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CHAPTER 1

Notation and conventions

A dataset as a collection of d-tuples (a d-tuple is an ordered list of d elements).
Tuples differ from vectors, because we can always add and subtract vectors, but
we cannot necessarily add or subtract tuples. There are always N items in any
dataset. There are always d elements in each tuple in a dataset. The number of
elements will be the same for every tuple in any given tuple. Sometimes we may
not know the value of some elements in some tuples.

We use the same notation for a tuple and for a vector. Most of our data will
be vectors. We write a vector in bold, so x could represent a vector or a tuple (the
context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write X;. Assume we have N data items, and we wish to make a new dataset out of
them; we write the dataset made out of these items as {x;} (the 7 is to suggest you
are taking a set of items and making a dataset out of them). If we need to refer
to the j’th component of a vector x;, we will write :cgj) (notice this isn’t in bold,
because it is a component not a vector, and the j is in parentheses because it isn’t
a power). Vectors are always column vectors.

When I write {kz}, I mean the dataset created by taking each element of the
dataset {x} and multiplying by k; and when I write {x + ¢}, I mean the dataset
created by taking each element of the dataset {z} and adding c.

Terms:

e mean ({z}) is the mean of the dataset {z} (definition ?7?, page ?7).
e std ({z}) is the standard deviation of the dataset {«} (definition ??, page ?7).
e var ({z}) is the standard deviation of the dataset {«} (definition ??, page ?7).

e median ({x}) is the standard deviation of the dataset {z} (definition ??,
page 77).

e percentile({z}, k) is the k% percentile of the dataset {x} (definition ??, page ?7?).
e igr{z} is the interquartile range of the dataset {z} (definition ??, page ?7).

e {i&} is the dataset {2}, transformed to standard coordinates (definition 77,
page 77).

e Standard normal data is defined in definition ??, (page ?7).
e Normal data is defined in definition ??, (page ?7?).

e corr ({(x,y)}) is the correlation between two components x and y of a dataset
(definition ?7, page ?7).



() is the empty set.

Q is the set of all possible outcomes of an experiment.

e Sets are written as A.

e A° is the complement of the set A (i.e. Q — A).

e & is an event (page 23T]).

e P({&}) is the probability of event £ (page 231)).

o P({E}{F}) is the probability of event &, conditioned on event F (page 231]).

e p(z) is the probability that random variable X will take the value z; also
written P({X = a}) (page 231)).

e p(x,y) is the probability that random variable X will take the value = and
random variable Y will take the value y; also written P({X = 2} N{Y = y})

(page 23T)).

° arg;nax f(z) means the value of = that maximises f(z).
° arg;mn f(z) means the value of « that minimises f(z).

e max;(f(x;)) means the largest value that f takes on the different elements of
the dataset {z;}.

e 0 is an estimated value of a parameter 6.

1.0.1 Background Information

Cards: A standard deck of playing cards contains 52 cards. These cards are divided
into four suits. The suits are: spades and clubs (which are black); and hearts and
diamonds (which are red). Each suit contains 13 cards: Ace, 2, 3, 4, 5, 6, 7, 8, 9,
10, Jack (sometimes called Knave), Queen and King. It is common to call Jack,
Queen and King court cards.

Dice: If you look hard enough, you can obtain dice with many different num-
bers of sides (though I've never seen a three sided die). We adopt the convention
that the sides of an N sided die are labeled with the numbers 1... N, and that no
number is used twice. Most dice are like this.

Fuairness: Each face of a fair coin or die has the same probability of landing
upmost in a flip or roll.

Roulette: A roulette wheel has a collection of slots. There are 36 slots num-
bered with the digits 1...36, and then one, two or even three slots numbered with
zero. There are no other slots. A ball is thrown at the wheel when it is spinning,
and it bounces around and eventually falls into a slot. If the wheel is properly
balanced, the ball has the same probability of falling into each slot. The number of
the slot the ball falls into is said to “come up”. There are a variety of bets available.



Section 1.1 Acknowledgements 9

1.1 ACKNOWLEDGEMENTS

Typos spotted by: Han Chen (numerous!), Henry Lin (numerous!), Eric Huber,
Brian Lunt, Yusuf Sobh, Scott Walters, — Your Name Here — Jian Peng and
Paris Smaragdis taught courses from versions of these notes, and improved them
by detailed comments, suggestions and typo lists. TA’s for this course have helped
improve the notes. Thanks to Zicheng Liao, Michael Sittig, Nikita Spirin, Saurabh
Singh, Daphne Tsatsoulis, Henry Lin, Karthik Ramaswamy.



CHAPTER 2

Some Preliminaries

2.1 NOTATION AND CONVENTIONS

A dataset as a collection of d-tuples (a d-tuple is an ordered list of d elements).
Tuples differ from vectors, because we can always add and subtract vectors, but
we cannot necessarily add or subtract tuples. There are always N items in any
dataset. There are always d elements in each tuple in a dataset. The number of
elements will be the same for every tuple in any given tuple. Sometimes we may
not know the value of some elements in some tuples.

We use the same notation for a tuple and for a vector. Most of our data will
be vectors. We write a vector in bold, so x could represent a vector or a tuple (the
context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write X;. Assume we have N data items, and we wish to make a new dataset out of
them; we write the dataset made out of these items as {x;} (the 7 is to suggest you
are taking a set of items and making a dataset out of them). If we need to refer
to the j’th component of a vector x;, we will write xl(]) (notice this isn’t in bold,
because it is a component not a vector, and the j is in parentheses because it isn’t
a power). Vectors are always column vectors.

When I write {kz}, I mean the dataset created by taking each element of the
dataset {2} and multiplying by k; and when I write { 4+ ¢}, T mean the dataset
created by taking each element of the dataset {z} and adding c.

Terms:

e mean ({}) is the mean of the dataset {z} (definition ?7?, page ?7).
e std ({z}) is the standard deviation of the dataset {«} (definition ??, page ?7).
e var ({z}) is the variance of the dataset {z} (definition ??, page 77).

e median ({z}) is the standard deviation of the dataset {z} (definition ??,
page 77).

e percentile({z}, k) is the k% percentile of the dataset {x} (definition ?7, page 7).
e igr{z} is the interquartile range of the dataset {z} (definition ??, page ?7).

e {&} is the dataset {z}, transformed to standard coordinates (definition ??,
page 77).

e Standard normal data is defined in definition ??, (page ?7).

e Normal data is defined in definition ??, (page ?7).

10
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e corr ({(x,y)}) is the correlation between two components x and y of a dataset
(definition ?7?, page ?7).

e () is the empty set.

e (2 is the set of all possible outcomes of an experiment.

e Sets are written as A.

e A€ is the complement of the set A (i.e. Q — A).

e & is an event (page 23T]).

e P({&}) is the probability of event £ (page 231)).

e P({E}|{F}) is the probability of event &, conditioned on event F (page 231)).

e p(z) is the probability that random variable X will take the value z; also
written P({X = a}) (page 231)).

e p(x,y) is the probability that random variable X will take the value z and
random variable Y will take the value y; also written P({X =z} N{Y = y})

(page 231)).

argmax

o - f(z) means the value of x that maximises f(z).
o arg;nln f(z) means the value of x that minimises f(x).

e max;(f(x;)) means the largest value that f takes on the different elements of
the dataset {x;}.

e 0 is an estimated value of a parameter 6.

2.1.1 Background Information

Cards: A standard deck of playing cards contains 52 cards. These cards are divided
into four suits. The suits are: spades and clubs (which are black); and hearts and
diamonds (which are red). Each suit contains 13 cards: Ace, 2, 3,4, 5,6, 7, 8, 9,
10, Jack (sometimes called Knave), Queen and King. It is common to call Jack,
Queen and King court cards.

Dice: If you look hard enough, you can obtain dice with many different num-
bers of sides (though I've never seen a three sided die). We adopt the convention
that the sides of an IV sided die are labeled with the numbers 1... N, and that no
number is used twice. Most dice are like this.

Fairness: Each face of a fair coin or die has the same probability of landing
upmost in a flip or roll.

Roulette: A roulette wheel has a collection of slots. There are 36 slots num-
bered with the digits 1...36, and then one, two or even three slots numbered with
zero. There are no other slots. A ball is thrown at the wheel when it is spinning,
and it bounces around and eventually falls into a slot. If the wheel is properly
balanced, the ball has the same probability of falling into each slot. The number of
the slot the ball falls into is said to “come up”. There are a variety of bets available.
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2.2 SOME USEFUL MATHEMATICAL FACTS

The gamma function I'(z) is defined by a series of steps. First, we have that for n
an integer,

I(n)=(n—-1)!
and then for z a complex number with positive real part (which includes positive

real numbers), we have
o -t
[(z) = / 5 dt.
0 t

By doing this, we get a function on positive real numbers that is a smooth inter-
polate of the factorial function. We won’t do any real work with this function, so
won’t expand on this definition. In practice, we’ll either look up a value in tables
or require a software environment to produce it.

2.3 ACKNOWLEDGEMENTS

Typos spotted by: Han Chen (numerous!), Henry Lin (numerous!), Paris Smaragdis
(numerous!), Johnny Chang, Eric Huber, Brian Lunt, Yusuf Sobh, Scott Walters,
— Your Name Here — TA’s for this course have helped improve the notes. Thanks
to Zicheng Liao, Michael Sittig, Nikita Spirin, Saurabh Singh, Daphne Tsatsoulis,
Henry Lin, Karthik Ramaswamy.

2.4 THE CURSE OF DIMENSION

High dimensional models display uninituitive behavior (or, rather, it can take years
to make your intuition see the true behavior of high-dimensional models as natural).
In these models, most data lies in places you don’t expect. We will do several simple
calculations with an easy high-dimensional distribution to build some intuition.

2.4.1 The Curse: Data isn't Where You Think it is

Assume our data lies within a cube, with edge length two, centered on the origin.
This means that each component of x; lies in the range [—1, 1]. One simple model
for such data is to assume that each dimension has uniform probability density in
this range. In turn, this means that P(z) = 5;. The mean of this model is at the
origin, which we write as 0.

The first surprising fact about high dimensional data is that most of the data
can lie quite far away from the mean. For example, we can divide our dataset into
two pieces. A(e) consists of all data items where every component of the data has
a value in the range [—(1 —€), (1 — €)]. B(e) consists of all the rest of the data. If
you think of the data set as forming a cubical orange, then B(¢) is the rind (which
has thickness €) and A(e) is the fruit.

Your intuition will tell you that there is more fruit than rind. This is true,
for three dimensional oranges, but not true in high dimensions. The fact that the
orange is cubical just simplifies the calculations, but has nothing to do with the
real problem.

We can compute P({x € A(e)}) and P({x € A(e)}). These probabilities tell
us the probability a data item lies in the fruit (resp. rind). P({x € A(e)}) is easy
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to compute as

Plfx € A)) = (20~ ) (57) = (1= o
and
P({x €B(e)}) =1 - P({x € A(€)}) = 1 — (1 — o).

But notice that, as d — oo,
P({x € A(e)}) — 0.

This means that, for large d, we expect most of the data to be in B(e). Equivalently,
for large d, we expect that at least one component of each data item is close to
either 1 or —1.

This suggests (correctly) that much data is quite far from the origin. It is
easy to compute the average of the squared distance of data from the origin. We

want
E[xTx] = /b . <Z x§> P(x)dx

but we can rearrange, so that
E[x"x| = ZE[I?] = Z/b 22 P(x)dx.
P P ox

Now each component of x is independent, so that P(x) = P(xz1)P(x2)...P(zq).
Now we substitute, to get

1 1
E[XTX] g ZE[I?} = lex?P(xl)dxl :Z%/;leddh = %l,

so as d gets bigger, most data points will be further and further from the origin.
Worse, as d gets bigger, data points tend to get further and further from one
another. We can see this by computing the average of the squared distance of data
points from one another. Write u for one data point and v; we can compute

E[d(u,v)?] = / / Z(uZ —v;)*dudv = E[u"u] + E[v'v] —E[u’v]
box Jbox 7
but since u and v are independent, we have E[u”v] = E[u]"E[v] = 0. This yields

21 od
E[d(u,v)?] _25.

This means that, for large d, we expect our data points to be quite far apart.
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2.4.2 Minor Banes of Dimension

High dimensional data presents a variety of important practical nuisances which
follow from the curse of dimension. It is hard to estimate covariance matrices, and
it is hard to build histograms.

Covariance matrices are hard to work with for two reasons. The number of
entries in the matrix grows as the square of the dimension, so the matrix can get
big and so difficult to store. More important, the amount of data we need to get an
accurate estimate of all the entries in the matrix grows fast. As we are estimating
more numbers, we need more data to be confident that our estimates are reasonable.
There are a variety of straightforward work-arounds for this effect. In some cases,
we have so much data there is no need to worry. In other cases, we assume that
the covariance matrix has a particular form, and just estimate those parameters.
There are two strategies that are usual. In one, we assume that the covariance
matrix is diagonal, and estimate only the diagonal entries. In the other, we assume
that the covariance matrix is a scaled version of the identity, and just estimate this
scale. You should see these strategies as acts of desperation, to be used only when
computing the full covariance matrix seems to produce more problems than using
these approaches.

It is difficult to build histogram representations for high dimensional data.
The strategy of dividing the domain into boxes, then counting data into them, fails
miserably because there are too many boxes. In the case of our cube, imagine we
wish to divide each dimension in half (i.e. between [—1,0] and between [0, 1]). Then
we must have 2¢ boxes. This presents two problems. First, we will have difficulty
representing this number of boxes. Second, unless we are exceptionally lucky, most
boxes must be empty because we will not have 2¢ data items.

However, one representation is extremely effective. We can represent data as
a collection of clusters — coherent blobs of similar datapoints that could, under
appropriate circumstances, be regarded as the same. We could then represent the
dataset by, for example, the center of each cluster and the number of data items
in each cluster. Since each cluster is a blob, we could also report the covariance of
each cluster, if we can compute it.



CHAPTER 3

Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class
label for them. There could be two, or many, classes. Classifiers are immensely
useful, and find wide application, because many problems are naturally classification
problems. For example, if you wish to determine whether to place an advert on a
web-page or not, you would use a classifier (i.e. look at the page, and say yes or
no according to some rule). As another example, if you have a program that you
found for free on the web, you would use a classifier to decide whether it was safe
to run it (i.e. look at the program, and say yes or no according to some rule). As
yet another example, credit card companies must decide whether a transaction is
good or fraudulent.

All these examples are two class classifiers, but in many cases it is natural
to have more classes. You can think of sorting laundry as applying a multi-class
classifier. You can think of doctors as complex multi-class classifiers: a doctor
accepts a set of features (your complaints, answers to questions, and so on) and
then produces a response which we can describe as a class. The grading procedure
for any class is a multi-class classifier: it accepts a set of features — performance
in tests, homeworks, and so on — and produces a class label (the letter grade).

Definition: 3.1 Classifier

A classifier is a procedure that accepts a set of features and produces a
label.

3.1 CLASSIFICATION: THE BIG IDEAS

Classifiers are built by taking a set of labeled examples and using them to come
up with a procedure that assigns a label to any new example. In the general
problem, we have a training dataset of examples (x;,y;). For the i’th example,
x; represents the values taken by a collection of features. In the simplest case, x;
would be a vector of real numbers. In some cases, x; will contain categorical data
or even unobserved values. Although x; isn’t guaranteed to be a vector, it’s usually
referred to as a feature vector. The y; are labels giving the type of the object
that generated the example. We will use the labelled examples to come up with a
classifier.

15
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3.1.1 The Error Rate

We need to summarize the behavior of a classifier, so we can choose one that
behaves well. Two values that are widely used are the error or total error rate
(the percentage of classification attempts that gave the wrong answer) and the
accuracy (the percentage of classification attempts that give the right answer).

For most practical cases, the best choice of classifier is guaranteed to make
mistakes. As an example, consider an alien who tries to classify humans into male
and female, using only height as a feature. However the alien’s classifier uses that
feature, it will make mistakes. This is because the classifier must choose, for each
value of height, whether to label the humans with that height male or female. But
for the vast majority of heights, there are some males and some females with that
height, and so the alien’s classifier must make some mistakes.

The example shows we are not guaranteed that a particular feature vector x
always appears with the same label. We should think of labels as appearing with
some probability conditioned on the observations, P(y|x). If we knew this (which
we seldom do), we could use it to compute the expected error rate for any particular
rule. If there are parts of the feature space where P(x) is relatively large (so we
expect to see observations of that form) and where P(y|x) has relatively large values
for more than one label, even the best possible classifier will have a high error rate.
The minimum expected error rate obtained with the best possible classifier applied
to a particular problem is known as the Bayes risk for that problem. In most cases,
it is hard to know what the Bayes risk is, because to compute it requires access to
information that isn’t available (the posterior probability of a class conditioned on
the feature vector, for one thing).

3.1.2 Overfitting

Choosing and evaluating a classifier takes some care. What matters is not the
classifier’s error on the training data, but the error on future test data. For example,
we might use a set of credit card records to make a classifier that predicts whether
a transaction is fraudulent or not. This classifier is only useful if we can use it
successfully on future examples, where we might never know the true label.

Classifiers that have small training error might not have small test error. One
example of this problem is the (silly) classifier that takes any data point and, if it is
the same as a point in the training set, emits the class of that point and otherwise
chooses randomly between the classes. This has zero training error, but might have
large test error.

Test error is usually worse than training error, because the classification pro-
cedure is chosen to do well on the training data. This effect is sometimes called
overfitting. Other names include selection bias, because the training data has
been selected and so isn’t exactly like the test data, and generalizing badly, be-
cause the classifier must generalize from the training data to the test data. The
effect occurs because the classifier has been trained to perform well on the training
dataset, and the training dataset is not the same as the test dataset. First, it is
quite likely smaller. Second, it might be biased through a variety of accidents. This
means that small training error may have to do with quirks of the training dataset
that don’t occur in other sets of examples. One consequence of overfitting is that
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classifiers should always be evaluated on data that was not used in training.

Remember this: Classifiers should always be evaluated on data that
was not used in training.

3.1.3 Cross-Validation

Now assume that we want to estimate the error rate of the classifier on test data.
We cannot estimate the error rate of the classifier using data that was used to train
the classifier, because the classifier has been trained to do well on that data, which
will mean our error rate estimate will be too low. An alternative is to separate
out some training data to form a validation set, then train the classifier on the
rest of the data, and evaluate on the validation set. This has the difficulty that
the classifier will not be the best estimate possible, because we have left out some
training data when we trained it. This issue can become a significant nuisance when
we are trying to tell which of a set of classifiers to use — did the classifier perform
poorly on validation data because it is not suited to the problem representation or
because it was trained on too little data?

We can resolve this problem with cross-validation, which involves repeat-
edly: splitting data into training and validation sets uniformly and at random,
training a classifier on the training set, evaluating it on the validation set, and
then averaging the error over all splits. This allows an estimate of the likely fu-
ture performance of a classifier, at the expense of substantial computation. You
should notice that cross-validation, in some sense, looks at the sensitivity of the
classifier to a change in the training set. The most usual form of this algorithm
involves omitting single items from the dataset and is known as leave-one-out
cross-validation.

3.1.4 s the Classifier Working Well?

The error rate of a classifier is not that meaningful on its own. There might be some
other classifier with a better error rate. Furthermore, there might be some structure
in the errors that suggests ways to improve the classifier. The simplest comparison is
to a know-nothing strategy. Imagine classifying the data without using the feature
vector at all — how well does this strategy do? If each of the C' classes occurs with
the same frequency, then it’s enough to label the data by choosing a label uniformly
and at random, and the error rate is 1 — 1/C. If one class is more common than
the others, the lowest error rate is obtained by labelling everything with that class.
This comparison is often known as comparing to chance. Further comparisons
can be obtained by building several different classifiers, and seeing which has the
lowest error rate.

It is very common to deal with data where there are only two labels. You
should keep in mind this means the highest possible error rate is 50% — if you have
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a classifier with a higher error rate, you can improve it by switching the outputs. If
one class is much more common than the other, training becomes more complicated
because the best strategy — labelling everything with the common class — becomes
hard to beat.

Analyzing performance involves looking at more than just the error rate. For a
two-class classifier and a 0-1 loss function, one can report the false positive rate
(the percentage of negative test data that was classified positive) and the false
negative rate (the percentage of positive test data that was classified negative).
Note that it is important to provide both, because a classifier with a low false
positive rate tends to have a high false negative rate, and vice versa. As a result, you
should be suspicious of reports that give one number but not the other. Alternative
numbers that are reported sometimes include the sensitivity (the percentage of
true positives that are classified positive) and the specificity (the percentage of
true negatives that are classified negative).

Evaluating a multi-class classifier is more complex than evaluating a binary
classifier. A multi-class classifier can make many more kinds of mistake than a
binary classifier can. If the total error rate is low enough, or the accuracy is high
enough, there’s not much to worry about. But if it’s not, you can look at the class
confusion matrix to see what’s going on.

Predict | Predict | Predict | Predict | Predict | Class

0 1 2 3 4 error

True 0 151 7 2 3 1 7.9%
True 1 32 5 9 9 0 91%
True 2 10 9 7 9 1 81%
True 3 6 13 9 5 2 86%
True 4 2 3 2 6 0 100%

TABLE 3.1: The class confusion matrix for a multiclass classifier. Further details
about the dataset and this example appear in worked example

Table Bl gives an example. This is a class confusion matrix from a classifier
built on a dataset where one tries to predict the degree of heart disease from a col-
lection of physiological and physical measurements. There are five classes (0...4).
The 4, j'th cell of the table shows the number of data points of true class ¢ that
were classified to have class j. As I find it hard to recall whether rows or columns
represent true or predicted classes, I have marked this on the table. For each row,
there is a class error rate, which is the percentage of data points of that class
that were misclassified. The first thing to look at in a table like this is the diagonal;
if the largest values appear there, then the classifier is working well. This clearly
isn’t what is happening for table Bl Instead, you can see that the method is very
good at telling whether a data point is in class 0 or not (the class error rate is
rather small), but cannot distinguish between the other classes. This is a strong
hint that the data can’t be used to draw the distinctions that we want. It might
be a lot better to work with a different set of classes.
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3.2 CLASSIFYING WITH NEAREST NEIGHBORS

Assume we have a set of N example points x;. These points come with their class
labels, which we write as y;; thus, our dataset can be written as

{(Xl,yl)a R (XNayN)}'

We wish to predict the label y for any point x. Generally we expect that if two
points are close enough, then they will have the same label. This suggests a really
effective strategy. If you want to classify a data item (sometimes called a query
point), find the closest example, and report the class of that example. Alternatively,
you could find the closest k& examples, and vote.

How well can we expect this strategy to work? A precise analysis would take
us way out of our way, but simple reasoning is informative. Assume we have only
two labels to deal with, and that we use only a single nearest neighbor. Around
each example point x; is a cell of points to which our classifier gives the same
label as x;. If we have enough examples, most of these cells are small. In places
where P(y = 1]x) is high, almost every example will have the label 1, and all the
corresponding cells will have that label, too, and so the error rate will be low. In
regions where P(y = 1|x) is about the same as P(y = —1|x), there will be about
as many examples (and so, cells) with label 1 as with label —1. This means that
in these regions the classifier will tend to make mistakes more often, as it should.
Using a great deal more of this kind of reasoning, nearest neighbors can be shown
to produce an error that is no worse than twice the best error rate, if the method
has enough examples. There is no prospect of seeing enough examples in practice
for this result to apply.

One important generalization is to find the k£ nearest neighbors, then choose
a label from those. A (k,l) nearest neighbor classifier finds the k example points
closest to the point being considered, and classifies this point with the class that has
the highest number of votes, as long as this class has more than [ votes (otherwise,
the point is classified as unknown). In practice, one seldom uses more than three
nearest neighbors. Finding the k£ nearest points for a particular query can be
difficult, and Section 77 reviews this point.

There are three practical difficulties in building nearest neighbor classifiers.
You need a lot of labelled examples. You need to be able to find the nearest
neighbors for your query point. And you need to use a sensible choice of distance.
For features that are obviously of the same type, such as lengths, the usual metric
may be good enough. But what if one feature is a length, one is a color, and one
is an angle? One possibility is to whiten the features (section [[3.1]). This may be
hard if the dimension is so large that the covariance matrix is hard to estimate. It is
almost always a good idea to scale each feature independently so that the variance
of each feature is the same, or at least consistent; this prevents features with very
large scales dominating those with very small scales. Notice that nearest neighbors
(fairly obviously) doesn’t like categorical data. If you can’t give a clear account
of how far apart two things are, you shouldn’t be doing nearest neighbors. It is
possible to fudge this point a little, by (say) putting together a distance between
the levels of each factor, but it’s probably unwise.

Nearest neighbors is wonderfully flexible about the labels the classifier pre-
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dicts. Nothing changes when you go from a two-class classifier to a multi-class
classifier.

Cross-validation is straightforward with a nearest neighbor classifier. Split
the labelled training data into two pieces, a (typically large) training set and a
(typically small) validation set. Now take each element of the validation set and
label it with the label of the closest element of the training set. Compute the
fraction of these effects that produce an error (the true label and predicted labels
differ). Now repeat this for a different split, and average the errors over splits.
With care, the code you’ll write is shorter than this description.

Worked example 3.1 Classifying using nearest neighbors

Build a nearest neighbor classifier to classify the digit data originally con-
structed by Yann Lecun. You can find it at several places. The original dataset
is at http://yann.lecun.com/exdb/mnist/. The version I used was used for a
Kaggle competition (so I didn’t have to decompress Lecun’s original format).
I found it at http://www.kaggle.com/c/digit-recognizer.

Solution: As you'd expect, R has nearest neighbor code that seems quite
good (I haven’t had any real problems with it, at least). There isn’t really all
that much to say about the code. I used the R FNN package. There is sample
code in listing ?7?7. I trained on 1000 of the 42000 examples, so you could see
how in the code. I tested on the next 200 examples. For this (rather small)
case, I found the following class confusion matrix

0|1 21314156 | 718]9
0112, 00|10} 0] 0]0]0]0]O0
110204 (10| 1]0]|2]2]|1
210701201 ]0]0]0]0]0]O0
310100 (|12 0]0]0/]01| 4]0
4101000180 0]0]1 1
5010000190 |0]1]O0
617000 ]0]O0]|18]0]0]O0
71070 1]10]0]0]0][19| 0] 2
800|100 ]0|0|O0]16|O0
91010023101 1|14

There are no class error rates here, because I couldn’t recall the magic line of
R to get them. However, you can see the classifier works rather well for this
case.

Remember this: Nearest neighbor classifiers are often very effective.
They can predict any kind of label. You do need to be careful to have enough
data, and to have a meaningful distance function.
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3.3 CLASSIFYING WITH NAIVE BAYES

One straightforward source of a classifier is a probability model. For the moment,
assume we know p(y|x) for our data. Assume also that all errors in classification
are equally important. Then the following rule produces smallest possible expected
classification error rate:

For a test example x, report the class y that has the highest value of
p(y|x). If the largest value is achieved by more than one class, choose
randomly from that set of classes.

Usually, we do not have p(y|x). If we have p(x|y) (often called either a
likelihood or class conditional probability), and p(y) (often called a prior)
then we can use Bayes’ rule to form

_ pxly)p(y)

(the posterior). This isn’t much help in this form, but write z; for the j’th com-
ponent of x. Now assume that features are conditionally independent conditioned
on the class of the data item. Our assumption is

p(x|y) = Hp(:vily)-

It is very seldom the case that this assumption is true, but it turns out to be fruitful
to pretend that it is. This assumption means that

p(x|y)p(y)
p(x)
I p(zily)p(y)

p(x)

x Hp(wily)p(y)-

plylx) =

Now to make a decision, we need to choose the class that has the largest value
of p(y|x). In turn, this means we need only know the posterior values up to scale
at x, so we don’t need to estimate p(x). In the case of where all errors have the
same cost, this yields the rule

choose y such that [], p(z;|y)p(y) is largest.

We still need models for p(z;|y) for each x;. It turns out that simple paramet-
ric models work really well here. For example, one could fit a normal distribution
to each z; in turn, for each possible value of y, using the training data. The logic
of the measurements might suggest other distributions, too. If one of the x;’s was
a count, we might fit a Poisson distribution. If it was a 0-1 variable, we might fit a
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Bernoulli distribution. If it was a numeric variable that took one of several values,
then we might use a multinomial model.

Naive bayes is particularly good when there are a large number of features,
but there are some things to be careful about. You can’t actually multiply a
large number of probabilities and expect to get an answer that a floating point
system thinks is different from zero. Instead, you should add the log probabilities.
Notice that the logarithm function has one nice property: it is monotonic, meaning
that a > b is equivalent to loga > logb. In turn, this means you don’t need
to exponentiate when you’ve added up the log probabilities. If, for some reason,
you need to know the values of the probabilities, you should not just add up all
the log probabilities then exponentiate, or else you will find that each class has a
posterior probability of zero. Instead, subtract the largest log from all the others,
then exponentiate; you will obtain a vector proportional to the class probabilities,
where the largest element has the value 1.

The usual way to find a model of p(y) is to count the number of training
examples in each class, then divide by the number of classes. If there are some
classes with very little data, then the classifier is likely to work poorly, because you
will have trouble getting reasonable estimates of the parameters for the p(a;|y).

Worked example 3.2 Classifying breast tissue samples

The “breast tissue” dataset at https://archive.ics.uci.edu/ml/datasets/
Breast+ Tissue contains measurements of a variety of properties of six differ-
ent classes of breast tissue. Build and evaluate a naive bayes classifier to
distinguish between the classes automatically from the measurements.

Solution: The main difficulty here is finding appropriate packages, under-
standing their documentation, and checking they’re right, unless you want to
write the source yourself (which really isn’t all that hard). T used the R package
caret to do train-test splits, cross-validation, etc. on the naive bayes classifier
in the R package k1aR. I separated out a test set randomly (approx 20% of the
cases for each class, chosen at random), then trained with cross-validation on
the remainder. The class-confusion matrix on the test set was:

Prediction | adi car con fad gla mas
adi 2 0 0 0 0 0
car 0 3 0 0 0 1
con 2 0 2 0 0 0
fad 0 0 0 0 1 0
gla 0 0 0 0 2 1
mas 0 1 0 3 0 1

which is fairly good. The accuracy is 52%. In the training data, the classes are
nearly balanced and there are six classes, meaning that chance is about 17%.
These numbers, and the class-confusion matrix, will vary with test-train split.
I have not averaged over splits, which would be the next thing.
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Remember this: Naive bayes classifiers are straightforward to build,
and very effective. Dealing with missing data is easy. Experience has shown
they are particularly effective at high dimensional data.

3.3.1 Missing Data

Missing data occurs when some values in the training data are unknown. This can
happen in a variety of ways. Someone didn’t record the value; someone recorded
it incorrectly, and you know the value is wrong but you don’t know what the right
one is; the dataset was damaged in storage or transmission; instruments failed;
and so on. This is quite typical of data where the feature values are obtained by
measuring effects in the real world. It’s much less common where the feature values
are computed from signals — for example, when one tries to classify digital images,
or sound recordings.

Missing data can be a serious nuisance in classification problems, because
many methods cannot handle incomplete feature vectors. If there are relatively few
incomplete feature vectors, one could just drop them and proceed. Naive bayes is
rather good at handling data where there are many incomplete feature vectors in
quite a simple way. For example, assume for some i, we wish to fit p(z;|y) with a
normal distribution. We need to estimate the mean and standard deviation of that
normal distribution (which we do with maximum likelihood, as one should). If not
every example has a known value of x;, this really doesn’t matter; we simply omit
the unknown number from the estimate. Write x; ; for the value of z; for the j'th
example. To estimate the mean, we form

Zjecases with known values 74,
number of cases with known values

and so on.

Dealing with missing data during classification is easy, too. We need to look
for the y that produces the largest value of ), log p(z;|y). We can’t evaluate p(z;|y)
if the value of that feature is missing - but it is missing for each class. We can just
leave that term out of the sum, and proceed. This procedure is fine if data is
missing as a result of “noise” (meaning that the missing terms are independent of
class). If the missing terms depend on the class, there is much more we could do
— for example, we might build a model of the class-conditional density of missing
terms.

Notice that if some values of a discrete feature z; don’t appear for some class,
you could end up with a model of p(x;|y) that had zeros for some values. This almost
inevitably leads to serious trouble, because it means your model states you cannot
ever observe that value for a data item of that class. This isn’t a safe property:
it is hardly ever the case that not observing something means you cannot observe
it. A simple, but useful, fix is to add one to all small counts. More sophisticated
methods are available, but well beyond our scope.
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3.4 THE SUPPORT VECTOR MACHINE

Assume we have a set of N example points x; that belong to two classes, which we
indicate by 1 and —1. These points come with their class labels, which we write as
yi; thus, our dataset can be written as

{(Xl,yl)a R (XNayN)}'

We wish to predict the sign of y for any point x. We will use a linear classifier, so
that for a new data item x, we will predict

sign(a-x+b)

and the particular classifier we use is given by our choice of a and b.

You should think of a and b as representing a hyperplane, given by the points
where a - x + b = 0. Notice that the magnitude of a - x + b grows as the point x
moves further away from the hyperplane. This hyperplane separates the positive
data from the negative data, and is an example of a decision boundary. When
a point crosses the decision boundary, the label predicted for that point changes.
All classifiers have decision boundaries. Searching for the decision boundary that
yields the best behavior is a fruitful strategy for building classifiers.

Example: 3.1 A linear model with a single feature

Assume we use a linear model with one feature. Then the model has
the form yfp ) = sign(az; +b). For any particular example which has
the feature value x*, this means we will test whether z* is larger than,
or smaller than, —b/a.

Example: 3.2 A linear model with two features

Assume we use a linear model with two features. Then the model
has the form yZ(p ) = sign(a’x; 4+ b). The sign changes along the line
a’x +b = 0. You should check that this is, indeed, a line. On one
side of this line, the model makes positive predictions; on the other,
negative. Which side is which can be swapped by multiplying a and b
by —1.

This family of classifiers may look bad to you, and it is easy to come up with
examples that it misclassifies badly. In fact, the family is extremely strong. First,
it is easy to estimate the best choice of rule for very large datasets. Second, linear
classifiers have a long history of working very well in practice on real data. Third,
linear classifiers are fast to evaluate.

In practice, examples that are classified badly by the linear rule usually are
classified badly because there are too few features. Remember the case of the alien



Section 3.4 The Support Vector Machine 25

who classified humans into male and female by looking at their heights; if that
alien had looked at their chromosomes as well, the error rate would be small. In
practical examples, experience shows that the error rate of a poorly performing
linear classifier can usually be improved by adding features to the vector x.

3.4.1 Choosing a Classifier with the Hinge Loss

We will choose a and b by choosing values that minimize a cost function. We will
adopt a cost function of the form:

Training error cost + penalty term.

For the moment, we will ignore the penalty term and focus on the training error
cost. Write
Yi = aTxl- + b

for the value that the linear function takes on example i. Write C(v;,y;) for a
function that compares v; with y;. The training error cost will be of the form

N

(1/N)ZC(%',yi)-

i=1

A good choice of C should have some important properties. If ; and y; have
different signs, then C' should be large, because the classifier will make the wrong
prediction for this training example. Furthermore, if v; and y; have different signs
and ~; has large magnitude, then the classifier will very likely make the wrong
prediction for test examples that are close to x;. This is because the magnitude of
(a-x+b) grows as x gets further from the decision boundary. So C should get
larger as the magnitude of 7; gets larger in this case.

If v; and y; have the same signs, but +; has small magnitude, then the classifier
will classify x; correctly, but might not classify points that are nearby correctly.
This is because a small magnitude of +; means that x; is close to the decision
boundary. So C should not be zero in this case. Finally, if 7; and y; have the same
signs and ~; has large magnitude, then C' can be zero because x; is on the right
side of the decision boundary and so are all the points near to x;.

The choice

C(yi,vi) = max(0,1 — y;v;)

has these properties. If y;; > 1 (so the classifier predicts the sign correctly and
x; is far from the boundary) there is no cost. But in any other case, there is a
cost. The cost rises if x; moves toward the decision boundary from the correct side,
and grows linearly as x; moves further away from the boundary on the wrong side
(FigureBd)). This means that minimizing the loss will encourage the classifier to (a)
make strong positive (or negative) predictions for positive (or negative) examples
and (b) for examples it gets wrong, make the most positive (negative) prediction
that it can. This choice is known as the hinge loss. A linear classifier trained with
the hinge loss is known as a support vector machine or SVM.

The hinge loss has one odd property. Assume that the pair a, b correctly
classifies all training examples, so that y;(a’2; + b) > 0. Then we can always
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Hinge loss for a single example
4t with y=1
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FIGURE 3.1: The hinge loss, plotted for the case y; = 1. The horizontal variable is
the v; = a-x; + b of the text. Notice that giving a strong negative response to this
positive example causes a loss that grows linearly as the magnitude of the response
grows. Notice also that giving an insufficiently positive response also causes a loss.
Giving a strongly positive response is free.

ensure that the hinge loss for the dataset is zero, by scaling a and b, because you
can choose a scale so that yj(a’z; +b) > 1 for every example index j. This
scale hasn’t changed the result of the classification rule on the training data. But
it should worry you, because it means we can’t choose the classifier parameters
uniquely.

Now think about future examples. We don’t know what their feature values
will be, and we don’t know their labels. But we do know that the hinge loss for an
example with feature vector x and unknown label y will be max(0,1—y [a”x + b]).
Imagine we classify this example wrongly. If |a| is small, then at least the hinge
loss will be small. By this argument, we would like to achieve a small value of the
hinge loss using a a that has small length. It is much simpler to use the squared
length (i.e a”a = |a]?) than the length, and doing so is now usual.

The way to do this is to minimize

N
S(a,b;A) = [(1/N) > max(0,1 -y (a-x; +)) +%aTa
=1

where ) is some weight that balances the importance of a small hinge loss against
the importance of a small |a|. There are now two problems to solve. First, assume
we know A; we will need to find a and b that minimize S(a,b; \). Second, we will
need to estimate .

3.4.2 Finding a Minimum: General Points

I will first summarize general recipes for finding a minimum. Write u = [a, b] for the
vector obtained by stacking the vector a together with b. We have a function g(u),
and we wish to obtain a value of u that achieves the minimum for that function.
Sometimes we can solve this problem in closed form by constructing the gradient
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and finding a value of u the makes the gradient zero. This happens mainly for
specially chosen problems that occur in textbooks. For practical problems, we tend
to need a numerical method.

Typical methods take a point ul®, update it to uC*+, then check to see
whether the result is a minimum. This process is started from a start point. The
choice of start point may or may not matter for general problems, but for our
problem it won’t matter. The update is usually obtained by computing a direction
p® such that for small values of h, g(u®® + hp®) is smaller than g(u?). Such a
direction is known as a descent direction. We must then determine how far to
go along the descent direction, a process known as line search.

One method to choose a descent direction is gradient descent, which uses
the negative gradient of the function. Recall our notation that

and that

vg — Oua

We can write a Taylor series expansion for the function g(u(i) + hp(i)). We have
that
g(u® +hp) = gu®) + 1 [(Vg)"p | + O(h?)

This means that we can expect that if
p) = —Vg(u"),

we expect that, at least for small values of h, g(u? +hp()) will be less than g(u®).
This works (as long as g is differentiable, and quite often when it isn’t) because g
must go down for at least small steps in this direction.

3.4.3 Finding a Minimum: Stochastic Gradient Descent

Assume we wish to minimize some function g(u) = go(u) + (1/N) Zil gi(u), as a
function of u. Gradient descent would require us to form

N
~Vg(u) = - <V90(11) + (1/N) Z in(“))
i=1

and then take a small step in this direction. But if NV is large, this is unattractive,
as we might have to sum a lot of terms. This happens a lot in building classifiers,
where you might quite reasonably expect to deal with millions of examples. For
some cases, there might be trillions of examples. Touching each example at each
step really is impractical.
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Instead, assume that, at each step, we choose a number k in the range 1... N
uniformly and at random, and form

pPr = — (Vgo(u) + Vgi(u))
and then take a small step along pi. Our new point becomes

(@)

al+) — a4 pp,

where 7 is called the step size (or sometimes steplength or learning rate, even
though it isn’t the size or the length of the step we take, or a rate!). Here k is
known as the batch size. This is often chosen using considerations of computer
architecture (how many examples fit neatly into cache?) or of database design (how
many examples are recovered in one disk cycle?).

It is easy to show that

E[px] = Vg(u)

(where the expectation is over the random choice of k). This implies that if we take
many small steps along pg, they should average out to a step backwards along the
gradient. This approach is known as stochastic gradient descent (because we're
not going along the gradient, but along a random vector which is the gradient only
in expectation). It isn’t obvious that stochastic gradient descent is a good idea.
Although each step is easy to take, we may need to take more steps. The question
is then whether we gain in the increased speed of the step what we lose by having
to take more steps. Not much is known theoretically, but in practice the approach
is hugely successful for training classifiers.

Choosing a steplength 7 takes some work. We can’t search for the step that
gives us the best value of g, because we don’t want to evaluate the function g (doing
so involves looking at each of the g; terms). Instead, we use a steplength that is
large at the start — so that the method can explore large changes in the values of
the classifier parameters — and small steps later — so that it settles down.

One useful strategy is to divide training into seasons. Each season is a block
of a fixed number of iterations. Each iteration is one of the steps given above,
with fixed steplength. However, the steplength changes from season to season. In
particular, in the r’'th season, the steplength is

(ry _ M
g r4+n

where m and n are constants chosen by experiment with small subsets of the dataset.
Often, but not always, the examples chosen are randomized by permuting the
dataset randomly, which means that you can tell how many steps are required
to have seen the whole dataset. An epoch is the number of steps required to have
passed through the whole dataset once.

One cannot really test whether stochastic gradient descent has converged to
the right answer. A better approach is to plot the error as a function of iteration on
a validation set. This should vary randomly, but generally go down as the training
proceeds. I have summarized this discussion in box Bl You should be aware that
the recipe there admits many useful variations, though.
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Procedure: 3.1 Stochastic Gradient Descent

We have a dataset containing N pairs (x;,y;). Each z; is a d-
dimensional feature vector, and each y; is a label, either 1 or —1.
Choose a set of possible values of the regularization weight A\. We
wish to train a model that minimizes a cost function of the form
g(u) = Julu+(%) Zi\il gi(u). Separate the data into three sets: test,
training and validation. For each value of the regularization weight,
train a model, and evaluate the model on validation data. Keep the
model that produces the lowest error rate on the validation data, and
report its performance on the test data.

Train a model by choosing a fixed number of items per batch V;, a fixed
number of seasons N, and the number of steps per season [Ny. Choose a
random start point, ug = [a, b]. For each season, first compute the step
size. In the r’th season, the step size is typically n = ;1% for constants
m and n chosen by small-scale experiments (you try training a model
with different values and see what happens). For the r’th season, choose
a subset of the training set for validation for that season. Now repeat
until the model has been updated Ny times:

e Take k steps. Each step is taken by selecting a N; data items
uniformly and at random. Write D for this set. We then compute

1

p= N (Z Vgi(u)> — \u,
i€D

and update the model by computing

Up41 = Up aF np

e Evaluate the current model by computing the accuracy on the
validation set for that season. Plot the accuracy as a function of
step number.

3.4.4 Example: Training an SVM with Stochastic Gradient Descent

I have summarized stochastic gradient descent in algorithm Bl but here is an
example in more detail. We need to choose a and b to minimize

N
C(a,b) = (1/N) Z max(0,1 —y; (a-x; + b)) + %aTa.

This is a support vector machine, because it uses hinge loss. For a support vector
machine, stochastic gradient descent is particularly easy. We have estimates a(")
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and b of the classifier parameters, and we want to improve the estimates. We
pick the k’th example at random. We must now compute

\% (max(O, l—yp(a-xp+0)+ gaTa) .

Assume that yy (a-xx +b) > 1. In this case, the classifier predicts a score with
the right sign, and a magnitude that is greater than one. Then the first term is
zero, and the gradient of the second term is easy. Now if yi (a - x; +b) < 1, we can
ignore the max, and the first term is 1 — yi (a - xi + b); the gradient is again easy.
But what if y; (a- x5 +b) = 1?7 there are two distinct values we could choose for
the gradient, because the max term isn’t differentiable. It turns out not to matter
which term we choose (Figure ??), so we can write the gradient as

[/\Oa} if yp (a-x,+0)>1
Pk =
{ Aa = yiX ] otherwise
—Yk

We choose a steplength 7, and update our estimates using this gradient. This yields:

At _ g _ Aa if yr(a-x, +b) >1
o T xa-— yrX otherwise

and
p(n+1) — p(n) { 0 ifyp(a-xx+0)>1
= -n .
—yi otherwise

To construct figures, I downloaded the dataset at http://archive.ics.uci.edu/
ml/datasets/Adult. This dataset apparently contains 48, 842 data items, but I
worked with only the first 32, 000. Each consists of a set of numeric and categorical
features describing a person, together with whether their annual income is larger
than or smaller than 50K$. I ignored the categorical features to prepare these
figures. This isn’t wise if you want a good classifier, but it’s fine for an example.
I used these features to predict whether income is over or under 50K$. I split the
data into 5, 000 test examples, and 27,000 training examples. It’s important to
do so at random. There are 6 numerical features. I subtracted the mean (which
doesn’t usually make much difference) and rescaled each so that the variance was
1 (which is often very important). I used two different training regimes.

In the first training regime, there were 100 seasons. In each season, I applied
426 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees
a total of 42, 600 data items. This means that there is a high probability it has
touched each data item once (27, 000 isn’t enough, because we are sampling with
replacement, so some items get seen more than once). I chose 5 different values
for the regularization parameter and trained with a steplength of 1/(0.01 % e + 50),
where r is the season. At the end of each season, I computed a” a and the accuracy
(fraction of examples correctly classified) of the current classifier on the held out


http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult

Section 3.4 The Support Vector Machine 31

—le-71
—1le-5

o
o'
!

{

{

{

¢

!

g
p

|

o
o)

Size of w
| N w B ; [6)] o

Held out error
©
D

o
)

VN

)

50 100 0 20 40 60 80 100
Epoch Epoch

FIGURE 3.2: On the left, the magnitude of the weight vector a at the end of each
season for the first training regime described in the text. On the right, the accu-
racy on held out data at the end of each season. Notice how different choices of
reqularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

test examples. Figure shows the results. You should notice that the accuracy
changes slightly each season; that for larger regularizer values a”a is smaller; and
that the accuracy settles down to about 0.8 very quickly.

In the second training regime, there were 100 seasons. In each season, I applied
50 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees a
total of 5,000 data items, and about 3,000 unique data items — it hasn’t seen the
whole training set. I chose 5 different values for the regularization parameter and
trained with a steplength of 1/(0.01 % r + 50), where 7 is the season. At the end
of each season, I computed a”’a and the accuracy (fraction of examples correctly
classified) of the current classifier on the held out test examples. Figure shows
the results. You should notice that the accuracy changes slightly each season; that
for larger regularizer values a’a is smaller; and that the accuracy settles down
to about 0.8 very quickly; and that there isn’t much difference between the two
training regimes. All of these points are relatively typical of stochastic gradient
descent with very large datasets.

Remember this:  Linear SVM’s are a go-to classifier. When you have
a binary classification problem, the first step should be to try a linear SVM.
There is an immense quantity of good software available.
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FIGURE 3.3: On the left, the magnitude of the weight vector a at the end of each
season for the second training regime described in the text. On the right, the
accuracy on held out data at the end of each season. Notice how different choices
of regularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

3.4.5 Multi-Class Classification with SVMs

I have shown how one trains a linear SVM to make a binary prediction (i.e. predict
one of two outcomes). But what if there are three, or more, labels? In principle,
you could write a binary code for each label, then use a different SVM to predict
each bit of the code. It turns out that this doesn’t work terribly well, because an
error by one of the SVM’s is usually catastrophic.

There are two methods that are widely used. In the all-vs-all approach, we
train a binary classifier for each pair of classes. To classify an example, we present it
to each of these classifiers. Each classifier decides which of two classes the example
belongs to, then records a vote for that class. The example gets the class label with
the most votes. This approach is simple, but scales very badly with the number of
classes (you have to build O(N?) different SVM’s for N classes).

In the one-vs-all approach, we build a binary classifier for each class. This
classifier must distinguish its class from all the other classes. We then take the class
with the largest classifier score. One can think up quite good reasons this approach
shouldn’t work. For one thing, the classifier isn’t told that you intend to use the
score to tell similarity between classes. In practice, the approach works rather well
and is quite widely used. This approach scales a bit better with the number of
classes (O(N)).
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Remember this: It is straightforward to build a multi-class classifier
out of binary classifiers. Any decent SVM package will do this for you.

3.5 CLASSIFYING WITH RANDOM FORESTS

I described a classifier as a rule that takes a feature, and produces a class. One way
to build such a rule is with a sequence of simple tests, where each test is allowed
to use the results of all previous tests. This class of rule can be drawn as a tree
(Figure 77), where each node represents a test, and the edges represent the possible
outcomes of the test. To classify a test item with such a tree, you present it to
the first node; the outcome of the test determines which node it goes to next; and
so on, until the example arrives at a leaf. When it does arrive at a leaf, we label
the test item with the most common label in the leaf. This object is known as a
decision tree. Notice one attractive feature of this decision tree: it deals with
multiple class labels quite easily, because you just label the test item with the most
common label in the leaf that it arrives at when you pass it down the tree.

Figure shows a simple 2D dataset with four classes, next to a decision
tree that will correctly classify at least the training data. Actually classifying data
with a tree like this is straightforward. We take the data item, and pass it down
the tree. Notice it can’t go both left and right, because of the way the tests work.
This means each data item arrives at a single leaf. We take the most common
label at the leaf, and give that to the test item. In turn, this means we can build
a geometric structure on the feature space that corresponds to the decision tree.
I have illustrated that structure in figure 3.5 where the first decision splits the
feature space in half (which is why the term split is used so often), and then the
next decisions split each of those halves into two.

The important question is how to get the tree from data. It turns out that
the best approach for building a tree incorporates a great deal of randomness. As
a result, we will get a different tree each time we train a tree on a dataset. None of
the individual trees will be particularly good (they are often referred to as “weak
learners”). The natural thing to do is to produce many such trees (a decision
forest), and allow each to vote; the class that gets the most votes, wins. This
strategy is extremely effective.

3.5.1 Building a Decision Tree

There are many algorithms for building decision trees. We will use an approach
chosen for simplicity and effectiveness; be aware there are others. We will always
use a binary tree, because it’s easier to describe and because that’s usual (it doesn’t
change anything important, though). Each node has a decision function, which
takes data items and returns either 1 or -1.

We train the tree by thinking about its effect on the training data. We pass
the whole pool of training data into the root. Any node splits its incoming data
into two pools, left (all the data that the decision function labels 1) and right (ditto,
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FIGURE 3.4: This — the household robot’s guide to obstacles — is a typical decision
tree. I have labelled only one of the outgoing branches, because the other is the
negation. So if the obstacle moves, bites, bul isn’t furry, then it’s a toddler. In
general, an item is passed down the tree until it hits a leaf. It is then labelled with
the leaf’s label.

-1). Finally, each leaf contains a pool of data, which it can’t split because it is a
leaf.

Training the tree uses a straightforward algorithm. First, we choose a class of
decision functions to use at each node. It turns out that a very effective algorithm
is to choose a single feature at random, then test whether its value is larger than, or
smaller than a threshold. For this approach to work, one needs to be quite careful
about the choice of threshold, which is what we describe in the next section. Some
minor adjustments, described below, are required if the feature chosen isn’t ordinal.
Surprisingly, being clever about the choice of feature doesn’t seem add a great deal
of value. We won’t spend more time on other kinds of decision function, though
there are lots.

Now assume we use a decision function as described, and we know how to
choose a threshold. We start with the root node, then recursively either split the
pool of data at that node, passing the left pool left and the right pool right, or stop
splitting and return. Splitting involves choosing a decision function from the class
to give the “best” split for a leaf. The main questions are how to choose the best
split (next section), and when to stop.

Stopping is relatively straightforward. Quite simple strategies for stopping
are very good. It is hard to choose a decision function with very little data, so we
must stop splitting when there is too little data at a node. We can tell this is the
case by testing the amount of data against a threshold, chosen by experiment. If all
the data at a node belongs to a single class, there is no point in splitting. Finally,
constructing a tree that is too deep tends to result in generalization problems, so
we usually allow no more than a fixed depth D of splits. Choosing the best splitting
threshold is more complicated.

Figure shows two possible splits of a pool of training data. One is quite
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FIGURE 3.5: A straightforward decision tree, illustrated in two ways. On the left,
I have given the rules at each split; on the right, I have shown the data points in
two dimensions, and the structure that the tree produces in the feature space.

obviously a lot better than the other. In the good case, the split separates the pool
into positives and negatives. In the bad case, each side of the split has the same
number of positives and negatives. We cannot usually produce splits as good as
the good case here. What we are looking for is a split that will make the proper
label more certain.

Figure B shows a more subtle case to illustrate this. The splits in this figure
are obtained by testing the horizontal feature against a threshold. In one case,
the left and the right pools contain about the same fraction of positive (’x’) and
negative ('0’) examples. In the other, the left pool is all positive, and the right pool
is mostly negative. This is the better choice of threshold. If we were to label any
item on the left side positive and any item on the right side negative, the error rate
would be fairly small. If you count, the best error rate for the informative split is
20% on the training data, and for the uninformative split it is 40% on the training
data.

But we need some way to score the splits, so we can tell which threshold is
best. Notice that, in the uninformative case, knowing that a data item is on the
left (or the right) does not tell me much more about the data than I already knew.
We have that p(1|left pool, uninformative) = 2/3 ~ 3/5 = p(1|parent pool) and
p(1|right pool, uninformative) = 1/2 ~ 3/5 = p(1|parent pool). For the informa-
tive pool, knowing a data item is on the left classifies it completely, and knowing
that it is on the right allows us to classify it an error rate of 1/3. The informative
split means that my uncertainty about what class the data item belongs to is signif-
icantly reduced if I know whether it goes left or right. To choose a good threshold,
we need to keep track of how informative the split is.
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FIGURE 3.6: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’xr’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’o’s, and all the points on the
right are ’x’s. This is an excellent choice of split — once we have arrived in a leaf,
everything has the same label. Compare this with the less informative split. We
started with a node that was half 'z’ and half 'o’, and now have two nodes each of
which is half 'z and half "o’ — this isn’t an improvement, because we do not know
more about the label as a result of the split.

3.5.2 Choosing a Split with Information Gain

Write P for the set of all data at the node. Write P; for the left pool, and P, for
the right pool. The entropy of a pool C scores how many bits would be required to
represent the class of an item in that pool, on average. Write n(i;C) for the number
of items of class ¢ in the pool, and N(C) for the number of items in the pool. Then
the entropy H(C) of the pool C is

n(i;C) n(i;C)
_zi: N %2 N

It is straightforward that H(P) bits are required to classify an item in the parent
pool P. For an item in the left pool, we need H(P;) bits; for an item in the right
pool, we need H(P,) bits. If we split the parent pool, we expect to encounter items
in the left pool with probability

N(Pp)
N(P)
and items in the right pool with probability

N(Pr)
N(P)

This means that, on average, we must supply

N(P)
(P)

H(P)) +

=
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FIGURE 3.7: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’x’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’x’s, and two-thirds of the points
on the right are ’o’s. This means that knowing which side of the split a point lies
would give us a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are ’x’s and about half on the right are x’s
— knowing which side of the split a point lies is much less useful in deciding what
the label is.

bits to classify data items if we split the parent pool. Now a good split is one that
results in left and right pools that are informative. In turn, we should need fewer
bits to classify once we have split than we need before the split. You can see the
difference

N(Py)
N(P)

N(P,)
N(P)

I(P,Pr;P)=H(P) — < H(P) + H(Pr))

as the information gain caused by the split. This is the average number of bits
that you don’t have to supply if you know which side of the split an example lies.
Better splits have larger information gain.

Recall that our decision function is to choose a feature at random, then test
its value against a threshold. Any data point where the value is larger goes to the
left pool; where the value is smaller goes to the right. This may sound much too
simple to work, but it is actually effective and popular. Assume that we are at
a node, which we will label k. We have the pool of training examples that have
reached that node. The i’th example has a feature vector x;, and each of these
feature vectors is a d dimensional vector.

We choose an integer j in the range 1...d uniformly and at random. We will
split on this feature, and we store j in the node. Recall we write xgj ) for the value
of the j’th component of the i'th feature vector. We will choose a threshold ty,
and split by testing the sign of xl(]) — t,. Choosing the value of tj, is easy. Assume
there are Nj examples in the pool. Then there are Ny — 1 possible values of g
that lead to different splits. To see this, sort the Nj, examples by z(/), then choose
values of ), halfway between example values (Figure B.8]). For each of these values,
we compute the information gain of the split. We then keep the threshold with the



Section 3.5 Classifying with Random Forests 38

FIGURE 3.8: We search for a good splitting threshold by looking at values of the
chosen component that yield different splits. On the left, I show a small dataset
and its projection onto the chosen splitting component (the horizontal axis). For the
8 data points here, there are only 7 threshold values that produce interesting splits,
and these are shown as ’t’s on the axis. On the right, I show a larger dataset; in
this case, I have projected only a subset of the data, which results in a small set of
thresholds to search.

best information gain.

We can elaborate this procedure in a useful way, by choosing m features at
random, finding the best split for each, then keeping the feature and threshold
value that is best. It is important that m is a lot smaller than the total number of
features — a usual root of thumb is that m is about the square root of the total
number of features. It is usual to choose a single m, and choose that for all the
splits.

Now assume we happen to have chosen to work with a feature that isn’t
ordinal, and so can’t be tested against a threshold. A natural, and effective, strategy
is as follows. We can split such a feature into two pools by flipping an unbiased
coin for each value — if the coin comes up H, any data point with that value goes
left, and if it comes up 7', any data point with that value goes right. We chose this
split at random, so it might not be any good. We can come up with a good split by
repeating this procedure F' times, computing the information gain for each split,
then keeping the one that has the best information gain. We choose F' in advance,
and it usually depends on the number of values the categorical variable can take.

We now have a relatively straightforward blueprint for an algorithm, which I
have put in a box. It’s a blueprint, because there are a variety of ways in which it
can be revised and changed.
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Procedure: 3.2 Building a decision tree

We have a dataset containing N pairs (x;,y;). Each z; is a d-
dimensional feature vector, and each y; is a label. Call this dataset
a pool. Now recursively apply the following procedure:

e If the pool is too small, or if all items in the pool have the same
label, or if the depth of the recursion has reached a limit, stop.

e Otherwise, search the features for a good split that divides the
pool into two, then apply this procedure to each child.

We search for a good split by the following procedure:

e Choose a subset of the feature components at random. Typically,
one uses a subset whose size is about the square root of the feature
dimension.

e For each component of this subset, search for the best splitting
threshold. Do so by selecting a set of possible values for the
threshold, then for each value splitting the dataset (every data
item with a value of the component below the threshold goes left,
others go right), and computing the information gain for the split.
Keep the threshold that has the largest information gain.

A good set of possible values for the threshold will contain values that
separate the data “reasonably”. If the pool of data is small, you can
project the data onto the feature component (i.e. look at the values of
that component alone), then choose the N — 1 distinct values that lie
between two data points. If it is big, you can randomly select a subset
of the data, then project that subset on the feature component and
choose from the values between data points.

3.5.3 Forests

A single decision tree tends to yield poor classifications. One reason is because the
tree is not chosen to give the best classification of its training data. We used a
random selection of splitting variables at each node, so the tree can’t be the “best
possible”. Obtaining the best possible tree presents significant technical difficulties.
It turns out that the tree that gives the best possible results on the training data
can perform rather poorly on test data. The training data is a small subset of
possible examples, and so must differ from the test data. The best possible tree on
the training data might have a large number of small leaves, built using carefully
chosen splits. But the choices that are best for training data might not be best for
test data.

Rather than build the best possible tree, we have built a tree efficiently, but
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with number of random choices. If we were to rebuild the tree, we would obtain
a different result. This suggests the following extremely effective strategy: build
many trees, and classify by merging their results.

3.5.4 Building and Evaluating a Decision Forest

There are two important strategies for building and evaluating decision forests. I
am not aware of evidence strongly favoring one over the other, but different software
packages use different strategies, and you should be aware of the options. In one
strategy, we separate labelled data into a training and a test set. We then build
multiple decision trees, training each using the whole training set. Finally, we
evaluate the forest on the test set. In this approach, the forest has not seen some
fraction of the available labelled data, because we used it to test. However, each
tree has seen every training data item.

Procedure: 3.3 Building a decision forest

We have a dataset containing N pairs (x;,y;). FEach x; is a d-
dimensional feature vector, and each y; is a label. Separate the dataset
into a test set and a training set. Train multiple distinct decision trees
on the training set, recalling that the use of a random set of components
to find a good split means you will obtain a distinct tree each time.

In the other strategy, sometimes called bagging, each time we train a tree we
randomly subsample the labelled data with replacement, to yield a training set the
same size as the original set of labelled data. Notice that there will be duplicates
in this training set, which is like a bootstrap replicate. This training set is often
called a bag. We keep a record of the examples that do not appear in the bag (the
“out of bag” examples). Now to evaluate the forest, we evaluate each tree on its
out of bag examples, and average these error terms. In this approach, the entire
forest has seen all labelled data, and we also get an estimate of error, but no tree
has seen all the training data.

Procedure: 3.4 Building a decision forest using bagging

We have a dataset containing N pairs (x;,y;). FEach x; is a d-
dimensional feature vector, and each y; is a label. Now build k& boot-
strap replicates of the training data set. Train one decision tree on each
replicate.
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3.5.5 Classifying Data ltems with a Decision Forest

Once we have a forest, we must classify test data items. There are two major
strategies. The simplest is to classify the item with each tree in the forest, then
take the class with the most votes. This is effective, but discounts some evidence
that might be important. For example, imagine one of the trees in the forest has a
leaf with many data items with the same class label; another tree has a leaf with
exactly one data item in it. One might not want each leaf to have the same vote.

Procedure: 3.5 Classification with a decision forest

Given a test example x, pass it down each tree of the forest. Now choose
one of the following strategies.

e Each time the example arrives at a leaf, record one vote for the
label that occurs most often at the leaf. Now choose the label
with the most votes.

e Each time the example arrives at a leaf, record N; votes for each of
the labels that occur at the leaf, where N; is the number of times
the label appears in the training data at the leaf. Now choose the
label with the most votes.

An alternative strategy that takes this observation into account is to pass the
test data item down each tree. When it arrives at a leaf, we record one vote for each
of the training data items in that leaf. The vote goes to the class of the training
data item. Finally, we take the class with the most votes. This approach allows
big, accurate leaves to dominate the voting process. Both strategies are in use, and
I am not aware of compelling evidence that one is always better than the other.
This may be because the randomness in the training process makes big, accurate
leaves uncommon in practice.
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Worked example 3.3 Classifying heart disease data

Build a random forest classifier to classify the “heart” dataset from the UC
Irvine machine learning repository. The dataset is at http://archive.ics.uci.edu/
ml/datasets/Heart+Disease. There are several versions. You should look at the
processed Cleveland data, which is in the file “processed.cleveland.data.txt”.

Solution: I used the R random forest package. This uses a bagging strategy.
This package makes it quite simple to fit a random forest, as you can see. In
this dataset, variable 14 (V14) takes the value 0, 1, 2, 3 or 4 depending on
the severity of the narrowing of the arteries. Other variables are physiological
and physical measurements pertaining to the patient (read the details on the
website). I tried to predict all five levels of variable 14, using the random forest
as a multivariate classifier. This works rather poorly, as the out-of-bag class
confusion matrix below shows. The total out-of-bag error rate was 45%.

Predict | Predict | Predict | Predict | Predict | Class

0 1 2 & 4 error

True 0 151 7 2 3 1 7.9%
True 1 32 5) 9 9 0 91%
True 2 10 9 7 9 1 81%
True 3 6 13 9 5 2 86%
True 4 2 3 2 6 0 100%

This is the example of a class confusion matrix from table B.Il Fairly clearly,
one can predict narrowing or no narrowing from the features, but not the
degree of narrowing (at least, not with a random forest). So it is natural to
quantize variable 14 to two levels, 0 (meaning no narrowing), and 1 (meaning
any narrowing, so the original value could have been 1, 2, or 3). I then built
a random forest to predict this from the other variables. The total out-of-bag
error rate was 19%, and I obtained the following out-of-bag class confusion
matrix

Predict | Predict | Class

0 1 error

True 0 138 26 16%
True 1 31 108 22%

Notice that the false positive rate (16%, from 26/164) is rather better than the
false negative rate (22%). Looking at these class confusion matrices, you might
wonder whether it is better to predict 0, ..., 4, then quantize. But this is not a
particularly good idea. While the false positive rate is 7.9%, the false negative
rate is much higher (36%, from 50/139). In this application, a false negative is
likely more of a problem than a false positive, so the tradeoff is unattractive.
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Remember this:  Random forests are straightforward to build, and very
effective. They can predict any kind of label. Good software implementa-
tions are easily available.
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3.6 YOU SHOULD

3.6.1 remember these definitions:

3.6.2 remember these terms:

batch sizd . . . . . . L 28

tochastic gradient descentl . . . . . . . .. .. 28
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3.6.3 remember these facts:

D ] Tassifi — Tatal
Nearest neighbors are good z-aaa Eéé;] ..................
\ wves is si nd

3.6.4 remember these procedures:

3.6.5 be able to:

build a nearest neighbors classifier using your preferred software package, and

produce a cross-validated estimate of its error rate or its accuracy;

build a naive bayes classifier using your preferred software package, and pro-

duce a cross-validated estimate of its error rate or its accuracy;

build an SVM using your preferred software package, and produce a cross-

validated estimate of its error rate or its accuracy;

write code to train an SVM using stochastic gradient descent, and produce a

cross-validated estimate of its error rate or its accuracy;

and build a decision forest using your preferred software package, and produce

a cross-validated estimate of its error rate or its accuracy.
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PROGRAMMING EXERCISES

3.1.

3.2.

The UC Irvine machine learning data repository hosts a famous collection of
data on whether a patient has diabetes (the Pima Indians dataset), originally
owned by the National Institute of Diabetes and Digestive and Kidney Diseases
and donated by Vincent Sigillito. This can be found at http://archive.ics.uci.
edu/ml/datasets/Pima+Indians+Diabetes. This data has a set of attributes of
patients, and a categorical variable telling whether the patient is diabetic or
not. For several attributes in this data set, a value of 0 may indicate a missing
value of the variable.

(a) Build a simple naive Bayes classifier to classify this data set. You should
hold out 20% of the data for evaluation, and use the other 80% for training.
You should use a normal distribution to model each of the class-conditional
distributions. You should write this classifier yourself (it’s quite straight-
forward), but you may find the function createDataPartition in the R
package caret helpful to get the random partition.

(b) Now adjust your code so that, for attribute 3 (Diastolic blood pressure),
attribute 4 (Triceps skin fold thickness), attribute 6 (Body mass index),
and attribute 8 (Age), it regards a value of 0 as a missing value when
estimating the class-conditional distributions, and the posterior. R uses
a special number NA to flag a missing value. Most functions handle this
number in special, but sensible, ways; but you’ll need to do a bit of looking
at manuals to check. Does this affect the accuracy of your classifier?

(c) Now use the caret and klaR packages to build a naive bayes classifier
for this data, assuming that no attribute has a missing value. The caret
package does cross-validation (look at train) and can be used to hold out
data. The klaR package can estimate class-conditional densities using a
density estimation procedure that I will describe much later in the course.
Use the cross-validation mechanisms in caret to estimate the accuracy of
your classifier. I have not been able to persuade the combination of caret
and klaR to handle missing values the way I’d like them to, but that may
be ignorance (look at the na.action argument).

(d) Now install SVMLight, which you can find at http://svmlight.joachims.
org, via the interface in klaR (look for svmlight in the manual) to train
and evaluate an SVM to classify this data. You don’t need to understand
much about SVM’s to do this — we’ll do that in following exercises. You
should hold out 20% of the data for evaluation, and use the other 80% for
training. You should NOT substitute NA values for zeros for attributes 3,
4, 6, and 8.

The UC Irvine machine learning data repository hosts a collection of data

on student performance in Portugal, donated by Paulo Cortez, University of

Minho, in Portugal. You can find this data at https://archive.ics.uci.edu/ml/

datasets/Student+Performance. It is described in P. Cortez and A. Silva. Using

Data Mining to Predict Secondary School Student Performance. In A. Brito

and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology Con-

ference (FUBUTEC 2008) pp. 5-12, Porto, Portugal, April, 2008, EUROSIS,

ISBN 978-9077381-39-7.

There are two datasets (for grades in mathematics and for grades in Por-

tugese). There are 30 attributes each for 649 students, and 3 values that can


http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://svmlight.joachims.org
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be predicted (G1, G2 and G3). Of these, ignore G1 and G2.

(a) Use the mathematics dataset. Take the G3 attribute, and quantize this
into two classes, G3 > 12 and G3 < 12. Build and evaluate a naive
bayes classifier that predicts G3 from all attributes except G1 and G2.
You should build this classifier from scratch (i.e. DON'T use the pack-
ages described in the code snippets). For binary attributes, you should
use a binomial model. For the attributes described as “numeric”, which
take a small set of values, you should use a multinomial model. For the
attributes described as “nominal”, which take a small set of values, you
should again use a multinomial model. Ignore the “absence” attribute.
Estimate accuracy by cross-validation. You should use at least 10 folds,
excluding 15% of the data at random to serve as test data, and average
the accuracy over those folds. Report the mean and standard deviation
of the accuracy over the folds.

(b) Now revise your classifier of the previous part so that, for the attributes
described as “numeric”, which take a small set of values, you use a multi-
nomial model. For the attributes described as “nominal”, which take a
small set of values, you should still use a multinomial model. Ignore the
“absence” attribute. Estimate accuracy by cross-validation. You should
use at least 10 folds, excluding 15% of the data at random to serve as test
data, and average the accuracy over those folds. Report the mean and
standard deviation of the accuracy over the folds.

(c) Which classifier do you believe is more accurate and why?

The UC Irvine machine learning data repository hosts a collection of data on

heart disease. The data was collected and supplied by Andras Janosi, M.D., of

the Hungarian Institute of Cardiology, Budapest; William Steinbrunn, M.D.,

of the University Hospital, Zurich, Switzerland; Matthias Pfisterer, M.D., of

the University Hospital, Basel, Switzerland; and Robert Detrano, M.D., Ph.D.,
of the V.A. Medical Center, Long Beach and Cleveland Clinic Foundation. You
can find this data at https://archive.ics.uci.edu/ml/datasets/Heart+Disease.

Use the processed Cleveland dataset, where there are a total of 303 instances

with 14 attributes each. The irrelevant attributes described in the text have

been removed in these. The 14’th attribute is the disease diagnosis. There are
records with missing attributes, and you should drop these.

(a) Take the disease attribute, and quantize this into two classes, num = 0
and num > 0. Build and evaluate a naive bayes classifier that predicts
the class from all other attributes Estimate accuracy by cross-validation.
You should use at least 10 folds, excluding 15% of the data at random to
serve as test data, and average the accuracy over those folds. Report the
mean and standard deviation of the accuracy over the folds.

(b) Now revise your classifier to predict each of the possible values of the
disease attribute (0-4 as I recall). Estimate accuracy by cross-validation.
You should use at least 10 folds, excluding 15% of the data at random to
serve as test data, and average the accuracy over those folds. Report the
mean and standard deviation of the accuracy over the folds.

The UC Irvine machine learning data repository hosts a collection of data

on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and

William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/

datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an

id number, 10 continuous variables, and a class (benign or malignant). There

are 569 examples. Separate this dataset randomly into 100 validation, 100


https://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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test, and 369 training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you
don’t really need one), but your own code. You should ignore the id number,
and use the continuous variables as a feature vector. You should search for
an appropriate value of the regularization constant, trying at least the values
A =[le—3,1e — 2,1e — 1,1]. Use the validation set for this search
You should use at least 50 epochs of at least 100 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 10 steps. You should produce:
(a) A plot of the accuracy every 10 steps, for each value of the regularization
constant.
(b) Your estimate of the best value of the regularization constant, together
with a brief description of why you believe that is a good value.
(c) Your estimate of the accuracy of the best classifier on held out data
The UC Irvine machine learning data repository hosts a collection of data on
adult income, donated by Ronny Kohavi and Barry Becker. You can find this
data at https://archive.ics.uci.edu/ml/datasets/Adult For each record, there is
a set of continuous attributes, and a class (;=50K or {50K). There are 48842
examples. You should use only the continous attributes (see the description on
the web page) and drop examples where there are missing values of the contin-
uous attributes. Separate the resulting dataset randomly into 10% validation,
10% test, and 80% training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you
don’t really need one), but your own code. You should ignore the id number,
and use the continuous variables as a feature vector. You should search for
an appropriate value of the regularization constant, trying at least the values
A =[le—3,1e — 2,1e — 1, 1]. Use the validation set for this search
You should use at least 50 epochs of at least 300 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 30 steps. You should produce:
(a) A plot of the accuracy every 30 steps, for each value of the regularization
constant.
(b) Your estimate of the best value of the regularization constant, together
with a brief description of why you believe that is a good value.
(¢) Your estimate of the accuracy of the best classifier on held out data
The UC Irvine machine learning data repository hosts a collection of data on
the whether p53 expression is active or inactive.
You can find out what this means, and more information about the dataset,
by reading: Danziger, S.A., Baronio, R., Ho, L., Hall, L., Salmon, K., Hat-
field, G.W., Kaiser, P., and Lathrop, R.H. (2009) Predicting Positive p53
Cancer Rescue Regions Using Most Informative Positive (MIP) Active Learn-
ing, PLOS Computational Biology, 5(9); Danziger, S.A., Zeng, J., Wang, Y.,
Brachmann, R.K. and Lathrop, R.H. (2007) Choosing where to look next in
a mutation sequence space: Active Learning of informative p53 cancer res-
cue mutants, Bioinformatics, 23(13), 104-114; and Danziger, S.A., Swamidass,
S.J., Zeng, J., Dearth, L.R., Lu, Q., Chen, J.H., Cheng, J., Hoang, V.P., Saigo,
H., Luo, R., Baldi, P., Brachmann, R.K. and Lathrop, R.H. (2006) Functional
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census of mutation sequence spaces: the example of p53 cancer rescue mu-

tants, IEEE/ACM transactions on computational biology and bioinformatics

/ IEEE, ACM, 3, 114-125.

You can find this data at https://archive.ics.uci.edu/ml/datasets/p53+Mutants.

There are a total of 16772 instances, with 5409 attributes per instance. At-

tribute 5409 is the class attribute, which is either active or inactive. There are

several versions of this dataset. You should use the version K8.data.

(a) Train an SVM to classify this data, using stochastic gradient descent. You
will need to drop data items with missing values. You should estimate
a regularization constant using cross-validation, trying at least 3 values.
Your training method should touch at least 50% of the training set data.
You should produce an estimate of the accuracy of this classifier on held
out data consisting of 10% of the dataset, chosen at random.

(b) Now train a naive bayes classifier to classify this data. You should produce
an estimate of the accuracy of this classifier on held out data consisting
of 10% of the dataset, chosen at random.

(c) Compare your classifiers. Which one is better? why?
The UC Irvine machine learning data repository hosts a collection of data on
whether a mushroom is edible, donated by Jeff Schlimmer and to be found at
http://archive.ics.uci.edu/ml/datasets/Mushroom. This data has a set of cat-
egorical attributes of the mushroom, together with two labels (poisonous or
edible). Use the R random forest package (as in the example in the chapter)
to build a random forest to classify a mushroom as edible or poisonous based
on its attributes.

(a) Produce a class-confusion matrix for this problem. If you eat a mushroom
based on your classifier’s prediction it is edible, what is the probability of
being poisoned?


https://archive.ics.uci.edu/ml/datasets/p53+Mutants
http://archive.ics.uci.edu/ml/datasets/Mushroom

CHAPTER 4

Extracting Important Relationships
in High Dimensions

Chapter 7?7 described methods to explore the relationship between two ele-
ments in a dataset. We could extract a pair of elements and construct various plots.
For vector data, we could also compute the correlation between different pairs of
elements. But if each data item is d-dimensional, there could be a lot of pairs to
deal with.

We will think of our dataset as a collection of d dimensional vectors. It turns
out that there are easy generalizations of our summaries. However, is hard to
plot d-dimensional vectors. We need to find some way to make them fit on a 2-
dimensional plot. Some simple methods can offer insights, but to really get what is
going on we need methods that can represent all relationships in a dataset in one
go.

These methods visualize the dataset as a “blob” in a d-dimensional space.
Many such blobs are flattened in some directions, because components of the data
are strongly correlated. Finding the directions in which the blobs are flat yields
methods to compute lower dimensional representations of the dataset.

4.1 SUMMARIES AND SIMPLE PLOTS

In this chapter, we assume that our data items are vectors. This means that we can
add and subtract values and multiply values by a scalar without any distress. This
is an important assumption, but it doesn’t necessarily mean that data is continuous
(for example, you can meaningfully add the number of children in one family to the
number of children in another family). It does rule out a lot of discrete data. For
example, you can’t add “sports” to “grades” and expect a sensible answer.

When we plotted histograms, we saw that mean and variance were a very
helpful description of data that had a unimodal histogram. If the histogram had
more than one mode, one needed to be somewhat careful to interpret the mean and
variance; in the pizza example, we plotted diameters for different manufacturers to
try and see the data as a collection of unimodal histograms. In higher dimensions,
the analogue of a unimodal histogram is a “blob” — a group of data points that
clusters nicely together and should be understood together.

You might not believe that “blob” is a technical term, but it’s quite widely
used. This is because it is relatively easy to understand a single blob of data. There
are good summary representations (mean and covariance, which I describe below).
If a dataset forms multiple blobs, we can usually coerce it into a representation as a
collection of blobs (using the methods of chapter [). But many datasets really are
single blobs, and we concentrate on such data here. There are quite useful tricks
for understanding blobs of low dimension by plotting them, which I describe below.
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