Cameras

D.A. Forsyth, UIUC

Cameras

- First photograph due to Niepce
- First on record shown in the book - 1822
- Basic abstraction is the pinhole camera
- lenses required to ensure image is not too dark
- various other abstractions can be applied

Pinhole cameras

- Abstract camera model - box with a small hole in it
- Pinhole cameras work in practice
image plane

Slides to accompany Forsyth and Ponce "Computer Vision - A Modern Approach" 2e by D.A. Forsyth

Distant objects are smaller

Slides to accompany Forsyth and Ponce "Computer Vision - A Modern Approach" 2e by D.A. Forsyth

Parallel lines meet

Common to draw film plane in front of the focal point.
Moving the film plane merely scales the image.

П

Slides to accompany Forsyth and Ponce "Computer Vision - A Modern Approach" 2e by D.A. Forsyth

Vanishing points

- Each set of parallel lines (=direction) meets at a different point
- The vanishing point for this direction
- Sets of parallel lines on the same plane lead to collinear vanishing points.
- The line is called the horizon for that plane
- Good ways to spot faked images
- scale and perspective don't work
- vanishing points behave badly
- supermarket tabloids are a great source.

The equation of projection - I

Slides to accompany Forsyth and Ponce "Computer Vision - A Modern Approach" 2e by D.A. Forsyth

The equation of projection - II

The equation of projection - III

- Cartesian coordinates:
- We have, by similar triangles, that (X, Y, Z) -> (f x/z, fy/z, f)

$$
(X, Y, Z) \rightarrow(f X / Z, f Y / Z)
$$

- notice we could have sign changes, etc. depending on
- whether there is a right handed/left handed coordinate system
- whether image plane is in front of/behind focal point

Homogenous coordinates

- Add an extra coordinate and use an equivalence relation
- for 2D
- equivalence relation
$\mathrm{k}^{*}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ is the same as $\quad(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$
- for 3D
- equivalence relation $\mathrm{k}^{*}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T})$ is the same as $\quad(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T})$
- Basic notion
- Possible to represent points "at infinity"
- Where parallel lines intersect
- Where parallel planes intersect
- Can write the action of a perspective camera as a matrix

The camera matrix

- Turn previous expression into HC's
- HC's for 3D point are (X,Y,Z,T)
- HC's for point in image are (U,V,W)

$$
\left(\begin{array}{l}
U \\
V \\
W
\end{array}\right)=\left(\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z \\
T
\end{array}\right)
$$

The camera matrix - II

- Turn previous expression into HC's
- HC's for 3D point are (X,Y,Z,T)
- HC's for point in image are (U,V,W)

Transforms points from object coordinates into world coordinates most likely a rotation and translation

Transforms camera coordinates
(f is hidden in here)

Usual forms

Camera intrinsic parameters

A scale, incorporating focal length and pixel size

$$
\mathcal{W}=\left(\begin{array}{cc}
{ }^{\text {RD }} & \mathbf{t}^{\text {3D rotation matix }} \\
\mathbf{0} & 1
\end{array}\right)^{\text {3D ransation vector }}
$$

Orthographic projection

Slides to accompany Forsyth and Ponce "Computer Vision - A Modern Approach" 2e by D.A. Forsyth

The projection matrix for orthographic projection

- Almost never encounter orthographic projection

$$
\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right)=\mathcal{C}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \mathcal{W}\left(\begin{array}{c}
X \\
Y \\
Z \\
T
\end{array}\right)
$$

Weak perspective or Affine Cameras

- Assume
- The range of depths over points is small compared to distance to points

$$
\begin{aligned}
& Z_{i}=Z_{0}+\delta Z_{i} \\
& \frac{1}{Z_{i}}=\frac{1}{Z_{0}}\left(\frac{1}{1+\frac{\delta Z_{i}}{Z_{0}}}\right) \approx \frac{1}{Z_{0}}\left(1-\frac{\delta Z_{i}}{Z_{0}}\right) \approx \frac{1}{Z_{0}}
\end{aligned}
$$

- So you could scale all points with one scale
- Scaled orthography

Affine Cameras - I

- And this becomes (for the relevant group of points)

$$
\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right)=\underset{\sim}{\mathcal{C}}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \mathcal{W}\left(\begin{array}{c}
X \\
Y \\
Z \\
T
\end{array}\right)
$$

Hide the scale in here

- We will see further simplifications soon

Pinhole too big -

2 mm
mm many directions are averaged, blurring the image

Pinhole too smalldiffraction effects blur the image

Generally, pinhole cameras are dark, because

0.6 mm

0.35 mm a very small set of rays from a particular point hits the screen.

The reason for lenses

Lenses come with problems

- Spherical aberration

- Lens is not a perfect thin lens, and point is defocused

Lens systems

Vignetting

Slides to accompany Forsyth and Ponce "Computer Vision - A Modern Approach" 2e by D.A. Forsyth

Other (possibly annoying) phenomena

- Chromatic aberration
- Light at different wavelengths follows different paths; hence, some wavelengths are defocussed
- Machines: coat the lens
- Humans: live with it
- Scattering at the lens surface
- Some light entering the lens system is reflected off each surface it encounters (Fresnel's law gives details)
- Machines: coat the lens, interior
- Humans: live with it (various scattering phenomena are visible in the human eye)
- Geometric phenomena (Barrel distortion, etc.)

Camera calibration - I

- Issues:
- what are intrinsic parameters of the camera?
- what is the camera matrix? (intrinsic+extrinsic)
- General strategy:
- view calibration object; identify image points in image
- obtain camera matrix by minimizing error
- obtain intrinsic parameters from camera matrix

Camera calibration - II

- Error minimization:
- Linear least squares
- easy problem numerically
- solution can be rather bad
- Minimize image distance
- more difficult numerical problem
- solution usually rather good
- Numerical scaling is an issue
- Strategy:
- start with linear least squares, then minimize image distance

Cameras - crucial points

- Pinhole camera is a simple, effective model
- With important effects
- distant objects are smaller
- parallel lines meet in image
- Alternative model: orthographic projection
- distant objects are not smaller
- parallel lines do not meet
- Each has straightforward mathematical form
- Most cameras have lenses
- otherwise they'd be too dark

