the 0 side of both lines, the class probabilities will be equal (and so both ; —
two classes, remember). When a point is on the positive side of the i’th line, but
the zero side of the other, the class probability for class ¢ will be

eoi(xve)

1+ eo,;(x,@) ’

and the point will always be classified in the ¢’th class (remember, o; > 0). Finally,
when a point is on the positive side of both lines, the classifier boils down to
choosing the ¢ that has the largest value of 0;(x, ). All this leads to the decision
boundary shown in figure 7?7. Notice that this is piecewise linear, and somewhat
more complex than the boundary of an SVM. It’s quite helpful to try and draw
what would happen for three or more classes with x a 2D point.

Building a Classifier out of Units: Strategy

The essential difficulty here is to choose 6 that results in the best behavior. We will
do so by writing a cost function that estimates the error rate of the classification,
then choosing a value 0 that minimises that function. We have a set of N examples
x; and for each example we know the class. There are a total of C classes. We
encode the class of an example using a one hot vector y;, which is C' dimensional.
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If the i’th example is from class 7, then the j’th component of y; is 1, and all other
components in the vector are 0. I will write y;; for the jth component of y;.

A natural cost function looks at the log likelihood of the data under the
probability model produced from the outputs of the units. If the i’th example is
from class j, we would like — logp(class = j|x;, ) to be small (notice the sign here;
it’s usual to minimize negative log likelihood). T will write logs to mean the vector
whose components are the logarithms of the components of s. This yields a loss
function

v 3| X (v oms(otx0)

iedata |jeclasses

Notice that this loss function is written in a clean way that may lead to a poor
implementation. I have used the y;; values as “switches”, as in the discussion of
EM. This leads to clean notation, but hides fairly obvious computational efficiencies
(when taking the gradient, you need to deal with only one term in the sum over
classes). As in the case of the linear SVM (section Bl), we would like to achieve a
low cost with a “small” 6, and so form an overall cost function that will have loss
and penalty terms.

There are a variety of possible penalties. For now, we will penalize large sets
of weights, but we’ll look at other possibilities below. Remember, we have C' units
(one per class) and so there are C' distinct sets of weights. Write the weights for
the w’th unit w,. Our penalty becomes

T
g W, Wy

weunits

As in the case of the linear SVM (section B1]), we write A\ for a weight applied to
the penalty. Our cost function is then

1 A
S(0,x;\) = N Z Z {—yiT logs(o(x;,0))}| + B Z wlw,
icdata [jeclasses ueunits
(misclassification loss) (penalty)

Building a Classifier out of Units: Training

I have described a simple classifier built out of units. We must now train this
classifier, by choosing a value of 8 that results in a small loss. It may be quite hard
to get the true minimum, and we may need to settle for a small value. We use
stochastic gradient descent, because we have seen it before; because it is effective;
and because it is the algorithm of choice when training more complex classifiers
built out of units.

For the SVM, we selected one example at random, computed the gradient
at that example, updated the parameters, and went again. For neural nets, it
is more usual to use minibatch training, where we select a subset of the data
uniformly and at random, compute a gradient using that subset, update and go
again. This is because in the best implementations many operations are vectorized,
and using a minibatch can provide a gradient estimate that is clearly better than
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that obtained using only one example, but doesn’t take longer to compute. The size
of the minibatch is usually determined by memory or architectural considerations.
It is often a power of two, for this reason.

Now imagine we have chosen a minibatch of M examples. We must compute
the gradient of the cost function. This is mainly an exercise in notation, but there’s
a lot of notation. Write 6, for a vector containing all the parameters for the
wth unit, so that 6, = [wy, b,]”. Recall si(o(x;,0;)) is the output of the softmax
function for the k’th unit for input x;. This represents the probability that example
1 is of class k under the current model. Then we must compute

Vg L {ovllmstetm)ll+f Y wiw,

ieminibatch jeclasses

The gradient is easily computed using the chain rule. The term

A
5 Z W,Jer

jeclasses

presents no challenge, but the other term is more interesting. We must differentiate
the softmax function by its inputs, then the units by their parameters. More
notation: assume we have a vector valued function of vector inputs, for example,
s(o). Here s is the function and o are the inputs. I will write #(0) to mean
the number of components of o, and o; for the ¢’th component. The matrix of first
partial derivatives is extremely important (we will see a lot of these; pay attention).
I will write Js;0 to mean

9s1 951

801 e 80#(0)
Is4(s) Os4.(s)

Doy e 80#(0)

and refer to such a matrix of first partial derivatives as a Jacobian.
Now we can use the chain rule to write

Vorr Y [ovloast )] =5 S [y gsedon.}].

ieminibatch ieminibatch

This isn’t particularly helpful without knowing the relevant Jacobians. They’re
quite straightforward.
Write Ij,—,)(u,v) for the indicator function that is 1 when v = v and zero
otherwise. We have
dlog sy e
Doy = M=o~ Doy €%k

= H[u:v] — Sy-

To get the other Jacobian, we need yet more notation (but this isn’t new, it’s a
reminder). I will write w,,; for the i’th component of w,, and I, ~¢(0.) for the
indicator function that is 1 if its argument is greater than zero. Then
doy,
810“71'

= IiH[ou>0] (Ou)
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and 9
Oy
b = ]I[Ou>0] (0u)-

u

Notice that if v # u,
0oy, 0oy,
dwes - Db,

At least in principle, we can build a multiclass classifier in a straightforward
way using minibatch gradient descent. We use one unit per class, each one using
each component of the feature vector. We obtain training data, and then iterate
computing a gradient from a minibatch, and taking a step along the negative of
the gradient. If you try, you may run into some of the important small practical
problems that cause networks to work badly. Here are some of the ones you may
encounter.

Initialization: You need to choose the initial values of all of the parameters.
There are many parameters; in our case, with a d dimensional x and C' classes, we
have (d+ 1) x C parameters. If you initialize each parameter to zero, you will find
that the gradient is also zero, which is not helpful. This occurs because all the o,
will be zero (because the w, ; and the b, are zero). It is usual to initialize to draw
a sample of a zero mean normal random variable for each initial value (appropriate
choices of variance get interesting; more below).

Learning rate: Each step will look like ("1 = (") —y, Vycost. You need
to choose 1, for each step. This is widely known as the learning rate; an older
term is steplength (neither term is a super-accurate description). It is not usual
for the learning rate to be the same throughout learning. We would like to take
“large” steps early, and “small” steps late, in learning, so we would like 7,, to be
“large” for small n, and “small” for large n. It is tough to be precise about a good
choice. As in stochastic gradient descent for a linear SVM, breaking learning into
epochs (e(n) is the epoch of the n’th iteration), then choosing two constants a and
b to obtain

0.

1
a+ be(n)
is quite a good choice. The constants, and the epoch size, will need to be chosen by
experiment. As we build more complex collections of units, the need for a better
process will become pressing; two options appear below.

Ensuring learning is proceeding: We need to keep track of what is going
on inside the system as we train it. One way is to plot the loss as a function of the
number of steps. These plots can be very informative (Figure ?7?). If the learning
rate is small, the system will make very slow progress but may (eventually) end up
in a good state. If the learning rate is large, the system will make fast progress
initially, but will then stop improving, because the state will change too quickly
to find a good solution. If the learning rate is very large, the system might even
diverge. If the learning rate is just right, you should get fast descent to a good
value, and then slow but fairly steady improvement. Of course, just as in the case
of SVMs, the plot of loss against step isn’t a smooth curve, but rather noisy. There
is an amusing collection of examples of training problems at lossfunctions.tumblr.
com It is quite usual to plot the error rate, or the accuracy, on a validation dataset

NIn =
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while training. This will allow you to compare the training error with the validation
error. If these are very different, you have a problem: the system is overfitting, or
not generalizing well. You should increase the regularization constant.

Dead units: Imagine the system gets into a state where for some unit w,
0, = 0 for every training data item. This could happen, for example, if the learning
rate was too large. Then it can’t get out of this state, because the gradient for that
unit will be zero for every training data item, too. Such units are referred to as
dead units. This problem can be contained by keeping the learning rate small
enough. In more complex architectures (below), it is also contained by having a
large number of units.

Gradient problems: There are a variety of important ways to have gradient
problems. By far the most important is making a simple error in code (i.e you com-
pute the Jacobian elements wrong). This is surprisingly common; everybody does it
at least once; and one learns to check gradients. Checking is fairly straightforward.
You compute a numerical derivative, and compare that to the exact derivative. If
they’re too different, you have a gradient problem you need to fix. We will see a
second important gradient problem when we see more complex architectures.

Choosing the regularization constant: This follows the recipe we saw for
a linear SVM. Hold out a validation dataset. Train for several different values of \.
Evaluate each system on the validation dataset, and choose the best. Notice this
involves many rounds of training, which could make things slow.

Does it work? Evaluating the classifier we have described is like evaluating
any other classifier. You evaluate the error on a held-out data set that wasn’t used
to choose the regularization constant, or during training.

11.2 LAYERS AND NETWORKS

We have built a multiclass classifier out of units by using one unit per class, then
interpreting the outputs of the units as probabilities using a softmax function.
This classifier is at best only mildly interesting. The way to get something really
interesting is to ask what the features for this classifier should be. To date, we
have not looked closely at features. Instead, we’ve assumed they “come with the
dataset” or should be constructed from domain knowledge. Remember that, in the
case of regression, we could improve predictions by forming non-linear functions of
features. We can do better than that; we could learn what non-linear functions to
apply, by using the output of one set of units to form the inputs of the next set.
We will focus on systems built by organizing the units into layers; these layers
form a neural network (a term I dislike, for the reasons above, but use because
everybody else does). There is an input layer, consisting of the units that receive
feature inputs from outside the network. There is an output layer, consisting of
units whose outputs are passed outside the network. These two might be the same,
as they were in the previous section. The most interesting cases occur when they
are not the same. There may be hidden layers, whose inputs come from other
layers and whose outputs go to other layers. In our case, the layers are ordered, and
outputs of a given layer act as inputs to the next layer only (as in Figure - we
don’t allow connections to wander all over the network). For the moment, assume
that each unit in a layer receives an input from every unit in the previous layer;
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FIGURE 11.2: On the left, an input layer connected to an output layer. The units
in the input layer take the inpuls and compute features; the output layer turns
these features into output values that will be turned into class probabilities with the
softmax function. On the right, there is a hidden layer between input and output
layer. This architecture means that the features seen by the output layer can be
trained to be a significantly more complex function of the inputs.

this means that our network is fully connected. Other architectures are possible,
but right now the most important question is how to train the resulting object.

Notation

Inevitably, we need yet more notation. There will be L layers. The input layer is
layer 1, and the output layer is L. T will write u} for the i’th unit in the I’th layer.
This unit has output o} and parameters w! and b}, which I will stack into a vector
6!, T write 6 to refer to all the parameters of layer [. If I do not need to identify the
layer in which a unit sits (for example, if I am summing over all units) T will drop
the superscript. The vector of inputs to this unit is x.. These inputs are formed
by choosing from the outputs of layer [ — 1. I will write o! for all the outputs of
the I’th layer, stacked into a vector. I will represent the connections by a matrix
CL, so that x! = Clo'~1. The matrix C! contains only 1 or 0 entries, and in the case
of fully connected layers, it is the identity. Notice that every unit has its own C!.

I will write L(y;,s(o”(x;,))) for the loss of classifying the i’th example using
softmax. We will continue to use

L(yi,s(0"(x;,0))) = —y] logs(o"(x;,0)))

but in other applications, other losses might arise.
Generally, we will train by mini batch gradient descent, though I will describe
some tricks that can speed up training and improve results. But we must compute
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FIGURE 11.3: Notation for layers, inputs, etc.

the gradient. The output layer of our network has C units, one per class. We will
apply the softmax to these outputs, as before. Writing E for the cost of error on
training examples and R for the regularization term, we can write the cost of using
the network as

A
cost =FE+ R=(1/N) Z L(yi,s(o(x;,0))) + 5 Z Wi wy.
icexamples keunits

You should not let this compactified notation let you lose track of the fact that o
depends on x; through o”~ ', ..., 0. What we really should write is

of (o 71(... (o' (x,0%),6%),...),0%).

Equivalently, we could stack all the Cf into one linear operator C! and write

o (xF, 6%) where
XL _ CLOLfl(XLfl 0L71)
X2 _ 6201 (Xl, 91)
x' =(C'x

This is important, because it allows us to write an expression for the gradient.

11.2.2 Training, Gradients and Backpropagation

Now consider VgE. We have that E is a sum over examples. The gradient of the
loss at a particular example is of most interest, because we will usually train with
minibatches. So we are interested in

VoE; = VoL(y;,s(o"(x;,0))) = Vg [—y] logs(o”(x;,0)))]

and we can extend our use of the chain rule from section IT.1.3] very aggressively.
We have
V9LL(yi7 S(OL (xi7 9))) = _y,iTL7log s;ol JoL;GL
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FIGURE 11.4: Constructing the gradient with respect to 6.

as in that section. Differentiating with respect to 6%~ is more interesting. Layer L
depends on %! in a somewhat roundabout way; layer L — 1 uses 87! to produce
its outputs, and these are fed into layer L as its inputs. So we must have

T
VQL—IEfL' =YV %Ogs;oL JOL;XL JxL;eL—l

(look carefully at the subscripts on the Jacobians). These Jacobians have about
the same form as those in section if you recall that x = C¥o’~!. In turn,
this means that

JxL;‘gL—l = CLJOL—l;gL—l

and the form of that Jacobian appears in section [T.L.3l But o’ depends on %2
through its inputs (which are x“~1), so that

V@sz Ei = —yZT.leg s;ol JOL;XL JOL—l;xL—l Jxlﬁl;glﬁz

(again, look carefully at the subscripts on each of the Jacobians).
We can now get to the point. We have a recursion, which can be made more
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FIGURE 11.5: Constructing the gradient with respect to 671,

obvious with some notation. We have

L L
v = (Vo El)
V@L Ei = VL ol;gL
viTl = VLJOL;XL
— L—-1
VQL—IE = VvV ij;gL—l
i—1 i ) )
A% = V jx’~+1;x7~
Voi-1 B = Viiljxi;‘gi—l

I have not added notation to keep track of the point at which the partial
derivative is evaluated (it should be obvious, and we have quite enough notation al-
ready). When you look at this recursion, you should see that, to evaluate vi—1, you
will need to know x* for k > i — 1. This suggests the following strategy. We com-
pute the x’s (and, equivalently, o’s) with a “forward pass”, moving from the input
layer to the output layer. Then, in a “backward pass” from the output to the input,

we compute the gradient. Doing this is often referred to as backpropagation.
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FIGURE 11.6: On the left, a cartoon of the error rate encountered during training
a multilayer network and the main phenomena you might observe. On the right,
an actual example. Fach of these figures is from the excellent course notes for
the Stanford class cs231n Convolutional Neural Networks for Visual Recognition,
written by Andrej Karpathy. You can find these notes at: http://cs231n.stanford.
edu.

Training Multiple Layers

A multilayer network represents an extremely complex, highly non-linear function,
with an immense number of parameters. Training such networks is not easy. Neural
networks are quite an old idea, but have only relatively recently had impact in
practical applications. Hindsight suggests the problem is that networks are hard to
train successfully. There is now a collection of quite successful tricks — I'll try to
describe the most important — but the situation is still not completely clear.

The simplest training strategy is minibatch gradient descent. At round r, we
have the set of weights (). We form the gradient for a minibatch Vg E, and update
the weights by taking a small step n") (usually referred to as the learning rate)
backwards along the gradient, yielding

pr+D — 9 _ Iy, E.

The most immediate difficulties are where to start, and what is n(").
Initialization: As for a single layer of units, it is a bad idea to initialize each
parameter to zero. It is usual to draw a sample of a zero mean normal random
variable for each initial value. However, in a multilayer network, we may well have
some units receiving input from more (or fewer) units than others (this is referred
to as the fan in of the unit). Now assume that we have two units: one with
many inputs, and one with few. If we initialize each units weights using the same
zero mean normal random variable, the unit with more inputs will have a higher
variance output (I'm ignoring the nonlinearity). This tends to lead to problems,
because units at the next level will see unbalanced inputs. Experiment has shown
that it is a good idea to allow the variance of the random variable you sample to
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depend on the fan in of the unit whose parameter you are initializing. Write n for
the fan in of the unit in question, and e for a small non-negative number. Current
best practice appears to be that one initializes each weight with an independent
sample of a random variable with mean 0 and variance

V2

n

Choosing € too small or too big can lead to trouble, but I'm not aware of any recipe
for coming up with a good choice. Typically, biases are initialized either to 0, or to
a small non-negative number; there is mild evidence that 0 is a better choice.

Learning rate: The remarks above about learning rate apply, but for more
complicated networks it is usual to apply one of the methods of section [1.2.4]
which adjust the gradient to get better optimization behavior.

Ensuring learning is proceeding: We need to keep track of what is going
on inside the system as we train it. One way is to plot the loss as a function of the
number of steps. These plots can be very informative (Figure [T.6). If the learning
rate is small, the system will make very slow progress but may (eventually) end up
in a good state. If the learning rate is large, the system will make fast progress
initially, but will then stop improving, because the state will change too quickly
to find a good solution. If the learning rate is very large, the system might even
diverge. If the learning rate is just right, you should get fast descent to a good
value, and then slow but fairly steady improvement. Of course, just as in the case
of SVMs, the plot of loss against step isn’t a smooth curve, but rather noisy. There
is an amusing collection of examples of training problems at lossfunctions.tumblr.
com It is quite usual to plot the error rate, or the accuracy, on a validation dataset
while training. This will allow you to compare the training error with the validation
error. If these are very different, you have a problem: the system is overfitting, or
not generalizing well. You should increase the regularization constant.

Dead units: The remarks above apply.

Gradient problems: The remarks above apply.

Choosing the regularization constant: The remarks above apply, but
for more complex networks, it is usual to use the more sophisticated regularization
described in section ?? (at considerable training cost).

Does it work? Evaluating the classifier we have described is like evaluating
any other classifier. You evaluate the error on a held-out data set that wasn’t used
to choose the regularization constant, or during training.

Gradient Scaling Tricks

Everyone is surprised the first time they learn that the best direction to travel in
when you want to minimize a function is not, in fact, backwards down the gradi-
ent. The gradient 4s uphill, but repeated downhill steps are often not particularly
efficient. An example can help, and we will look at this point several ways because
different people have different ways of understanding this point.

We can look at the problem with algebra. Consider f(z,y) = (1/2)(ex® +?),
where € is a small positive number. The gradient at (z,y) is [ex, y]. For simplicity,
use a fixed learning rate 7, so we have [z("),y("] = [(1 — en)z"=Y, (1 — n)y"—V].


lossfunctions.tumblr.com
lossfunctions.tumblr.com

Section 11.2 Layers and Networks 275

_
\

FIGURE 11.7: A plot of the level curves (curves of constant value) of the function
f(x,y) = (1/2)(ex® + y?). Notice that the value changes slowly with large changes
in x, and quickly with small changes in y. The gradient points mostly toward
the x-axis; this means that gradient descent is a slow zig-zag across the “valley”
of the function, as illustrated. We might be able to fix this problem by changing
coordinates, if we knew what change of coordinates to use.

If you start at, say, (z(*),y(©) and repeatedly go downhill along the gradient,
you will travel very slowly to your destination. You can show that [:r(’”),y(’”)] =
[(1- en)z(© (1 — n)Ty(O)]. The problem is that the gradient in y is quite large
(so y must change quickly) and the gradient in 2 is small (so 2 changes slowly).
In turn, for steps in y to converge we must have |1 — 7| < 1; but for steps in x
to converge, we require only the much weaker constraint |1 — en| < 1. Imagine we
choose the largest n we dare for the y constraint. The y value will very quickly
have small magnitude, though its sign will change with each step. But the = steps
will move you closer to the right spot only extremely slowly.

Another way to see this problem is to reason geometrically. Figure [[T.7shows
this effect for this function. The gradient is at right angles to the level curves of
the function. But when the level curves form a narrow valley, the gradient points
across the valley rather than down it. The effect isn’t changed by rotating and
translating the function (Figure IT.8).

You may have learned that Newton’s method resolves this problem. This is
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FIGURE 11.8: Rotating and translating a function rotates and translates the gradient;
this is a picture of the function of figure[I1.7, but now rotated and translated. The
problem of zig-zagging remains. This is important, because it means that we may
have serious difficulty choosing a good change of coordinates.

all very well, but to apply Newton’s method we would need to know the matrix
of second partial derivatives. A network can easily have thousands to millions
of parameters, and we simply can’t form, store, or work with matrices of these
dimensions. Instead, we will need to think more qualitatively about what is causing
trouble.

One useful insight into the problem is that fast changes in the gradient vector
are worrying. For example, consider f(x) = (1/2)(2? 4+ 3?). Imagine you start
far away from the origin. The gradient won’t change much along reasonably sized
steps. But now imagine yourself on one side of a valley like the function f(z) =
(1/2)(2? + €y?); as you move along the gradient, the gradient in the x direction gets
smaller very quickly, then points back in the direction you came from. You are not
justified in taking a large step in this direction, because if you do you will end up
at a point with a very different gradient. Similarly, the gradient in the y direction
is small, and stays small for quite large changes in y value. You would like to take
a small step in the x direction and a large step in the y direction.

You can see that this is the impact of the second derivative of the function
(which is what Newton’s method is all about). But we can’t do Newton’s method.
We would like to travel further in directions where the gradient doesn’t change
much, and less far in directions where it changes a lot. There are several methods
for doing so.
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Momentum: We should like to discourage parameters from “zig-zagging” as
in the example above. In these examples, the problem is caused by components of
the gradient changing sign from step to step. It is natural to try and smooth the
gradient. We could do so by forming a moving average of the gradient. Construct a
vector v, the same size as the gradient, and initialize this to zero. Choose a positive
number p < 1. Then we iterate

vt = kv 4 Ve E
plr+1)  —  p(r) _ (r+1D)

Notice that, in this case, the update is an average of all past gradients, each weighted
by a power of u. If p is small, then only relatively recent gradients will participate
in the average, and there will be less smoothing. Larger u lead to more smoothing.
A typical value is p = 0.9. It is reasonable to make the learning rate go down with
epoch when you use momentum, but keep in mind that a very large p will mean
you need to take several steps before the effect of a change in learning rate shows.

Adagrad: We will keep track of the size of each component of the gradient.
In particular, we have a running cache ¢ which is initialized at zero. We choose a
small number « (typically le-6), and a fixed n. Write glm for the i’th component
of the gradient VgF computed at the r’'th iteration.Then we iterate

= (g7
(r)
9§r+1) _ 91(7“) —n 9i

Notice that each component of the gradient has its own learning rate, set by the
history of previous gradients.

RMSprop: This is a modification of Adagrad, to allow it to “forget” large
gradients that occurred far in the past. Again, write gy) for the i’th component of
the gradient Vo E computed at the r’th iteration. We choose another number, A,
(the decay rate; typical values might be 0.9, 0.99 or 0.999), and iterate

= AT+ (1= )Y

(r)
puty  — g, i

(cz(-TH))% + a

Adam: This is a modification of momentum that rescales gradients, tries
to forget large gradients, and adjusts early gradient estimates to correct for bias.
Again, write glm for the i’th component of the gradient VyFE computed at the r’th
iteration. We choose three numbers 1, 52 and e (typical values are 0.9, 0.999 and
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1le-8, respectively), and some steplength or learning rate n. We then iterate

vt = B v 4 (1= B)) %« VyE
Y= Bywe” + (1 Ba) x (g])?
X (D)
vV = —
1-pt
A é§r+1)
Cc;, =
1—p8
e(r—i-l) _ 0(7‘) _ (%
‘ ’ n\/é_i +e

As of writing, Adam seems to be the most widely used method, and is likely the
method of choice.

Dropout

Regularizing by the square of the weights is all very well, but quite quickly we
will have problems because there are so many weights. An alternative, and very
useful, regularization strategy is to try and ensure that no unit relies too much on
the output of any other unit. One can do this as follows. At each training step,
randomly select some units, set their outputs to zero (and reweight the inputs of
the units receiving input from them), and then take the step. Now units are trained
to produce reasonable outputs even if some of their inputs are randomly set to zero
— units can’t rely too much on one input, because it might be turned off. Notice
that this sounds sensible, but it isn’t quite a proof that the approach is sound; that
comes from experiment. The approach is known as dropout.

There are some important details we can’t go into. Output units are not
subject to dropout, but one can also turn off inputs randomly. At test time, there
is no dropout. Every unit computes its usual output in the usual way. This creates
an important training issue. Write p for the probability that a unit is dropped
out, which will be the same for all units subject to dropout. You should think of
the expected output of the ¢’th unit at training time as (1 — p)o; (because with
probability p, it is zero). But at test time, the next unit will see o0;; so at training
time, you should reweight the inputs by 1/(1—p). In exercises, we will use packages
that arrange all the details for us.

It’s Still Difficult..

All the tricks above are helpful, but training a multilayer neural network is still
difficult. Fully connected layers have many parameters. It’s quite natural to take
an input feature vector of moderate dimension, build one layer that produces a much
higher dimensional vector, then stack a series of quite high dimensional layers on top
of that. There is quite good evidence that having many layers can improve practical
performance if one can train the resulting network. Such an architecture has been
known for a long time, but hasn’t been particularly successful until recently.
There are several structural obstacles. Without GPU’s, evaluating such a
network can be slow, making training slow. The number of parameters in just one
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Slice

FIGURE 11.9: Terminology for building a convolutional layer. On the left, a layer
turns one block of data into another. The x and y coordinates index the position of
a location in the block, and the d coordinate identifies the data item at that point.
A natural ezample of a block is a color image, which usually has three layers (d=3);
then = and y identify the pizel, and d chooses the R, G, or B slice. The dimensions
x and y are the spatial dimensions. On the right right, a unit in a convolutional
layer forms a weighted sum of set of locations, adds a bias, then applies a RELU.
There is one unit for each (X, Y, D) location in the output block. For each (X,
Y) in the output block, there is a corresponding window of size (wg,wy) in the (z,
y) space. Each of the D units whose responses form the D wvalues at the (X, Y)
location in the output block forms a weighted sum of all the values covered by that
window. These inputs come from each slice in the window below that unit (so the
number of inputs is d X wy X wy ). Each of the units that feed the a particular slice
in the output block has the same set of weights, so you should think of a unit as a
form of pattern detector; it will respond strongly if the block below it is “similar” to
the weights.

fully connected layer is high, meaning that multiple layers will need a lot of data
to train, and will take many training batches. There is some reason to believe that
multilayer neural networks were discounted in application areas for quite a long
time because people underestimated just how much data and how much training
was required to make them perform well.

One obstacle that remains technically important has to do with the gradient.
Look at the recursion I described for backpropagation. The gradient update at the
L’th (top) layer depends pretty directly on the parameters in that layer. But now
consider a layer close to the input end of the network. The gradient update has
been multiplied by several Jacobian matrices. The update may be very small (if
these Jacobians shrink their input vectors) or unhelpful (if layers close to the output
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FIGURE 11.10: Figure [IT.9 shows units taking an input block and creating an output
block. FEach unit is fed by a window on the spatial dimensions of the input block.
The window is advanced by the stride to feed the next unit. On the left, two units
fed by 3x3 windows with a stride of 1. I have shaded the pizels in the window to
show which pixels go to which unit; notice the units share 6 pixels. In this case, the
spatial dimensions of the output block will be either the same as those of the input
block (if we find some values to feed pixels in windows that hang over the edge of
the image), or only slightly smaller (if we ignore units whose windows hang over
the edges of the image). On the right, two units fed by 3x3 windows with a stride
of 2. Notice the units share fewer pizels, and the output block will be smaller than
the input block.

have poor parameter estimates). For the gradient update to be really helpful, we’d
like the layers higher up the network to be right; but we can’t achieve this with
lower layers that are confused, because they pass their outputs up. If a layer low in
the network is in a nonsensical state, it may be very hard to get it out of that state.
In turn, this means that adding layers to a network might improve performance,
but also might make it worse because the training turns out poorly.

There are a variety of strategies for dealing with this problem. We might
just train for a very long time, possibly using gradient rescaling tricks. We might
reduce the number of parameters in the layers, by passing to convolutional layers
(below) rather than fully connected layers. We might use various tricks to initialize
each layer with a good estimate. This is a topic of widespread current interest, but
one I can’t deal with in any detail here. Finally, we might use architectural tricks
(section BT]) to allow inputs to bypass layers, so that poorly trained layers create
fewer difficulties.

11.3 CONVOLUTIONAL NEURAL NETWORKS

One area where neural networks have had tremendous impact is in image under-
standing. Images have special properties that motivate special constructions of
features. These constructions yield a layer architecture that has a significantly re-
duced number of parameters in the layer. This architecture has proven useful in
other applications, but we will work with images.
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Images and Convolutional Layers

Using the output of one layer to form features for another layer is attractive. The
natural consequence of this idea is that the input to the network would be the
image pixels. But this presents some important difficulties. There are an awful lot
of pixels in most images, and that means it’s likely that there will be an awful lot
of parameters.

For a variety of reasons, it doesn’t make much sense to have an input layer
consisting of units each of which sees all the image pixels. There would be a
tremendous number of weights to train. It would be hard to explain why units
have different values for the weights. Instead, we can use some intuitions from
computer vision.

First, we need to build systems that can handle different versions of what is
essentially the same image. For example, imagine you turn the camera slightly to
one side, or raise it or lower it when taking the image. If every input unit sees
every pixel, this would constrain the form of the weights. Turning the camera up a
bit shifts the image down a bit; the representation shouldn’t be severely disrupted
by this. Second, long experience in computer vision has produced a (very rough)
recipe for building image features: you construct features that respond to patterns
in small, localized neighborhoods; then other features look at patterns of those
features; then others look at patterns of those, and so on (big fleas have little fleas
upon their backs to bite ‘em; and little fleas have smaller ones, and so ad infinitum,).

We will assume that images are 3D. The first two dimensions will be the x
and y dimensions in the image, the third (for the moment!) will identify the color
layer of the image (for example, R, G and B). We will build layers that take 3D
objects like images (which I will call blocks) and make new blocks (Figure [T.9
notice the input block has dimension = x y x d and the output block has dimension
X xY x D). Each block is a stack of slices, which — like color layers in an image
— have two spatial dimensions.

These layers will draw from a standard recipe for building an image feature
that describes a small neighborhood. We construct a convolution kernel, which
is a small block. This is typically odd sized, and typically from 3 x 3 to a few tens
by a few tens in size along the spatial dimensions, and is always of size d in the
other dimension.

Write Z for a block (for example, an image), K for the kernel, b for a bias
term (which might be zero; some, but not all, convolutional layers use a bias term),
and Z;;;, for the ¢, j'th pixel in the £’th slice of the block. Write F' for the function
implemented by a RELU, so that F(z) = max(0, z). Now we form a slice O, whose
u, v’th entry is

Ouv - F(Wu'u + b) - F(Z Iqui,erj,kICijk + b);

ijk

where I am assuming the sum goes over all values of ¢ and j, and if the indices
to either Z or K go outside the domain, then the reported value is zero. There is
room for some confusion here, because one can use a variety of different indexing
schemes, and different authors use different ones (usually for compatibility with the
history of convolution); this is of no significance. Figure [T illustrates the process
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that produces a slice from a block.

The operation that produces W from Z and K is known as convolution, and
it is usual to write W = K *xZ. We will not go into all the properties of convolution,
but you should notice one extremely important property. We obtain the value at a
pixel by centering I on that pixel. We now have a patch sitting over all the layers
of the image at some location; we multiply the pixels in that patch (by layer) by the
corresponding image pixels (in layers), then accumulate the products — the result
goes into O. This is like a dot-product — we will get a large positive value in O at
that pixel if the image window around that pixel looks like /C, and a small negative
value if they’'re the same up to a sign change. You should think of a convolution
kernel as being an example pattern.

Now when you convolve a kernel with an image, you get, at each location, an
estimate of how much that image looks like that kernel at that point. The output
is the response of a collection of simple pattern detectors, one at each pixel, for the
same pattern. We may not need every such output; instead, we might look at every
second (third, etc.) pixel in each direction. This choice is known as the stride. A
stride of 1 corresponds to looking at every pixel; of 2, every second pixel; and so
on (Figure IT.10)

A slice can be interpreted as a map, giving the response of a local feature
detector at every (resp. every second; every third; etc.) pixel. At each pixel
of interest (i.e. every pixel; every second, etc. depending on stride), we place a
window (which should be odd-sized, to make indexing easier). Every pixel in that
window is an input to a unit that corresponds to the window, which multiplies
each pixel by a weight, sums all these terms, then applies a RELU. What makes a
slice special is that each unit uses the same set of weights. The size of this object
depends a little on the software package you are using. Assume the input image is
of size ny X ny x n, and the kernel is of size 2k, + 1 x 2k, + 1 x n,. At least in
principle, you cannot place a unit over a pixel that is too close to the edge, because
then some of its inputs are outside the image. You could pad the image (either
with constants, or by reflecting it, or by attaching copies of the columns/rows at
the edge) and supply these inputs; in this case, the output could be n, x n, x n,.
Otherwise, you could place units only over pixels where all of the unit’s inputs are
inside the image. Then you would have an output of size n, — 2k, X n, — 2n, x n;.
The kernel is usually small, so the difference in sizes isn’t that great. Most software
packages are willing to set up either case.

A slice finds locations in the image where a particular pattern (identified by
the weights) occurs. We could attach many slices to the image. They should all
have the same stride, so they’re all the same size. The output of this collection of
slices would be one vector at each pixel location, where the components of the vector
represent the similarity between the image patch centered at that location and a
particular pattern. A collection of slices is usually referred to as a convolutional
layer. You should think of a convolutional layer as being like a color image. There
are now may different color layers (the slices), so that dimension has been expanded.
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Convolutional Layers upon Convolutional Layers

Now the output of the initial convolutional layer is a set of slices, registered to the
input image, forming a block of data. That looks like the input of that layer (a set
of slices — color layers) forming a block of data. This suggests we could use the
output of the first convolutional layer could be connected to a second convolutional
layer, a second to a third, and so on. Doing so turns out to be an excellent idea.
Think about the output of the first convolutional layer. Each location receives
inputs from pixels in a window about that location. Now if we put a second layer
on top of the first, each location in the second receives inputs from first layer values
in a window about that location. This means that locations in the second layer
are affected by a larger window of pixels than those in the first layer. You should
think of these as representing “patterns of patterns”. If we place a third layer on
top of the second layer, locations in that third layer will depend on an even larger
window of pixels. A fourth layer will depend on a yet larger window, and so on.

Pooling

If you have several convolutional layers with stride 1, then each block of data has
the same spatial dimensions. This tends to be a problem, because the pixels that
feed a unit in the top layer will tend to have a large overlap with the pixels that
feed the unit next to it. In turn, the values that the units take will be similar, and
so there will be redundant information in the output block. It is usual to try and
deal with this by making blocks get smaller. One natural strategy is to occasionally
have a layer that has stride 2.

An alternative strategy is to use max pooling. A pooling unit reports the
largest value of its inputs. In the most usual arrangement, a pooling layer will
take an (x,y,d) block to a (2:/2,y/2,d) block. For the moment, ignore the entirely
minor problems presented by a fractional dimension. The new block is obtained
by pooling units that pool a 2x2 window at each slice of the input block to form
each slice of the output block. These units are placed so they don’t overlap, so the
output block is half the size of the input block (for some reason, this configuration
is hard to say but easy to see; Figure [T.T1]). If « or y or both are odd, there are
two options; one could ignore the odd pixel on the boundary, or one could build
a row (column; both) of imputed values, most likely by copying the row (columun;
both) on the edge. These two strategies yield, respectively, floor(z/2) and ceil(x/2)
for the new dimension. Pooling seems to be falling out of favor, but not so much
or so fast that you will not encounter it.

11.4 EXAMPLE: BUILDING AN IMAGE CLASSIFIER

There are two problems that lie at the core of image understanding. The first is
image classification, where we decide what class an image of a fixed size belongs
to. The taxonomy of classes is provided in advance, but it’s usual to work with a
collection of images of objects. These objects will be largely centered in the image,
and largely isolated. Each image will have an associated object name. There
are many collections with this structure. The best known, by far, is ImageNet,
which can be found at http://www.image-net.org. There is a regular competition to
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FIGURE 11.11: In a pooling layer, pooling units compute the largest value of their
inputs, then pass it on. The most common case is 2x2, illustrated here. We tile
each slice with 2x2 windows that do not overlap. Pooling units compute the maz,
then pass that on to the corresponding location in the corresponding slice of the
output block. As a result, the spatial dimensions of the output block will be about
half those of the input block (details depend on how one handles windows that hang
over the edge.

classify ImageNet images. Be aware that, while this chapter tries to give a concise
description of best practice, you might need to do more than read it to do well in
the competition.

The second problem is object detection, where we try to find the locations
of objects of a set of classes in the image. So we might try to mark all cars, all cats,
all camels, and so on. As far as anyone knows, the right way to think about object
detection is that we search a collection of windows in an image, apply an image
classification method to each window, then resolve disputes between overlapping
windows. How windows are to be chosen for this purpose is an active and quickly
changing area of research. We will regard image classification as the key building
block, and ignore the question of deciding which window to classify.

We have most of the pieces to build an image classifier. Architectural choices
will make a difference to its performance. So will a series of tricks.

An Image Classification Architecture

We can now put together an image classifier. A convolutional layer receives image
pixel values as input. The output is fed to a stack of convolutional layers, each
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feeding the next. The output of the final layer is fed to one or more fully connected
layers, with one output per class. The whole is trained by batch gradient descent,
or a variant, as above.

There are a number of architectural choices to make, which are typically made
by experiment. The main ones are the choice of the number of convolutional layers;
the choice of the number of slices in each layer; and the choice of stride for each
convolutional layer. There are some constraints on the choice of stride. The first
convolutional layer will tend to have stride 1, so that we see all the resolution of
the image. But the outputs of that layer are likely somewhat correlated, because
they depend on largely the same set of pixels. Later layers might have larger stride
for this reason. In turn, this means the spatial dimensions of the representation
will get smaller.

Notice that different image classification networks differ by relatively straight-
forward changes in architectural parameters. Mostly, the same thing will happen
to these networks (variants of batch gradient descent on a variety of costs; dropout;
evaluation). In turn, this means that we should use some form of specification
language to put together a description of the architecture of interest. Ideally, in
such an environment, we describe the network architecture, choose an optimization
algorithm, and choose some parameters (dropout probability, etc.). Then the en-
vironment assembles the net, trains it (ideally, producing log files we can look at)
and runs an evaluation. Several such environments exist.

Useful Tricks - 1: Preprocessing Data

It usually isn’t possible to simply feed any image into the network. We want each
image fed into the network to be the same size. We can achieve this either by
resizing the image, or by cropping the image. Resizing might mean we stretch or
squash some images, which likely isn’t a great idea. Cropping means that we need
to make a choice about where the crop box lies in the image. Practical systems
quite often apply the same network to different croppings of the same image. For
our purposes, we will assume that all the images we deal with have the same size.

It is usually wise to preprocess images before using them. This is because
two images with quite similar content might have rather different pixel values. For
example, compare image Z and 1.5Z. One will be brighter than the other, but
nothing substantial about the image class will have changed. There is little point
in forcing the network to learn something that we know already. There are a variety
of preprocessing options, and different options have proven to be best for different
problems. I will sketch some of the more useful ones.

You could whiten pixel values. You would do this for each pixel in the image
grid independently. For each pixel, compute the mean value at that pixel across
the training dataset. Subtract this, and divide the result by the standard deviation
of the value at that pixel across the training dataset. Each pixel location in the
resulting stack of images has mean zero and standard deviation one. Reserve the
offset image (the mean at each pixel location) and the scale image (ditto, standard
deviation) so that you can normalize test images.

You could contrast normalize the image by computing the mean and stan-
dard deviation of pixel values in each training (resp. test) image, then subtracting
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the mean from the image and dividing the result by the standard deviation.

You could contrast normalize pixel values locally. To do so, you compute
a smoothed version of the image (convolve with a Gaussian, for insiders; everyone
else should skip this paragraph, or perhaps search the internet). You can think of
the result as a local estimate of the image mean. At each pixel, you subtract the
smoothed value from the image value.

Useful Facts: 11.1 Whitening a dataset

For a dataset {x}, compute:
e U, the matrix of eigenvectors of Covmat ({x});
e and mean ({x}).

Now compute {n} using the rule
n; = UT (x; — mean ({x})).

Then mean ({n}) = 0 and Covmat ({n}) is diagonal.

Now write A for the diagonal matrix of eigenvalues of Covmat ({x}) (so
that Covmat ({x})U = UA). Assume that each of the diagonal entries
of A is greater than zero (otherwise there is a redundant dimension in
the data). Write \; for the i’th diagonal entry of A, and write A—(1/2)
for the diagonal matrix whose i’th diagonal entry is 1//A;. Compute
{z} using the rule

z; = ACY2U(x; — mean ({x})).

We have that mean ({z}) = 0 and Covmat ({z}) = Z. The dataset {z}
is often known as whitened data.

You could whiten the image as in section[[T.Il It turns out this doesn’t usually
help all that much. Instead, you need to use ZCA-whitening. I will use the same
notation as chapter B], but I reproduce the useful facts box here as a reminder.
Notice that, by using the rule

z; = ATV2DU(x; — mean ({x})),

we have rotated the data in the high dimensional space. In the case of images,
this means that the image corresponding to z; will likely not look like anything
coherent. Furthermore, if there are very small eigenvalues, the scaling represented
by A~(1/2) may present serious problems. But notice that the covariance matrix of
a dataset is unaffected by rotation. We could choose a small non-negative constant
€, and use the rule

z; = UT (A + €2)YPU(x; — mean ({x}))
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instead. The result looks significantly more like an image, and will have a covariance
matrix that is the identity (or close, depending on the value of €). This rule is ZCA
whitening.

Useful Tricks - 2: Enhancing Training Data

Datasets of images are never big enough to show all effects accurately. This is
because an image of a horse is still an image of a horse even if it has been through
a small rotation, or has been resized to be a bit bigger or smaller, or has been
cropped differently, and so on. There is no way to take account of these effects
in the architecture of the network. Generally, a better approach is to expand the
training dataset to include different rotations, scalings, and crops of images.

Doing so is relatively straightforward. You take each training image, and
generate a collection of extra training images from it. You can obtain this collection
by: resizing and then cropping the training image; using different crops of the same
training image (assuming that training images are a little bigger than the size of
image you will work with); rotating the training image by a small amount, resizing
and cropping; and so on. You can’t crop too much, because you need to ensure
that the modified images are still of the relevant class, and an aggressive crop
might cut out the horse, etc. When you rotate then crop, you need to be sure that
no “unknown” pixels find their way into the final crop. All this means that only
relatively small rescales, crops, rotations, etc. will work. Even so, this approach is
an extremely effective way to enlarge the training set.

Useful Tricks - 3: Batch Normalization

There is good experimental evidence that large values of inputs to any layer within a
neural network lead to problems. One source of the problem could be this. Imagine
some input to some unit has a large absolute value. If the corresponding weight is
relatively small, then one gradient step could cause the weight to change sign. In
turn, the output of the unit will swing from one side of the RELU’s non-linearity
to the other. If this happens for too many units, there will be training problems
because the gradient is then a poor prediction of what will actually happen to the
output. So we should like to ensure that relatively few values at the input of any
layer have large absolute values. We will build a new layer, sometimes called a
batch normalization layer, which can be inserted between two existing layers.

Write x? for the input of this layer, and o® for its output. The output has the
same dimension as the input, and I shall write this dimension d. The layer has two
vectors of parameters, v and 3, each of dimension d. Write diag(v) for the matrix
whose diagonal is v, and with all other entries zero. Assume we know the mean
(m) and standard deviation (s) of each component of x, where the expectation is
taken over all relevant data. The layer forms

x" = [diag(s +¢)] " (x" —m)
o’ = [diag(y)]x" + 8.

Notice that the output of the layer is a differentiable function of v and 3. Notice
also that this layer could implement the identity transform, if v = diag(s + €) and



Section 11.4 Example: Building an Image Classifier 288

‘A = L
“|l| |ul|ll'\. J‘l /
| ! . 56-layver

3

2 -
= B
g | = ]
Bl \ = - gg-h}.ﬁr
6 s B
=] ™\ Sb-layer
E "N"'-.-ﬂ\___-o- _;
< zﬂ-l:i:.-'tr

% T ] s E 3 o 1 - 3 3 3

iter. (led) iter. {1ed)

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

FIGURE 11.12: This figure from Deep Residual Learning for Image Recognition
Kaiming He Xiangyu Zhang Shaoging Ren Jian Sun, ICCV 2016, illustrates the
difficulties presented by training a deep network.

B = m. We adjust the parameters in training to achieve the best performance.
It can be helpful to think about this layer as follows. The layer rescales its input
to have zero mean and unit standard deviation, then allows training to readjust
the mean and standard deviation as required. In essence, we expect that large
values encountered between layers are likely an accident of the difficulty training a
network, rather than required for good performance.

The difficulty here is we don’t know either m or s, because we don’t know the
parameters used for previous layers. Current practice is as follows. First, start with
m = 0 and s = 1 for each layer. Now choose a minibatch, and train the network
using that minibatch. Once you have taken enough gradient steps and are ready
to work on another minibatch, reestimate m as the mean of values of the inputs
to the layer, and s as the corresponding standard deviations. Now obtain another
minibatch, and proceed. Remember, v and 3 are parameters that are trained, just
like the others (using gradient descent, momentum, adagrad, or whatever). Once
the network has been trained, one then takes the mean (resp. standard deviation)
of the layer inputs over the training data for m (resp. s). Most neural network
implementation environments will do all the work for you. It is quite usual to place
a batch normalization layer between each layer within the network.

There is a general agreement that batch normalization improves training, but
some disagreement about the details. Experiments comparing two networks, one
with batch normalization the other without, suggest that the same number of steps
tends to produce a lower error rate when batch normalized. Some authors suggest
that convergence is faster (which isn’t quite the same thing). Others suggest that
larger learning rates can be used.
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Figure 2. Residual learning: a building block.

FIGURE 11.13: This figure, which is revised from Deep Residual Learning for Im-
age Recognition Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun, ICCV 2016,
conveys the intention of a residual network.

Useful Tricks - 4: Residual Networks

A randomly initialized deep network can so severely mangle its inputs that only a
wholly impractical amount of training will cause the latest layers to do anything
useful. As a result, there have been practical limits on the number of layers that
can be stacked (Figure [T.12). One recent strategy for avoiding this difficulty is
to build a residual layer. Figure sketches the idea in the form currently
best understood. Remember, F(z) is a RELU. Our usual layers produce x't! =
F(x;0) = F(Wx! + b) as its output. This layer could be anything, but is most
likely a fully connected or a convolutional layers. Then we can replace this layer
with one that produces

Xl"rl — F(Xl+W1q+b1)
q = F(W2xl+b2).

It is usual, if imprecise, to think of this as producing an output that is x + F(x;6)
— the layer passes on its input with a residual added to it. The point of all this
is that, at least in principle, this residual layer can represent its output as a small
offset on its input. If it is presented with large inputs, it can produce large outputs
by passing on the input. Its output is also significantly less mangled by stacking
layers, because its output is largely given by its input plus a non-linear function.
Very recently, an improvement on this strategy has surfaced, in Identity Map-
pings in Deep Residual Networks by Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun (which you can find on ArXiV using a search engine). Rather than use
the expression above (corresponding to Figure [T.13]), we use a layer that produces

Xt = x4+ Wiq+ by
q = FWyF(')+by).

It is rather more informative to think of this as producing an output that is x +
F(x;0) — the layer passes on its input with a residual added to it. There is good
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FIGURE 11.14: This figure is revised from Identity Mappings in Deep Residual Net-
works by Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun (which you can
find on ArXiV using a search engine). On the left, (a) shows the original residual
network architecture, also described in Figure T3 (b) shows the current best ar-
chitecture. On the right, train (dashed) and test (full) curves for the old and new
architectures on CIFAR-10. Notice the significant improvement in performance.

evidence that such layers can be stacked very deeply indeed (the paper I described
uses 1001 layers to get under 5% error on CIFAR-10; beat that if you can!). One
reason is that there are useful components to the gradient for each layer that do
not get mangled by previous layers. You can see this by considering the Jacobian
of such a layer with respect to its inputs. You will see that this Jacobian will have
the form

sz+1;xz =(Z+ M)
where 7 is the identity matrix and M; is a set of terms that depend on W and b.
Now remember that, when we construct the gradient at the k’th layer, we evaluate
by multiplying a set of Jacobians corresponding to the layers above. This product
in turn must look like

jo;gk = jo;xk+1jxk+l;9k = (I+ M1 —+ .. .)jkarl;@k

which means that some components of the gradient at that layer do not get mangled
by being passed through a sequence of poorly estimated Jacobians. One reason I
am having trouble making a compelling argument explaining why this architecture
is better is that the argument doesn’t seem to be known in any tighter form (it
certainly isn’t to me). There is overwhelming evidence that the architecture is,
in practice, better; it has produced networks that are (a) far deeper and (b) far
more accurate than anything produced before. But why it works remains somewhat
veiled.
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Car NotCar Difference

FIGURE 11.15: This figure is from “Intriguing properties of neural networks”, by
Christian Szegedy et al.. The left column shows images classified as car; the mid-
dle column shows modified versions of those images classified as not car; and the
right column shows the difference.

11.5 ADVERSARIAL EXAMPLES

Adversarial examples are a curious experimental property of neural network image
classifiers. Here is what happens. Assume you have an image x that is correctly
classified with label [. The network will produce a probability distribution over
labels P(L|x). Choose some label k that is not correct. It is possible to use modern
optimization methods to search for a modification to the image dx such that

0x is small
and
P(k|x + 0x) is large.

You might expect that dx is “large”; what is surprising is that mostly it is so tiny
as to be imperceptible to a human observer. For example, the labels might be
car and not-car. Figure shows two images correctly labelled car, and the
revisions required to make the image get the label not-car. The changes can’t be
detected by eye. Similarly, figure shows what is required to turn a panda into
a nematode. Again, the changes can’t be detected by eye.

The property of being an adversarial example seems to be robust to im-
age smoothing, simple image processing, and printing and photographing (see
figure [T.T7). The existence of adversarial examples raises the following, rather
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+ .007 x

57.7% confidence 8.2% confidence 99.3 % confidence

FIGURE 11.16: This figure is from “EXPLAINING AND HARNESSING ADVER-
SARIAL EXAMPLES”, by Ian Goodfellow et al.. The left column shows a panda;
the middle column shows a modification (which has been exaggerated to make it
non-grey; note the multiplier); and the right column shows a nematode.

alarming, prospect: You could make a template that you could hold over a stop
sign, and with one pass of a spraypaint can, turn that sign into something that is
interpreted as a minimum speed limit sign by current computer vision systems. I
haven’t seen this demonstration done yet, but it appears to be entirely within the
reach of modern technology, and it and activities like it offer significant prospects
for mayhem.

What is startling about this behavior is that it is exhibited by networks that
are very good at image classification, assuming that no-one has been fiddling with
the images. So modern networks are very accurate on untampered pictures, but
may behave very strangely in the presence of tampering. One can (rather vaguely)
identify the source of the problem, which is that neural network image classifiers
have far more degrees of freedom than can be pinned down by images. This ob-
servation doesn’t really help, though, because it doesn’t explain why they (mostly)
work rather well, and it doesn’t tell us what to do about adversarial examples.
There have been a variety of efforts to produce networks that are robust to adver-
sarial examples, but evidence right now is based only on experiment (some networks
behave better than others) and we are missing clear theoretical guidance.
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(a) Image from dataset (b) Clean image (c) Adv. image. e = 4 (d) Adv. image, e =

FIGURE 11.17: This figure is from “ADVERSARIAL EXAMPLES IN THE PHYS-
ICAL WORLD?, by Alexey Kurakin et al.. The authors photographed the washing
machine on the left. They then prepared clean and adversarial versions of that im-
age and printed them. Finally, they photographed them with a cell-phone camera,
producing the images with overprinting. The first is a photo of the printed washing
machine, and is correctly classified as a washer; the second and third are photos of
printed adversarial examples, and are (respectively) a safe (or perhaps a washer)
and a safe (or perhaps a loudspeaker).



CHAPTER 12

More Neural Networks

12.1 LEARNING TO MAP

Imagine we have a high dimensional dataset. As usual, there are N d-dimensional
points x, where the 7’th point is x;. We would like to build a map of this dataset, to
try and visualize its major features. We would like to know, for example, whether
it contains many or few blobs; whether there are many scattered points; and so on.
We might also want to plot this map using different plotting symbols for different
kinds of data points. For example, if the data consists of images, we might be
interested in whether images of cats form blobs that are distinct from images of
dogs, and so on. I will write y; for the point in the map corresponding the x;.
The map is an M dimensional space (though M is almost always two or three in
applications).

We have seen one tool for this exercise (section[81]). This used eigenvectors to
identify a linear projection of the data that made low dimensional distances similar
to high dimensional distances. I argued that the choice of map should minimize

2
2 2
> (lvi=wil* = 1x =)

2%

then rearranged terms to produce a solution that minimized

> (vl - xT'x;)”.

]

The solution produces a y; that is a linear function of x;, just as a by-product of
the mathematics. There are two problems with this approach (apart from the fact
that T suppressed a bunch of detail). If the data lies on a curved structure in the
high dimensional space, then a linear projection can distort the map very badly.
Figure ?7?) sketches one example.

You should notice that the original choice of cost function is not a particularly
good idea, because our choice of map is almost entirely determined by points that
are very far apart. This happens because squared differences between big numbers
tend to be a lot bigger than squared differences between small numbers, and so
distances between points that are far apart will be the most important terms in the
cost function. In turn, this could mean our map does not really show the structure
of the data — for example, a small number of scattered points in the original data
could break up clusters in the map (the points in clusters are pushed apart to get a
map that places the scattered points in about the right place with respect to each
other).

294
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Sammon Mapping

Sammon mapping is a method to fix these problems by modifying the cost func-
tion. We attempt to make the small distances more significant in the solution by
minimizing

Clyrnne s yn) = 1 3 (ly: =y, = Ixi —x;])?
Y i Ixi =% Ixi — x|

i<j

The first term is a constant that makes the gradient cleaner, but has no other effect.
What is important is we are biasing the cost function to make the error in small
distances much more significant. Unlike straightforward multidimensional scaling,
the range of the sum matters here — if ¢ equals j in the sum, then there will be a
divide by zero.

No closed form solution is known for this cost function. Instead, choosing
the y for each x is by gradient descent on the cost function. You should notice
there is no unique solution here, because rotating, translating or reflecting all the
y; will not change the value of the cost function. Furthermore, there is no reason
to believe that gradient descent necessarily produces the best value of the cost
function. Experience has shown that Sammon mapping works rather well, but has
one annoying feature. If one pair of high dimensional points is very much closer
together than any other, then getting the mapping right for that pair of points is
extremely important to obtain a low value of the cost function. This should seem
like a problem to you, because a distortion in a very tiny distance should not be
much more important than a distortion in a small distance.

T-SNE

We will now build a model by reasoning about probability rather than about dis-
tance (although this story could likely be told as a metric story, too). We will build
a model of the probability that two points in the high dimensional space are neigh-
bors, and another model of the probability that two points in the low dimensional
space are neighbors. We will then adjust the locations of the points in the low
dimensional space so that the KL divergence between these two models is small.
We reason first about the probability that points in the high dimensional
space are neighbors. Write the conditional probability that x; is a neighbor of x;

as pj|;- Write
Ix; = xi”
Wili = eXp < T
K3

Dyl = Wyl

i = .

! Z k Wk|i

Notice this depends on the scale at point ¢, written ;. For the moment, we assume

this is known. Now we define p;; the joint probability that x; and x; are neighbors
by assuming p;; = 0, and for all other pairs

We use the model

Djli + Piy;
piy = P
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FIGURE 12.1: A Sammon mapping of 6,000 samples of a 1,024 dimensional data
set. The data was reduced to 30 dimensions using PCA, then subjected to a Sammon
mapping. This data is a set of 6, 000 samples from the MNIST dataset, consisting
of a collection of handwritten digits which are divided into 10 classes (0,...9).
The class labels were not used in training, but the plot shows class labels. This
helps determine whether the visualization is any good — you could reasonably expect
a visualization to put items in the same class close together and items in very
different classes far apart. As the legend on the side shows, the classes are quite well
separated. Figure from Visualizing Data using t-SNE Journal of Machine Learning
Research 9 (2008) 2579-2605 Laurens van der Maaten and Geoffrey Hinton, to be
replaced with a homemade figure in time.

This is an N x N table of probabilities; you should check that this table represents
a joint probability distribution (i.e. it’s non-negative, and sums to one).

We use a slightly different probability model in the low dimensional space. We
know that, in a high dimensional space, there is “more room” near a given point
(think of this as a base point) than there is in a low dimensional space. This means
that mapping a set of points from a high dimensional space to a low dimensional
space is almost certain to move some points further away from the base point than
we would like. In turn, this means there is a higher probability that a distant point
in the low dimensional space is still a neighbor of the base point. Our probability
model needs to have “long tails” — the probability that two points are neighbors
should not fall off too quickly with distance. Write g;; for the probability that y;
and y; are neighbors. We assume that g; = 0 for all . For other pairs, we use the
model

Gij(Y1,-- - YN) = Yitlyi—yil?
R Dokt kot 1=yl

(where you might recognize the form of Student’s t-distribution if you have seen
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that before). You should think about the situation like this. We have a table
representing the probabilities that two points in the high dimensional space are
neighbors, from our model of p;;. The values of the y can be used to fill in an
N x N joint probability table representing the probabilities that two points are
neighbors. We would like this tables to be like one another. A natural metric of
similarity is the KL-divergence, of section Bl So we will choose y to minimize
Pij
Ctene(¥1;- -, ¥n) isz” tog ¢ij(y1,--- YN)

Remember that p; = ¢;; = 0, so adopt the convention that 0log0/0 = 0 to avoid
embarrassment (or, if you don’t like that, omit the diagonal terms from the sum).
Gradient descent with a fixed steplength and momentum was be sufficient to min-
imize this in the original papers, though likely the other tricks of section Bl might
help.

There are two missing details. First, the gradient has a quite simple form
(which T shall not derive). We have

(Yi_Yj)

Vin(iEsne =4 (pij - Qij)—Q .
2 Iy P—

Second, we need to choose ;. There is one such parameter per data point, and
we need them to compute the model of p;;. This is usually done by search, but
to understand the search, we need a new term. The perplexity of a probability
distribution with entropy H(P) is defined by

Perp(P) = 287,

The search works as follows: the user chooses a value of perplexity; then, for each ¢,
a binary search is used to choose o; such that p;; has that perplexity. Experiments
currently suggest that the results are quite robust to wide changes in the users
choice.

In practical examples, it is quite usual to use PCA to get a somewhat reduced
dimensional version of the x. So, for example, one might reduce dimension from
1,024 to 30 with PCA, then apply t-SNE to the result.

12.2 ENCODERS, DECODERS AND AUTO-ENCODERS

An encoder is a network that can take a signal and produce a code. Typically,
this code is a description of the signal. For us, signals have been images and I
will continue to use images as examples, but you should be aware that all T will
say can be applied to sound and other signals. The code might be “smaller” than
the original signal — in the sense it contains fewer numbers — or it might even
be “bigger” — it will have more numbers, a case referred to as an overcomplete
representation. You should see our image classification networks as encoders. They
take images and produce short representations. A decoder is a network that can
take a code and produce a signal. We have not seen decoders to date.

An auto-encoder is a learned pair of coupled encoder and decoder; the
encoder maps signals into codes, and the decoder reconstructs signals from those
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FIGURE 12.2: A t-sne mapping of 6,000 samples of a 1,024 dimensional data
set. The data was reduced to 30 dimensions using PCA, then subjected to a t-sne
mapping. This data is a set of 6, 000 samples from the MNIST dataset, consisting
of a collection of handwritten digits which are divided into 10 classes (0,...9).
The class labels were not used in training, but the plot shows class labels. This
helps determine whether the visualization is any good — you could reasonably expect
a visualization to put items in the same class close together and items in very
different classes far apart. As the legend on the side shows, the classes are quite well
separated. Figure from Visualizing Data using t-SNE Journal of Machine Learning
Research 9 (2008) 2579-2605 Laurens van der Maaten and Geoffrey Hinton, to be
replaced with a homemade figure in time.

codes. Auto-encoders have great potential to be useful, which we will explore in
the following sections. You should be aware that this potential has been around
for some time, but has been largely unrealized in practice. One application is in
unsupervised feature learning, where we try to construct a useful feature set from
a set of unlabelled images. We could use the code produced by the auto-encoder
as a source of features. Another possible use for an auto-encoder is to produce a
clustering method — we use the auto-encoder codes to cluster the data. Yet another
possible use for an auto-encoder is to generate images. Imagine we can train an
auto-encoder so that (a) you can reconstruct the image from the codes and (b) the
codes have a specific distribution. Then we could try to produce new images by
feeding random samples from the code distribution into the decoder.
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Auto-encoder Problems

Assume we wish to classify images, but have relatively few examples from each
class. We can’t use a deep network, and would likely use an SVM on some set of
features, but we don’t know what feature vectors to use. We could build an auto-
encoder that produced an overcomplete representation, and use that overcomplete
representation as a set of feature vectors. The decoder isn’t of much interest, but
we need to train with a decoder. The decoder ensures that the features actually
describe the image (because you can reconstruct the image from the features). The
big advantage of this approach is we could train the auto-encoder with a very large
number of unlabelled images. We can then reasonably expect that, because the
features describe the images in a quite general way, the SVM can find something
discriminative in the set of features.

We will describe one procedure to produce an auto-encoder. The encoder is a
layer that produces a code. For concreteness, we will discuss grey-level images, and
assume the encoder is one convolutional layer. Write Z; for the ¢’th input image.
All images will have dimension m x m x 1. We will assume that the encoder has r
distinct units, and so produces a block of data that is s X s x r. Because there may
be stride and convolution edge effects in the encoder, we may have that s is a lot
smaller than m. Alternatively, we may have s = m. Write £(Z, 6,) for the encoder
applied to image Z; here 6, are the weights and biases of the units in the encoder.
Write Z; = £(Z;,0,) for the code produced by the encoder for the i’th image. The
decoder must accept the output of the encoder and produce an m x m x [ image.
Write D(Z,04) for the decoder applied to a code Z.

We have Z; = £(Z;,6.), and would like to have D(Z;,60,) close to Z;. We
could enforce this by training the system, by stochastic gradient descent on 6., 4,
to minimize [D(Z;,04) — Z;|>. One thing should worry you. If s x s x r is larger
than m x m, then there is the possibility that the code is redundant in uninteresting
ways. For example, if s = m, the encoder could consist of units that just pass on
the input, and the decoder would pass on the input too — in this case, the code is
the original image, and nothing of interest has happened.

The denoising auto-encoder

There is a clever trick to avoid this problem. We can require the codes to be robust,
in the sense that if we feed a noisy image to the encoder, it will produce a code that
recovers the original image. This means that we are requiring a code that not only
describes the image, but is not disrupted by noise. Training an auto-encoder like
this results in a denoising auto-encoder. Now the encoder and decoder can’t
just pass on the image, because the result would be the noisy image. Instead, the
encoder has to try and produce a code that isn’t affected (much) by noise, and the
decoder has to take the possibility of noise into account while decoding.
Depending on the application, we could use one (or more) of a variety of
different noise models. These impose slightly different requirements on the behavior
of the encoder and decoder. There are three natural noise models: add independent
samples of a normal random variable at each pixel (this is sometimes known as
additive gaussian noise); take randomly selected pixels, and replace their values
with 0 (masking noise); and take randomly selected pixels and replace their values
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with a random choice of brightest or darkest value (salt and pepper noise).

In the context of images, it is natural to use the least-squares error as a loss
for training the auto-encoder. I will write noise(Z;) to mean the result of applying
noise to image I;. We can write out the training loss for example 7 as

ID(Z;,64) — Ti|* where Z; = £(noise(Z;), 6.

You should notice that masking noise and salt and pepper noise are different
to additive gaussian noise, because for masking noise and salt and pepper noise only
some pizels are affected by noise. It is natural to weight the least-square error at
these pixels higher in the reconstruction loss — when we do so, we are insisting that
the encoder learn a representation that is really quite good at predicting missing
pixels. Training is by stochastic gradient descent, using one of the gradient tricks
of section R} Note that each time we draw a training example, we construct a
new instance of noise for that version of the training example, so the encoding and
decoding layer may see the same example with different sets of pixels removed, etc.

Stacking Denoising Auto-encoders

An encoder that consists of a single convolutional layer likely will not produce a
rich enough representation to do anything useful. After all, the output of each unit
depends only on a small neighborhood of pixels. We would like to train a multi-
layer encoder. Experimental evidence over many years suggests that just building
a multi-layer encoder network, hooking it to a multi-layer decoder network, and
proceeding to train with stochastic gradient descent just doesn’t work well. It is
tough to be crisp about the reasons, but the most likely problem seems to be that
interactions between the layers make the problem wildly ambiguous. For example,
each layer could act to undo much of what the previous layer has done.

Here is a strategy that works for several different types of auto-encoder (though
I will describe it only in the context of a denoising auto-encoder). First, we build
a single layer encoder £ and decoder D using the denoising auto-encoder strat-
egy to get parameters 6.1 and 64;. The number of units, stride, support of units,
etc. are chosen by experiment. We train this auto-encoder to get an acceptable
reconstruction loss in the face of noise, as above.

Now I can think of each block of data Z;; = £(I;,0.1) as being “like” an
image; it’s just s X s x r rather than m x m x 1. Notice that Z;; = £(I;,0.1) is the
output of the encoder on a real image (rather than a real image with noise). I could
build another denoising auto-encoder that handles Z;’s. In particular, I will build
single layer encoder £ and decoder D using the denoising auto-encoder strategy
to get parameters 0.0 and 645. This encoder/decoder pair must auto-encode the
objects produced by the first pair. So I fix .1, 041, and the loss for image ¢ as a
function of 0.2, 040 becomes

”'D(Zlg, 6‘,12) — Zi1||2 Where Zig = 5(noise(Zi1), 9e2)
and Zil = 5(:[1, 961)
Again, training is by stochastic gradient descent using one of the tricks of section[R11

We can clearly apply this approach recursively, to stack train multiple layers.
But more work is required to produce the best auto-encoder. In the two layer
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Encoder 2 Decoder 2

Image i Z’il Z’i2 Zil 0.

Encoder 1 Decoder 1

FIGURE 12.3:  Two layers of denoising auto-encoder, ready for fine tuning. This
figure should help with the notation in the text.

example, notice that the error does not take into account the effect of the first
decoder on errors made by the second. We can fix this once all the layers have
been trained if we need to use the result as an auto-encoder. This is sometimes
referred to as fine tuning. We now train all the 6’s. So, in the two layer case, the
image passes into the first encoder, the result passes into the second encoder, then
into the second decoder, then into the first decoder, and what emerges should be
similar to the image. This gives a loss for image 4 in the two layer case as

||D(Zi1,6d1) — IZ'HQ where Zil = 'D((lez), 6‘,12)
and Zly = E(Z]1,0e2)
and Zz/l = g(IZ, 961)

(Figure might be helpful here).

Classification using an Auto-encoder

It isn’t usually the case that we want to use an auto-encoder as a compression
device. Instead, it’s a way to learn features that we hope will be useful for some
other purpose. One important case occurs when we have little labelled image data.
There aren’t enough labels to learn a full convolutional neural network, but we
could hope that using an auto-encoder would produce usable features. The process
involves: fit an auto-encoder to a large set of likely relevant image data; now discard
the decoders, and regard the encoder stack as something that produces features;
pass the code produced by the last layer of the stack into a fully connected layer;
and fine-tune the whole system using labelled training data. There is good evidence
that denoising auto-encoders work rather well as a way of producing features, at
least for MNIST data.

12.3 MAKING IMAGES FROM SCRATCH WITH VARIATIONAL AUTO-ENCODERS

*#* This isn’t right - need to explain why I would try to generate from scratch? ***
we talk about himages here, but pretty much everything applies to other signals
too
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Auto-Encoding and Latent Variable Models

There is a crucial, basic difficulty building a model to generate images. There is
a lot of structure in an image. For most pixels, the colors nearby are about the
same as the colors at that pixel. At some pixels, there are sharp changes in color.
But these edge points are very highly organized spatially, too — they (largely)
demarcate shapes. There is coherence at quite long spatial scales in images, too.
For example, in an image of a donut sitting on a table, the color of the table
inside the hole is about the same as the color outside. All this means that the
overwhelming majority of arrays of numbers are not images. If you're suspicious,
and not easily bored, draw samples from a multivariate normal distribution with
unit covariance and see how long it will take before one of them even roughly looks
like an image (hint: it won’t happen in your lifetime, but looking at a few million
samples is a fairly harmless way to spend time).

The structure in an image suggests a strategy. We could try to decode “short”
codes to produce images. Write X for a random variable representing an image,
and z for a code representing a compressed version of the image. Assume we can
find a “good” model for P(X|z,0). This might be built using a decoder network
whose parameters are 6. Assume also that we can build codes and a decoder such
that anything that comes out of the decoder looks like an image, and the probability
distribution of codes corresponding to images is “easy”. Then we could model P(X)
as

/P(X|z,9)P(z)dz.

Such a model is known as a latent variable model. The codes z are latent
variables — hidden values which, if known, would “explain” the image. In the first
instance, assume we have a model of this form. Then generating an image would
be simple in principle. We draw a sample from P(z), then pass this through the
network and regard the result as a sample from P(X). This means that, for the
model to be useful, we need to be able to actually draw these samples, and this
constrains an appropriate choice of models. It is very natural to choose that P(2)
be a distribution that is easy to draw samples from. We will assume that P(z) is
a standard multivariate normal distribution (i.e. it has mean 0, and its covariance
matrix is the identity). This is by choice — it’'s my model, and I made that choice.

However, we need to think very carefully about how to train such a model.
One strategy might be to pass in samples from a normal distribution, then adjust
the network parameters (by stochastic gradient descent, as always) to ensure what
comes out is always an image. This isn’t going to work, because it remains a
remarkably difficult research problem to tell whether some array is an image or
not. An alternative strategy is to build an encoder to make codes out of example
images. We then train so that (a) the encoder produces codes that have a standard
normal distribution and (b) the decoder takes the code computed from the i’th
image and turns it into the ¢’th image. This isn’t going to work either, because
we’re not taking account of the gaps between codes. We need to be sure that, if
we present the decoder with any sample from a standard normal distribution (not
just the ones we’ve seen), it will give us an image.

The correct strategy is as follows. We train an encoder and a decoder. Write
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X; for the ¢’th image, E(X;) = 2; for the code produced by the decoder applied to
X, D(z) for the image produced by the decoder on code z. For some image X;, we
produce E(X;) = z;. We then obtain z close to z;. Finally, we produce D(z). We
train the encoder by requiring that the z “look like” IID samples from a standard
normal distribution. We train the decoder by requiring that D(z) is close to X;.
Actually doing this will require some wading through probability, but the idea is
quite clean.

Building a Model

Now, at least in principle, we could try to choose 6 to maximize
> log P(X,6).
i

But we have no way to evaluate the probability model, so this is hopeless. Recall
the variational methods of chapters Bl and BIl Now choose some variational
distribution Q(z|X). This will have parameters, too, but I will suppress these and
other parameters in the notation until we need to deal with them. Notice that
D(Q(=|X)| P(2|X)) = Eg[logQ(z|X) —log P(z|X)]

Eqllog Q(21X)] — Eqllog P(X|2) + log P() — log P(X)]
Eq[log Q(2|X)] — Eq[log P(X|z) + log P(2)] + log P(X))
where the last line works because log P(X) doesn’t depend on z. Recall the defini-

tion of the variational free energy from chapter Bl Write

Eq = Eg[log Q] — Eqgllog P(X|z) + log P(z)]

and so we have
log P(X) = D(Q(z|X)| P(2]X)) = -Eq.

We would like to maximize log P(X) by choice of parameters, but we can’t because
we can’t compute it. But we do know that D(Q(z|X)| P(z2/X)) > 0. This means
that —Egq is a lower bound on log P(X). If we maximize this lower bound (equiva-
lently, minimize the variational free energy), then we can reasonably hope that we
have a large value of log P(X). The big advantage of this observation is that we
can work with —Eq.

Turning the VFE into a Loss

The best case occurs when Q(z|X) = P(z]|X) (because then D(Q(z|X) | P(z]X)) =
0, and the lower bound is tight). We don’t expect this to occur in practice, but it
suggests a way of thinking about the problem. We can build our model of Q(z|X)
around an encoder that predicts a code from an image. Similarly, our model of
P(X|z) would be built around a decoder that predicts an image from a code.

We can simplify matters by rewriting the expression for the variational free
energy. We have

—Eq[log Q] + Eqllog P(X|2) + log P(2)]
Eqllog P(X|2)] - D(Q(2IX) | P(2)).

_EQ
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We want to build a model of Q(z|X), which is a probability distribution, using a
neural network. This model accepts an image, X, and needs to produce a random
code z which depends on X. We will do this by using the network to predict the
mean and covariance of a normal distribution, then drawing the code z from a
normal distribution with that mean and covariance. I will write u(X) for the mean
and X(X) for the covariance, where the (X) is there to remind you that these are
functions of the input, and they are modelled by the neural network. We choose
the covariance to be diagonal, because the code might be quite large and we do not
wish to try and learn large covariance matrices.

Now consider the term D(Q(z|X)| P(z)). We get to choose the prior on
the code, and we choose P(z) to be a standard normal distribution (i.e. mean 0,
covariance matrix the identity; I'll duck the question of the dimension of z for the
moment). We can write

Q(2]X) = N (u(X); (X))

We need to compute the KL-divergence between this distribution and a standard
normal distribution. This can be done in closed form. For reference (if you don’t feel
like doing the integrals yourself, and can’t look it up elsewhere), the KL-divergence
between two multivariate normal distributions for & dimensional vectors is

1 Tr(27"%0) + (u1 —po) oyt (1 — p
DN (pros Zo) | N (pn £a)) - = 5( = O)_k—i(—lzg(goezgxlgl) (= 0)
et(Zo

In turn, this means that

woseaen) = 5 (Tl )

At this point, we are close to having an expression for a loss that we can
actually minimize. We must deal with the term Eqg[log P(X|z)]. Recall that we
modelled Q(z|X) by drawing z from a normal distribution with mean p(X) and
covariance %(X). We can obtain such a z by drawing from a standard normal
distribution, then multiplying by ¥(X)'/? and adding back the mean u(X). In
equations, we have

u ~ N(0;7)
z = uX)+2(X)Y%u
log P(X|z) = log P(X|u(X)+ 2(X)?u).

Our data X consists of a collection of images which we believe are IID samples
from P(X). I will write X; for the i’th image. Originally, we wanted to choose
parameters to maximize

logP(X) = ZlogP(Xi)

D(Q(=[X) | P(2[X)) — Eqz1x)
> [PQGIX)] P(21X0)) — Eqeaix] -

i
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It’s usual to train networks to minimize losses. We can write the loss as
Eq = —EgllogQ]+ Eg[log P(X|z) + log P(z)]

D(Q(z|X) | P(2)) — Eq[log P(X|z)]

> [D(Q2IX:) [ P(2)) — Bz x,)llog P(Xil2)]] -

%

I am now going to insert parameters. I will write parameters 6, with a sub-
script that tells you what the parameters are for. Recall we modelled Q with
a network that took an image X; and produced a mean p(X;;0,) and a covari-
ance X(X;;0x). This network is an encoder - it makes codes (the means) from
images. We will need a decoder to model P(X|z). We will write D(z;0p) for a
network that produces an image from a code. We assume that images are given by
P(X|z) =N(D(z;0p);Z), so that

~ (1% = D(z:60) IP)
. |

log P(X;|z) =
So the loss becomes
Eo = > [DQzIX:)] P(2)) — Eqsx,llog P(Xi]2)]]

< Tr (B(X4;05)) + (X3 0,) " 1(X 53 0,) >
_ Z —k —log (Det (X2(X;;0x)))

—(Ixi-D(zs6p)
i —Eqe1x,) [M]

The expectation term is a nuisance. We will approximate the expectation by draw-
ing one sample from Q(z|X) and averaging over that one sample. Assume u; is an
IID sample of N(0;Z). Then we write

Eo = Y Q21X P(2)) — Egzx,)llog P(Xi]2)]]

i

ST

1 Tr(3(Xi;05)) 4+ w(Xi; 00T (X5 0,) — k
ok ~ log (Det (%(X:0x))
i *('Wi*D(#(Xi;%HE(Xi;92)1/2Ui;9D)\|2)
- 2

This is a loss, and it can be differentiated in 6, 65, and 6p. To train a variational
auto-encoder, we use stochastic gradient descent with a variety of tricks on this
loss.

Some Caveats

As of writing, variational auto-encoders are the cutting edge of generative models.
They seem to be better at generating images than any other technology. However,
they are interesting because a really strong generative model for images would
be extremely useful, not because they’re particularly good at generating images.
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There are a variety of important problems. Solutions to any, or all, of these problems
would be very exciting, because it is extremely useful to be able to generate images.

Training: Variational auto-encoders are notoriously hard to train. There’s a
strong tendency to get no descent in the initial stages of training. The usual way
to manage this is to weight the loss terms. You can break the loss into two terms.
One measures the similarity of the code distribution to the normal distribution,
the other measures the accuracy of reconstruction. Current practice weights the
reconstruction loss very high in the early stages of training, then reduces that weight
as training proceeds. This seems to help, for reasons I can’t explain and have never
seen explained.

Small images: Variational auto-encoders produce small images. Images
bigger than 64 x 64 are tough to produce.

Mysterious code properties: There seems to be some limit to the com-
plexity of the family of images that a variational auto-encoder can produce. This
means that MNIST (for example) pretty much always works quite convincingly,
but auto-encoding all the images in (say) ImageNet doesn’t produce particularly
good results. There is likely some relationship between the size of the code and the
complexity of the family of images, but the effectiveness of training has something
to do with it as well.

Blurry reconstructions: Variational auto-encoders produce blurry images.
This is somewhat predictable from the loss and the training process. I know two
arguments, neither completely rigorous. First, the image loss is Lo error, which
always produces blurry images because it regards a sharp edge in the wrong place as
interchangeable with a slower edge in the right place. Second, the code distributions
predicted by the encoder for two similar images must overlap; this means that the
decoder is being trained to produce two distinct images for the same z, which must
mean it averages and so loses detail.

Gaps in the code space: Codes are typically 32 dimensional. Expecting to
produce a good estimate of an expectation with a single sample in a 32 dimensional
space is a bit ambitious. This means that, in turn, there are many points in the
code space that have never been explored by the encoder, or used in training the
decoder. As a result, it is likely that a small search around a code can produce
another code that generates a truly awful image. Of course, this result will only
appear during an important live demo...



CHAPTER 13

Structured Models, Inference and
Learning

13.1 DYNAMIC PROGRAMMING, REVISITED

13.1.1

One great feature of a hidden Markov model is that inference is straightforward.
I showed how dynamic programming could be used both by reasoning about trel-
lises and by reasoning about recursion. I demonstrated this in the context of a
probabilistic model that factored in a particular way. We had

P(YVMYVQV"7YN7X17X27"'7XN) = P(Xl)P(}/ile)
P(X2|X1)P(Y2|X>)

P(Xn|XNn-1)P(YN|XN).
so that

].ng(ifl,}/z,...,YN,X17X2,...,XN) = 10gP(X1)+10gP(Y1|X1)+
log P(X2|X1) + log P(Y2|X3) +

log P(XN|XN_1) + log P(YNlXN)

For the trellis reasoning, I drew a trellis representing the sequence, then trans-
ferred the log probabilities as costs to the nodes and edges. We used dynamic
programming to find the directed path through the trellis with the largest sum of
costs. Nothing in this reasoning required the costs to actually be log probabilities.
Remarkably, all that matters is the structure of the cost function.

Chain Graphs and Dynamic Programming

We now consider a situation where we will choose values for a set discrete variables,
traditionally written X; for ¢ = 1,...,n, to maximize the value of an objective
function f(Xi,...,X,). This objective function is a sum of unary terms (i.e.,
functions that take one argument), which we write u;(X;), and binary terms
(i.e., functions that take two arguments), which we write by(X;, X;). This is a
relatively general model of parts and relations. There is one score (which would be
the wuy) associated with each part (which would be the X;) and another associated
with some of the relations (i.e., the by). For example, in the case of the HMM, the
variables would be the hidden states, the unary terms would be the logs of emission
probabilities, and binary terms would be the logs of transition probabilities. It is
natural to think of the unary terms as nodes in a graph, and the binary terms as

307



Section 13.1 Dynamic Programming, Revisited 308

edges. However, it is not required to think of the unary or binary terms as log
probabilities; instead, you could think of them as negative energies (because we are
maximizing), or you could minimize, and think of them as energies or costs. For
this kind of model, maximization is straightforward if the graph we have described
is a forest.

HMM’s are a special case, because the graph in that case is a chain. We
will redescribe inference for an HMM in this more general setting, because it will
then follow easily that the method applies to a forest. We can write the objective
function as

i=n 1=n—1

fchain(Xh e X)) = Zul(Xl) + _Z

i=1 i=1

bl(Xl, X; + 1)

and we wish to maximize this function (you should check that the terms match
terms in the expression for the joint for an HMM; a strategically placed logarithm
will help). Now we define a new function, the cost-to-go function, with a recursive
definition. Write

cost-to-go

f(”*l) (Xn-1) = H)l(axbn—l(Xn—lan) + un(Xn),

and notice that we have

argmax

Xi,..., X, fChain(Xl,...,Xn)

is equal to

argmax

n—1
T (e X))

which means that we can eliminate the nth variable from the optimization by
replacing the term b,,—1 (X,,—1, X, )+u, (X,,) with a function of X,,_1. This function
is obtained by maximizing this term with respect to X,,. Equivalently, assume
we must choose a value for X,,_;. The cost-to-go function tells us the value of
bp—1(Xn-1,Xn) + un(X,) obtained by making the best choice of X, conditioned
on our choice of X,,_1. Because any other choice would not lead to a maximum, if
we know the cost-to-go function at X,,_;, we can now compute the best choice of
X,,—1 conditioned on our choice of X,,_5. This yields that

Xma)S( [bn72(Xn727 anl) + unfl(Xn - 1) + bnfl(anla Xn) + un(Xn)]
n—1,xn

is equal to

max bn72(Xn727Xn71) + unfl(Xn - 1) + (H)l(aanl(ana Xn) + un(Xn)>:| .

n—1 n

But all this can go on recursively, yielding

f(k) (Xk) = max by (X, Xpr1) + up(Xg) + (k+1) (Xk+1)-

cost-to-go i1 cost-to-go
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We can expand this to describe our use of the trellis in Section [[.4.2] Notice that

argmax

Xi,..., X, fChain(Xl,...,Xn)

is equal to

argmax (n—1)
X1, Xn1 (fCha‘in(Xl’ coes Xno1) F fcost-to—go(X”71)>

which is equal to

argmax

n—2
X, X0 (fChain(Xl’ coos Xn2) + fc(ost-zo-go(X”J)) ’

and we can apply the recursive definition of the cost-to-go function to get

argmax argmax

X1, Xp fehain(X1, -+, Xn) = X, (fchain(Xl)+féost—to—go(X1)) )

which yields an extremely powerful maximization strategy. We start at X,, and
construct fégs_t}%o—go(anl)' We can represent this function as a table, giving the
value of the cost-to-go function for each possible value of X,,_1. We build a second

table giving the optimum X,, for each possible value of X,,_;. From this, we can

build fc(g;t?%o_go(Xn_g), again as a table, and also the best X,,_; as a function of

X, —2, again as a table, and so on. Now we arrive at X;. We obtain the solution for
X1 by choosing the X that yields the best value of (fchain(Xl) + f2 (Xg)) .

cost-to-go
But from this solution, we can obtain the solution for Xs by looking in the table
that gives the best X5 as a function of X7; and so on. It should be clear that this
process yields a solution in polynomial time; in the exercises, you will show that, if
each X; can take one of k values, then the time is O(nK?).

This strategy will work for a model with the structure of a forest. The proof
is an easy induction. If the forest has no edges (i.e., consists entirely of nodes),
then it is obvious that a simple strategy applies (choose the best value for each X;
independently). This is clearly polynomial. Now assume that the algorithm yields
a result in polynomial time for a forest with e edges, and show that it works for a
forest with e + 1 edges. There are two cases. The new edge could link two existing
trees, in which case we could re-order the trees so the nodes that are linked are
roots, construct a cost-to-go function for each root, and then choose the best pair of
states for these roots from the cost-to-go functions. Otherwise, one tree had a new
edge added, joining the tree to an isolated node. In this case, we reorder the tree so
that this new node is the root and build a cost-to-go function from the leaves to the
root. The fact that the algorithm works is a combinatorial insight, but many kinds
of model have a tree structure. Models of this form are particularly important in
cases of tracking and of parsing.

13.2 CONDITIONAL RANDOM FIELD MODELS FOR SEQUENCES

HMM models have been widely used, but have one odd feature that is inconsis-
tent with practical experience. Recall X; are the hidden variables, and Y; are the
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FIGURE 13.1:

observations. HMM’s model
PYy,....Y,|X1,.... X)) x P(Y1,..., Y0, X1,..., X}),

which is the probability of observations given the hidden variables. This is modelled
using the factorization

P(YVDYVQV"7YN7X11X27-"7XN) = P(Xl)P(}/ile)
P(X2|X1)P(Y2|X2)

P(Xn|XNn-1)P(YN|XN).

In much of what we will do, this seems unnatural. For example, in the case of
reading written text, we would be modelling the probability of the observed ink
given the original text. But we would not attempt to find a single character by
modelling the probability of the observed ink given the character (I will call this a
generative strategy). Instead, we would search using a classifier, which is a model
of the probability of the character conditioned on the observed ink (I will call this
a discriminative strategy). The two strategies are quite different in practice. A
generative strategy would need to explain all possible variants of the ink that a
character could produce, but a discriminative strategy just needs to judge whether
the ink observed is the character or not.

As another example, in the case of parsing people, we would be modelling the
probability of the observed pixels given the configuration of the body. Again, this
is an odd thing to do, because we may need quite sophisticated models to predict
any set of pixels that could be produced by a body part. The alternative is to use
a body part detector — a model of the probability the part is present, given the
observed pixels. This reasoning applies to each of our examples.



13.2.1

13.2.2

Section 13.2 Conditional Random Field Models for Sequences 311

FIGURE 13.2:

Drawing a Model

We now adopt a convention that allows us to draw a model as a graph. Assume we
have a probability distribution over a collection of variables. In the HMM example,
these would be the hidden and the observed states in the HMM example. We
will draw each variable as a circle. We will fill the circle if the variable’s value
is observed. We will add edges to this drawing according to the following rules.
Assume we know a factorization of the probability distribution we are modelling
into a collection of terms. There will be an edge between each pair of variables
that appears together in a at least once in any factor. If two variables, say X; and
Y;, only appear together in a factor in the form P(Y;|X;), then the edge will be
directed from X; to Y; (the arrow points toward the variable that is “generated”).
TODO: FIX

These rules allow us to draw an HMM as Figure I3l This drawing corresponds
to the factorization above.

MEMM'’s and Label Bias

An alternative that might seem plausible is to try and build a model with the
structure suggested by Figure[13.21 This would correspond to

P(X1,X5,..., Xn|Y1,Ya, ..., Yy) = P(X1|V7) x
P(X5|Ys, X1) x
P(X5|X5,Ys) x
. X
P(Xn|XNn_1,YnN).

Such models are known as maximum entropy markov models or MEMM’s.
It turns out these models present practical difficulties, which are worth understand-
ing. Assume we have fitted a model, and wish to recover the best sequence of X;



Section 13.2 Conditional Random Field Models for Sequences 312

O$S,

AL

FIGURE 13.3:

corresponding to a given sequence of observations Y;. We could minimize

—IOgP(Xl,XQ, e ,XN|Y1,}/§, .. .,YN) = —IOgP(Xllyl)
—IOgP(XQD/Q,Xl)
—log P(X3| X2, Y2)

—10gP(XN|XN_1,YN).

by choice of X1,..., Xn. We can represent this cost function on a trellis, as for the
HMM, but now notice that the costs on the trellis behave differently. For an HMM,
each state (circle) in a trellis had a cost, corresponding to — log P(Y;|X;), and each
edge had a cost (—log P(X;11]X;)), and the cost of a particular sequence was the
sum of the costs along the implied path. But for an MEMM, the representation is
slightly different. There is no term associated with each state in the trellis; instead,
we associate the edge going from the state X; = U to the state X;1; = V with
the cost —log P(X,;11 = V|X; = U,Y;). Again, the cost of a sequence of states is
represented by the sum of costs along the corresponding path. This may look to
you like a subtle change, but it has nasty effects.

Look at the example of Figure Notice that when the model is in state
1, it can only transition to state 2. In turn, this means that —log P(X;4+1 =
2|X; = 1,Y;) = 0 whatever the measurement Y; is. Furthermore, either P(X;11 =
31X, =2,Y;) > 05 or P(X;41 = 1|X; =2,Y;) > 0.5 (because there are only two
options leaving state 2). Here the measurement can determine which of the two
options has higher probability. That figure shows a trellis corresponding to three
measurements. In this trellis, the path 2 1 4 will be the lowest cost path unless the
first measurement overwhelmingly disfavors the transition 2 — 1. This is because
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O—&

i

most other paths must share weights between many outgoing edges; but 1 — 4 is
very cheap, and 2 — 1 will be cheap unless there is an unusual measurement. Paths
which pass through many states with few outgoing edges are strongly favored. This
is known as the label bias problem. There are some fixes that can be applied,
but it is better to reengineer the model.

FIGURE 13.4:

13.2.3 Conditional Random Field Models

We want a model of sequences that is discriminative, but doesn’t have the label bias
problem. We’d also like that model to be as tractable as an HMM for sequences.
Notice that what made an HMM easy to deal with was that we could solve for
the best sequence of states using dynamic programming. We can use a trellis to
represent the inference problem for any model where transitions between the hidden
states are Markov. We can certainly use dynamic programming to solve for the best
sequence of states if the cost model consists of per-edge and per-state costs (as it
does in the case of the HMM). But to make the model discriminative, we need to
change the probabilistic interpretation of these costs.

We start with the costs, written on the trellis. Write E;(a,b) for the cost of
the edge from X; = a to X;11 = b, and write V;(a) for the cost of assigning X; = a.
We will assume that E;(a,b) > 0 and Vj(a) > 0. Note that for a useful model, we
would like V;(a) to depend on Y;. With appropriate rescaling, etc., we can interpret
Vi(a) as —log P(X; = a|Y;) (exercise: show that this doesn’t affect the best path).
We now apply a probabilistic interpretation to this model as

Vi(z1) + Er (1, v2)+
P(X)=z1,Xo =22,..., XN = 2,|Y1,Y2,...,YN) = %exp_ VQ(:CQ) T Ba(w2, ma)t
Vn(xn)
where K is some normalizing constant, chosen to ensure the probability distribution
sums to 1. There is a crucial difference with the MEMM; there are now node as
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well as edge costs but we can’t interpret the edge costs as transition probabilities.
A model with this structure is known as a conditional random field. We can
expand our graphical vocabulary to include undirected edges, corresponding to
the E;(a,b) terms. The result is the model depicted in Figure [34t this figure is
interpreted as yielding the probabilistic model above.

You should also be aware of the minus sign. This means that the best sequence
has the smallest value of

Vi(z1) + Ei(z1, 02)+

Vao(xo) + Eo(xa,23)+

VN (,Tn)
and we can think of this expression as a cost. Inference is straightforward by
dynamic programming, as above, if we have known E; and V; terms.

What is much more interesting is learning a CRF. We can likely come up

with a reasonable scheme for estimating the V; terms, but we don’t know K, and
K depends on the E; and V; terms in a complicated way. There must be some

set of parameters, 6 that we are trying to adjust. But K will depend on those
parameters, in particular,

K(9) = Z P(X1 =1, X =m,..., XN = 2,|Y1,Y2,...,Yn,0)

which means that choosing 6 values by maximizing the posterior probability of
observed examples is going to be hard — we would have to compute this normalizing
constant for each value of # we evaluated.

13.3 DISCRIMINATIVE LEARNING OF CRFS

A really powerful strategy for learning a CRF follows from ignoring the probabilistic
semantics of the model and thinking about the model as representing an energy or
cost. We write the cost of a sequence x1,x2,...xN as

C(Il,xg,...,IN) = ‘/1($1)—|—E1(I1,I2)+‘/2(I2)—|—E2($2,$3)+...VN(IN)

n—1
= Vi) + Y [Biws, wi1) + Vigr (@)
i=1

N N-1

= Z‘/;(.’L'i) + Z Ei(zi, it1).

=1 i=1

Notice that the slightly funny form of the sum in the second line occurs because
when there are N vertical arrows in Figure 7?7, there are N — 1 horizontal edges.
The notation in the third line separates edge costs from node costs. Each notation
appears on occasion. You should think of each V; as a vector of costs (one per
state in the model) and each F; as a table of costs (one per pair of states in the
model). Inference involves finding the sequence of states that minimizes this cost.
Learning will involve building the V; and E; from a collection of examples. Each
example will be a pair of sequences, one of observations and the other of hidden
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states. These sequences might not be of the same length (think about learning to
read words; they’re not all the same length).

Representing the Model

We need a parametric representation of V; and E;; we’ll then search for the parame-
ters that yield the right model. For the V', we will assume that V; and V; differ only

if Y; #Y;. We then construct a set of functions ¢§U) (X,Y), and a vector of param-
eters 9§v). Finally, we assert that V;(z) = >_, 9§-v)¢§-”) (2,Y;). Similarly, for E; we

will construct a set of functions ¢§-U) (U, V), and have E;(U,V) =3, H;U)gbg-v) (U,V).

I give some sample constructions below, but you may find them somewhat
involved at first glance. What is important is that (a) we have some parameters ¢
so that, for different choices of parameter, we get different cost functions; and (b)
for any choice of parameters (say é) and any sequence of Y; we can label each vertex
and each edge on the trellis with a number representing the cost of that vertex or
edge. Assume we have these properties. Then for any particular 6 we can construct
the best sequence of X; using dynamic programming (as above). Furthermore, we
can try to adjust the choice of 6 so that for the i’th training sequence, y( | inference
yields x(") or something close by.

Building V: The choice of ¢{”’(X,Y) will naturally depend on the appli-
cation. We can get some guidance by noticing we would like V' to behave like a
classifier — we’d like smaller values for V(z,Y’) when the x is a “good” interpre-
tation of the observed state, and larger values when it isn’t. For example, assume
that the observed states are inked numerals (like MNIST), and that they appear in
a window of fixed size. Multinomial logistic regression works quite well on MNIST
using just the pixel values as features. This means that I can compute 10 linear
functions of the pixel values (one for each numeral) such that the linear function
corresponding to the right numeral is smaller than any other of the functions, at
least most of the time. Now for each possible true numeral z and each pixel location
p we can build a feature function ¢(X,Y) = I;x—g Iy ()=o) Thisis 1if X =z (i.e.
for a particular numeral, x) and the ink at pixel location p is dark, and otherwise
zero. We index these feature functions in any way that seems convenient to get
¢§-v) (X,Y), and stack them into a vector. Now _; 9§-v)¢§-v) (X,Y) is (a) linear in
the ink for any fixed value of X and (b) different for different values of X and the
same ink. With a good choice of 8(*), we could produce a function that was small
for the right numeral and large for the wrong numeral.

Another strategy would be to build the ¢(X,Y") out of classifiers. For each
class x, we will build several classifiers each of which can tell that class from all the
others. We obtain different classifiers by using different training sets; or different
features; or different classifier architectures; or all of these. Write g; ,(Y") for the
i’th classifier for class x. We ensure that g; ,(Y") is small if Y is of class z, and large
otherwise. Then for each classifier and each class we can build a feature function
by ¢(X,Y) = gix(Y). We index these feature functions in any way that seems
convenient. Now, with appropriate choice of 9](-1)), we have that ), 9§U)¢§-U) (X,Y)
is a weighted sum of classifiers that produces a small value if X has the same class
as Y and a large value otherwise.
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Building F: We must now build F;(a,b). There are several possibilities. I
will use U and V' as dummy variables; each could take the value of any state. I will
assume the states are labelled with counting numbers, without any loss of generality,
and will write a, b for particular values of the state. One simple construction is
to build a set of feature functions ¢((fb)(U, V) = ljy=q)ljy=p. There is one feature
function for each possible pair of states, so if there are S possible states, there will
be 5% of these feature functions. Each one takes the value 1 when U and V take
the corresponding state values, otherwise is 0. Now we construct a vector of S2
parameters 9((5)), and construct E(U,V) = >, Gii)q(l?(U, V). This construction
will allow us to represent any possible cost for aﬂy transitions, as long as this doesn’t
depend on the observations.

We can build a set of feature functions that depend on the observed states,
which I will write (bfl? (U,V;Y;,Y;11). The construction would depend on the appli-
cation. For example, in the case of reading numerals, we could build a collection of
classifiers that look at the ink corresponding to a pair of numerals together. Write
95,ab(Y3,Yi41) for these classifiers. Here j is an index that identifies the partic-
ular classifier. We require that g; (Y7, Yit1) give a small response for examples
where Y; is the ink for numeral a and Y;4; is the ink for numeral b; otherwise, the

response should be large. Then we construct a vector of parameters 9;6)

struct E(U, V) =3, ng)gjyv (Y;,Yi41). This yields a function that is small when
the ink is consistent with the two states in the argument, and large otherwise.

General notation: We now have a model of the cost. I will write sequences
like vectors, so x is a sequence, and z; is the i’th element of that sequence. Write
C(x;y,0) for the cost of a sequence x of hidden variables, conditioned on observed
values y and parameters . I'm suppressing the number of items in this sequence
for conciseness, but will use N if I need to represent it. We have

, and con-

N

N-1
C(x;y,0) = Z 9§v)¢§v) (xiyyi) | + Z [(Z 91(6)@(6) (xi,x”l))] .
J i=1 1

=1

Notice that this cost function is linear in 6. We will use this to build a search for
the best setting of 6.

Setting Up the Learning Problem

I will write x(9) for the #’th training sequence of hidden states, and y( for the i’th
training sequence of observations. I will write :C;l) for the hidden state at step j
in the ¢’th training sequence, etc. The general principle we will adopt is that we
should train a model by choosing @ such that, if we apply inference to y, we will
recover x(*) (or something very similar).

For any sequence x, we would like to have C(x®;y® 0) < C(x;y®,0).
This inequality is much more general than it seems, because it covers any available
sequence. Assume we engage in inference on the model represented by 6, using y(*)
as observed variables. Write x1+* for the sequence recovered by inference, so that

i = argmin C(x;y(i)ﬁ)

X
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which means that x** is the sequence recovered from the model by inference if the
parameters take the value #. In turn, the inequality means that

C(x";y@,0) < Cxtiy™,0).

It turns out that this is not good enough; we would also like the cost of solutions
that are further from the true solution to be higher. So we want to ensure that the
cost of a solution grows at least as fast as its distance from the true solution. Write
d(u,v) for some appropriate distance between two sequences u and v. We want to
have

C(xD5y@.0) +d(x,x'7) < C(x; 57, 6).

Again, we want this inequality to be true for any sequence x. This means that
C(xW5y™,0) < Clx; v, 0) — d(x,x")
for any x. Now write

(#,4) _ argmin
b'q

x C(x;y'",0) — d(x,x").

The inequality becomes
CxD;y@D 9y < oxD:y® ) — dxHD xD).
This constraint is likely to be violated in practice. Assume that
& = max(C(xV;y@,0) — C(x";y,0) + d(x™9,x"),0)

so that xi; measures the extent to which the constraint is violated. We would like
to choose # so that we have the smallest possible set of constraint violations. It is
natural to want to minimize the sum of §; over all training data. But we also want
to ensure that 6 is not “too large”, for the same reasons we regularized a support
vector machine. Choose a regularization constant A. Then we want to choose 6 to
minimize the regularized cost

> G+"e

icexamples

where §; is defined as above. This problem is considerably harder than it might
look, because each &; is a (rather strange) function of 6.

Evaluating the Gradient

We will solve the learning problem by stochastic gradient descent, as usual. First,
we obtain an initial value of §. Then we repeatedly choosing a minibatch of exam-
ples at random, evaluate the gradient for that minibatch, update the estimate of 6,
and go again. There is the usual nuisance of choosing a steplength, etc. which is
handled in the usual way. The important question is evaluating the gradient.
Imagine we have chosen the u’th example. We must evaluate Vg¢,,. Recall

0 = max(Cx 3y, 0) = Oy, ) 4 d(x*), x), 0)
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and assume that we know x(**). We will ignore the concern that &, may not be

differentiable in 0 as a result of the max. If &, = 0, we will say the gradient is zero.
For the other case, recall that

N

N—-1
O(X;y,@) = Z Ze(v)(b v) Iuyz + Z l(zo e)d)(e) $17$i+1)>‘|
=1

i=1 | j

and that this cost function is linear in 6. The distance term d(x*™), x(")) doesn’t
depend on 6, so doesn’t contribute to the gradient. So if we know x*?, the gradient
is straightforward because C' is linear in 6.

To be more explicit, we have

0C AT, () (u D (o) (u
20 S (A7) — 6P e, )]

89](U =1
and
- ) (xu)
89(8 :Z {¢z i ), H—l) o) (7, iy )}
i=1

The problem is that we don’t know x**) because it could change each time
we change 6. Recall

argmin
X

x(ow) = Clx;y™, 0) — d(x,x™).
So, to compute the gradient, we must first run an inference on the example to
obtain x(**) . But this inference could be hard, depending on the form of

O(X; y(u) ) 9) - d(X, X(u))

(which is often known as the loss augmented constraint violation). We would
like to choose d(x,x(")) so that we get a distance that doesn’t make the inference
harder. One good, widely used example is the Hamming distance.

The Hamming distance between two sequences is the number of locations in
which they disagree. Write diff(m,n) = 1 —1I,,—y)(m, n) for a function that returns
zero if its arguments are the same, and one otherwise. Then we can express the

Hamming distance as
)) = Z diff(xg, .%',(cu))
k

We could scale the Hamming distance, to express how quickly we expect the cost
to grow. So we will choose a non-negative number €, and write

d(x,x™W) = ed, (x,x™).

The expression for Hamming distance is useful, because it allows us to represent
the distance term on a trellis. In particular, think about the trellis corresponding
to the u’th example. Then to represent the cost

C(x;y™,0) — d(x,x™)
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we adjust the node costs on each column. For the k’th column, we subtract e from
each of the node costs ezcept the one corresponding to the k’th term in x(*). Then
the sum of edge and node terms along any path will correspond to C'(x; y(“),6‘) —
d(x,x™). In turn, this means we can construct x**) by dynamic programming
to this offset trellis.

Now we can compute the gradient for any example, so learning is (conceptu-
ally) straightforward. In practice, computing the gradient at any example involves
finding the best sequence predicted by the loss augmented constraint violation, then
using this to compute the gradient. Every gradient evaluation involves a round of
inference, making the method slow.
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