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Lecture 17:
FastSLAM

CS 344R/393R:  Robotics
Benjamin Kuipers

Landmark-Based Mapping

• Suppose the environment consists of a set of
isolated landmarks:
– Trees in the forest
– Rocks in the Martian desert

• Treat a landmark as a point location (xk,yk).
• SLAM:  the robot learns the locations of the

landmarks while localizing itself.
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“Martian” Rocky Desert

The real Martian desert
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Landmarks vs Occupancy Grids
• An occupancy grid makes no assumption

about types of features.
– Now we assume point landmarks, but walls and

other types of features are also possible.
• An occupancy grid (typically) has fixed

resolution.
– Feature models can be arbitrarily precise.

• An occupancy grid takes space and time the
size of the environment to be mapped.
– A feature-based map takes space and time

reflecting the contents of the environment.

Kalman Filters for Features
• A landmark feature has parameters (xi,yi).

– The robot’s pose has parameters (x,y,ϕ).
– Robot plus K landmarks needs 2K+3 parameters.

• To estimate these with a Kalman filter:
– The means require 2K+3 parameters.
– The covariance matrix needs (2K+3)2.

• FastSLAM observes that the landmarks are
independent, given the robot’s pose.
– A 2×2 covariance matrix for each landmark.
– Total parameters:  K(2 + 2×2) + 3
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Landmark Poses are Independent
Given the Robot’s Pose

Bayesian Model
• Robot poses:  st = s1, s2, . . . st.

– (Slightly different from our usual notation.)
• Robot actions:  ut = u1, u2, . . . ut

• Observations:  zt = z1, z2, . . . zt

• Landmarks: Θ = θ1, . . . θk

• Correspondence:  nt = n1, n2, . . . nt
– nt = k means  zt  is an observation of θk

– Assume (without loss of generality) that
landmarks are observed one at a time.
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The SLAM Problem
• Estimate p(st, Θ | zt, ut, nt) using

– action model:  p(st | ut, st-1)
– sensor model:  p(zt | st, Θ, nt)

• Independence lets us factor

– trajectory estimation p(st | zt, ut, nt)
– from landmark estimation p(θk | st, zt, ut, nt)
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Factor the Uncertainty
• Rao-Blackwellized particle filters.
• Use particle filters to represent the

distribution over trajectories p(st | zt, ut, nt)
– M particles

• Within each particle, use Kalman filters to
represent distribution for each landmark
pose p(θk | st, zt, ut, nt)
– K Kalman filters per particle

• Each update requires O(MK) time.
– Easy to improve to O(M log K).
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Balanced Tree of Gaussians
In Each Particle

Insertions
Are Also
Cheap:

O(log K)
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Importance Sampling
• Sample from one distribution.

– Correct to approximate a target distribution.

Kalman Filters to Estimate
Locations of Fixed Landmarks
• Within the context of each particle, the

pose ROBOTW is known perfectly.
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Updating One Landmark
p(θk | st, zt, ut, nt)

• p(θk | st, zt, ut, nt) =
p(θk | st, zt, nt=k)

• zt = z = (r, φ)T

• st = s = (x, y, ϕ)T

Kalman filter model:
• θk,t = θk,t-1

• zt = g(st, θk,t)

Kalman Measurement Function
• The measurement function z = g(s,θ) = (r,φ)T

– where s = (x, y, ϕ)T  and  θ = (u, v)T

• The Jacobian of g with respect to θ=(u,v)T is:
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Kalman Filter Update Step
• Let (µt, Σt) be the mean and covariance of θk at time t.
• Landmarks are fixed, so prediction step is trivial.

– θk,t = θk,t-1
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• The KF correction step:
– given (µt-1, Σt-1)
– and pose st
– and observation zt
– update (µt, Σt)

• for each landmark θk

• in each particle st
(m).

Implementation Hint
• Alan Oursland has a Java implementation

– http://www.oursland.net/projects/fastslam/
• He reports having a hard time getting it to

work, until Dieter Fox helped him tune the
Kalman Filter.
– The observation covariance R must be very large,

so observations can match far-away landmarks.
• This is an example of how personal

experience is important to replicating ideas.
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Maps and Robot Paths

Tested successfully with up to 50,000 landmarks.

FastSLAM in Victoria Park

with raw odometry FastSLAM 2.0
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FastSLAM in Victoria Park

FastSLAM 2.0 Pruning bad landmarks

Another Practical Note
• In theory, FastSLAM

should scale well:
O(KN log M), where
– N is the number of

particles
– K is the number of

landmarks observed
– M is the number of

landmarks in the map
• But, in practice . . .

Robert Sim, http://www.cs.ubc.ca/~simra/lci/fastslam/nonlinear.html
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A Complexity Experiment
• Measure only operations independent of N.

– Take an image:  O(1).
– Extract and match SIFT features:  O(K log S)

• K features, matched against S features in kd-tree.
– Update N particles, but don’t count that cost.

Why doesn’t FastSLAM scale?

• At each frame:
– K SIFT features are added to the kd-tree, and
– NK landmarks are added to the FastSLAM tree.

• Memory fragmentation:
– In time, nearby SIFT features are separated in

memory, so CPU cache miss rate goes up.
– For large maps, page fault rate will also

increase.
• So the problem is the memory hierarchy,

due to failure of locality.
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Coming Attractions

• Topological mapping (3)

• Social and ethical implications
– What if we succeed?


