Simple Detection

D.A. Forsyth CS598 MAAV

Classification vs detection

® (lassification:

® there is an X in this image
® what

® Detection:

® there is an X HERE in this image
® what AND where

® Key issues
® how to specify where
e relationship between what and where
e cfficiency, etc
e cvaluation
e surprisingly fiddly

Start simple

® Where = axis aligned box

e Decide on a window shape: this is easy. There are two possibilities: a
box, or something else. Boxes are easy to represent, and are used for almost
all practical detectors. The alternative — some form of mask that cuts the
object out of the image — is hardly ever used, because it is hard to represent.

e Build a classifier for windows: this is easy — we’ve seen multiple construc-
tions for image classifiers.

e Decide which windows to look at: this turns out to be an interesting
problem. Searching all windows isn’t efficient.

e Choose which windows with high classifier scores to report: this is
interesting, too, because windows will overlap, and we don’t want to report
the same object multiple times in slightly different windows.

e Report the precise locations of all faces using these windows: this is
also interesting. It turns out our window is likely not the best available, and
we can improve it after deciding it contains a face.

Which window

® Surprising fact
® FEasy to tell whether a region is likely to be an object

® cven if you don’t know what object (Endres+Hoiem, 10; Uijlings et al
12)

® ifit’s an object
® there’s contrast with surroundings in texture, etc

® if not
® often neighbor region is similar

Input Image Hierarchical Segmentation Proposed Regions Ranked Regions
Fig. 1: Our pipeline: compute a hierarchical segmentation, generate proposals, and rank
proposed regions. At each stage, we train classifiers to focus on likely object regions
and encourage diversity among the proposals, enabling the system to localize many
types of objects. See section 3 for a more detailed overview.

General strategy

Construct hierarchy of image regions
® using a hierarchical segmenter

Rank regions using a learned score
Make boxes out of high-ranking regions

Selective search

Selective search pipeline

Gound truth

Model False Positives Training Examples
Positive examples
Train SVM Search for Add to training o
— — —— 2
(Histogram Intersection | -se positive examples

Difficult negatives Kemel)

—

if overlap with
positive 20-50%

Retrain

Figure 3: The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives
we use examples that have a 20-50% overlap with the positive examples. We iteratively add hard negatives using a retraining phase.

This sort of thing works well

method recall | MABO # windows
Arbelaez et al. [3] 0.75210.649+0.193 | 418

Alexe et al. [2] 0.94410.694+0.111|1,853

Harzallah et al. [16] 0.830 |- 200 per class
Carreira and Sminchisescu [4] | 0.879 |0.770+0.084 | 517

Endres and Hoiem [9] 0.9120.791 +£0.082 | 790
Felzenszwalb et al. [12] 0.933 0.829 £0.052 | 100,352 per class
Vedaldi et al. [34] 0.940 | - 10,000 per class
Single Strategy 0.840|0.690£0.171 | 289

Selective search “Fast” 0.9800.804+0.046 2,134

Selective search “Quality” 0.991 (0.879£0.039 | 10,097

Table 35:

Comparison of recall, Mean Average Best Overlap

(MABO) and number of window locations for a variety of meth-
ods on the Pascal 2007 TEST set.

You need to search at multiple scales

Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.

Simplest detector

® Use selective search to propose boxes
® Check with classifier

e BUT

® boxes likely overlap - non-maximum suppression
® boxes likely in poor location - bounding box regression

Non maximum suppression

Deciding which windows to report presents minor but important problems.
Assume you look at 32 x 32 windows with a stride of 1. Then there will be many
windows that overlap the object fairly tightly, and these should have quite similar
scores. Just thresholding the value of the score will mean that we report many
instances of the same object in about the same place, which is unhelpful. If the
stride is large, no window may properly overlap the object and it might be missed.
Instead, most methods adopt variants of a greedy algorithm usually called non-
maximum suppression. First, build a sorted list of all windows whose score is
over threshold. Now repeat until the list is empty: choose the window with highest
score, and accept it as containing an object; now remove all windows with large
enough overlap on the object window.

Bounding box regression

Deciding precisely where the object is also presents minor but important prob-
lems. Assume we have a window that has a high score, and has passed through
non-maximum suppression. The procedure that generated the window does not
do a detailed assessment of all pixels in the window (otherwise we wouldn’t have
needed the classifier), so this window likely does not represent the best localization
of the object. A better estimate can be obtained by predicting a new bounding

box using a feature representation for the pixels in the current box. It’s natural to
use the feature representation computed by the classifier for this bounding box
regression step.

Selective
Search

Neural net Non-max
Classifier Suppression

—>»| Reshape

FIGURE 18.6: A schematic picture of how R-CNN works. A picture of Inkost Albert
Luthuli is fed in to selective search, which proposes possible boxes; these are cut
out of the image, and reshaped to fized size; the boxes are classified (scores next
to each box); non-mazimum suppression finds high scoring boxes and suppresses
nearby high scoring boxes (so his face isn’t found twice); and finally bounding box

regression adjusts the corners of the box to get the best fit using the features inside
the bozx.

Neural net Cro Neural e :
' ‘Top eural net Non-max Bounding box
Image —3p! feature > Rrois [P ROTpool 1| cgifier [Suppression _)regression >
stack

T

Selective
Search

FIGURE 18.7: Fust R-CNN is much more efficient than R-CNN, because it computes
a single feature map from the image, then uses the bores proposed by selective search
to cut regions of interest (ROI’s) from it. These are mapped to a standard size by
a ROI pooling layer, then presented to a classifier. The rest should be familiar.

Configuration spaces

® You should think of a box as a point in a 4D space
e configuration space of the boxes

® Selective search 1s weird
® networks don’t do lists much

® Alternative
e sample the configuration space on some form of grid
® cg three aspect ratios, three scales, grid of locations
® important: many possible sampling schemes
® check each sample with rank score

Anchor boxes

Image

FIGURE 18.8: Faster RCNN uses two networks.
“objectness” scores for a sampling of possible image boxes.
“anchor boxes”) are each centered at a grid point. At each grid point, there are nine
bozxes (three scales, three aspect ratios). The second is a feature stack that computes
a representation of the image suitable for classification.
objectness score are then cut from the feature map, standardized with ROI pooling,
then passed to a classifier. Bounding box regression means that the relatively coarse

Neural net
feature
stack

Crop

—> Rrois [

ROI pool

Neural net
Classifier

A

Box proposal
network

Box non-max
Suppression

Non-max
Suppression

Bounding box
regression

The boxes with highest

One uses the image to compute
The samples (called

sampling of locations, scales and aspect ratios does not weaken accuracy.

YOLO

® YOLO v3 is about as fast and accurate as you can get
® link on webpage
® keyidea

® Jook at box scores, label values independently

We split the image into a grid
FO I GRS I WL o e AN

e "'*'.*3% . AR o pdal
)

St (2T ;
.- ' - S
i K

Each cell predicts boxes and confidences: P(Object)

__w

- I

mw\m Fﬂmmmb\‘--t ‘

T

Each cell predicts boxes and confidences: P(Object)

) A
) w(:,“' \" ’ ., ".'J - v .y, ", 3 ."',.' - ‘.

Each cell predicts boxes and confidences: P(Object)

. ‘\ - *m""ﬂ.;m
I e e O Y O I

Each cell predicts boxes and confidences: P(Object)

m&‘ mmng\‘--

Each cell predicts boxes and confidences: P(Object)

< 2
- w",“' Vo ’ ., “.)J - . Y " . 3 o 1 ". e

Each cell predicts boxes and confidences: P(Object)

=3

Kad ‘;‘
e
I) I) r\-}I\
'.J‘ :' ._‘»,.' =y »
— L AR AT
Myl e Y 9 e 4

PR T = e W W I

Each cell also predicts a class probability.

Bicycle

| Car

Conditioned on object: P(Car | Object)

Bicycle Car

-. Dining
2 . B

Finally we do NMS and threshold detectlons

This parameterization fixes the output size

Each cell predicts:

- For each bounding box:

4 coordinates (x,y, w, h)
1 confidence value

- Some number of class
probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

7x7x(2x5+20)=7x7x30tensor =1470 outputs

1st - 5th
Box #1

6th - 10th
Box #2

11th - 30th
Class Probabilities

Thus we can train one neural network to be a whole

detection pipeline

A

64

Conv. Layer Convolutional Layers Conn. Layer

% XX R
e e il

H |~

[l ; , ™
1024 4096 30 -1

P | ElL |
e] 50 I YD

Pascal 2007 mAP |Speed
DPM v5 33.7 .07 FPS | 14 s/img
R-CNN 66.0 .05 FPS | 20s/img
Fast R-CNN 70.0 2 s/img
Faster R-CNN 73.2 140 ms/img
YOLO 1 69.0 22 ms/img

Evaluating detectors

Compare detected boxes w ground truth boxes
Favor

right number of boxes with right label in right place

Penalize

awful lot of boxes
multiple detections of the same thing

Strategy

® Detector makes a ranked list of boxes

GT 1s a list of boxes
Mark detector boxes with relevant/irrelevant
summarize lists

(010

The boxes that the detector predicts are unlikely to match ground truth ex-
actly, and we need some way of telling whether the boxes are good enough. The
standard method for doing this is to test the IoU (Intersection over Union). Write
B, for the ground truth box and B, for the predicted box. The IoU is

Area(B, N By)
Area(B, U Bp)

Choose some threshold ¢. If IoU(B,,B,) > t, then B, could match the ground
truth box B,.

IoU(B,, By) =

Usually, t=0.5; higher t on occasion, but this sets a
quite demanding standard for localization

Preventing double dipping

The detector should be credited for producing a box that has a high score and
matches a ground truth box. But the detetector should not be able to improve its
score by predicting many boxes on top of a ground truth box. The standard way
to handle the problem is to mark the overlapping box with highest score relevant.

The procedure 1s:

e Choose a threshold t.
e Order D by the score of each box, and mark every element of D with irrelevant.

Choose a threshold t¢.

e For each element of D in order of score, compare that box against all ground
truth boxes. If any ground truth box has IoU > ¢, mark the detector box
relevant and remove that ground truth box from G. Proceed until there are
no more ground truth boxes.

Now every box in D is tagged either relevant or irrelevant.

Recall and Precision

There are standard evaluations for search results like those produced by our
detector. The first step i1s to merge the lists for each evaluation image into a single
list of results. The precision of a set of search results § is given by

number of relevant search results

P(S) =

total number of search results

The recall is given by

number of relevant search results

R(S) =

total number of relevant items in collection

As you move down the list D in order of score, you get a new set of search results.
The recall never decreases as the set gets larger, and so you could plot the precision
as a function of recall (write P(R)). These plots have a characteristic saw-tooth
structure (Figure 18.9). If you add a single irrelevant item to the set of results,
the precision will fall; if you then add a relevant item, it jumps up. The sawtooth

Interpolated precision

06

05f

o
4
T

Precision

01

I T
——Precision
— Interpolated Precision

1 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 038 09 1

Recall

FIGURE 18.9: Two plots for an imaginary search process. The precision plotted
against recall shows a characteristic sawtooth shape. Interpolated precision mea-

sures the best precision

you can get by increasing the recall, and so smoothes the

plot. Interpolated precision is also a more natural representation of what one wants
from search results — most people would be willing to add items to get higher preci-
ston. Interpolated precision is used to evaluate detectors.

Interpolated precision

the precision will fall; it you then add a relevant item, it jumps up. 1'he sawtooth
doesn’t really reflect how useful the set of results is — people are usually willing to
add several items to a set of search results to improve the precision — and so it 1s
better to use interpolated precision. The interpolated precision at some recall
value Ry 1s given by

A max

mAP

(Figure 18.9). By convention, the average precision is computed as

TR
72 P
i=0
This value summarizes the recall-precision curve. Notice this averages in interpo-
lated precision at high recall. Doing so means a detector cannot get a high score
by producing only very few, very accurate boxes — to do well, a detector should
have high precision even when it 1s forced to predict every box.

Average precision evaluates detection for one category of object. The mean
average precision (mAP) is the mean of the average precision for each category.
The value depends on the IoU threshold chosen. One convention is to report mAP
at ToU = 0.5. Another is to compute mAP at a set of 10 IoU values (0.45+ 7 x 0.05
for i € 1...10), then average the mAP’s. These evaluations produce numbers that
tend to be bigger for better detectors, but it takes some practice to have a clear
sense of what an improvement in mAP actually means.

