Basic SFM and SLAM

D.A. Forsyth, UIUC

Camera and structure from motion

- Assume:
- a moving camera views a static scene
- the camera is orthographic OR
- weak perspective applies with one scale for all
- all points can be seen in all views AND all correspondences are known
- Can get:
- the positions of all points in the scene
- the configuration of each camera
- Applications
- Reconstruction: Build a 3D model out of the reconstructed points
- Mapping: Use the camera information to figure out where you went
- Object insertion: Render a 3D model using the cameras, then composite the videos

M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch, Visual modeling with a hand-held camera, International Journal of Computer Vision 59(3), 207-232, 2004

Rendering and compositing

- Rendering:
- take camera model, object model, lighting model, make a picture
- very highly developed and well understood subject
- many renderers available; tend to take a lot of skill to use (Luxrender)
- Compositing:
- place two images on top of one another
- new picture using some pixels from one, some from the other
- example:
- green screening
- take non-green pixels from background, non-bg pixels from top

Recall: Affine Cameras - I

- And this becomes (for the relevant group of points)

$$
\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right)=\mathcal{C}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \mathcal{W}\left(\begin{array}{c}
X \\
Y \\
Z \\
T
\end{array}\right)
$$

Hide the scale in here

- We will see further simplifications soon

Scaled orthographic cameras

$$
\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right)=\mathcal{C}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \mathcal{W}\left(\begin{array}{c}
X \\
Y \\
Z \\
T
\end{array}\right)
$$

- Alternatively
- the camera film plane has
- two axes, u and v
- an origin, at (tx, ty)
- axes are at right angles
- axes are the same length
- point in 3D is

$$
(x, y, z)=\mathbf{x}
$$

- equation:

$$
\mathbf{x} \rightarrow\left(\mathbf{u} \cdot \mathbf{x}+t_{x}, \mathbf{v} \cdot \mathbf{x}+t_{y}\right)
$$

Simplify

- Now place the 3D origin at center of gravity of points
- ie mean of x over all points is zero, mean of y is zero, mean of z is zero
- Camera origin at center of gravity of image points
- we see all of them, so we can compute this
- this is the projection of 3D center of gravity
- Now camera becomes

$$
\mathbf{x} \rightarrow(\mathbf{u} \cdot \mathbf{x}, \mathbf{v} \cdot \mathbf{x})
$$

- Index for points, views

$$
\mathbf{x}_{j} \rightarrow\left(\mathbf{u}_{i} \cdot \mathbf{x}_{j}, \mathbf{v}_{i} \cdot \mathbf{x}_{j}\right)
$$

Multiple views

- More notation:
- write $x_{i, j}$ for the first (x) coordinate of the i 'th picture of the j 'th point
- write $y_{i, j}$ for the second (y) coordinate of the i'th picture of the j 'th point
- We had:

$$
\mathbf{x}_{j} \rightarrow\left(\mathbf{u}_{i} \cdot \mathbf{x}_{j}, \mathbf{v}_{i} \cdot \mathbf{x}_{j}\right)
$$

- Rewrite:

$$
\binom{x_{i, j}}{y_{i, j}}=\binom{\mathbf{u}_{i}^{T}}{\mathbf{v}_{i}^{T}} \mathbf{x}_{j}
$$

Multiple views

Data - observed!

Multiple views

- The data matrix has rank 3!
- so we can factor it into an $m x 3$ factor and a $3 x n$ factor
- (tall+thin)x(short+fat)
- so we know what to do; SVD -> factors
- recall SVD from IRLS!
- These factors are not unique
- assume A is 3×3 with rank 3 , we get symmetry below

$$
\mathcal{D}=\mathcal{T} \mathcal{S}=(\mathcal{T} \mathcal{A})\left(\mathcal{A}^{-1} \mathcal{S}\right)
$$

Camera and reconstruction

- Can choose factors uniquely
- recall v_i, u_i are
- at right angles
- same length
- Algorithm
- form D
- factor
- now choose A so that $v_{-} i, u_{-} i$ are at right angles, same length
- by numerical optimization
- What if there are missing points?
- Fairly simple optimization trick, following slides

Factoring without all points

- Write D for the data matrix, W for a mask matrix
- W_ij=0 if that entry of D is unknown, $=1$ if it is known
- Strategy:
- choose S, T to minimize

$$
\sum_{i, j} W_{i j}\left(D_{i j}-\sum_{k} T_{i k} S_{k j}\right)^{2}
$$

- now multiply these S, T - the result is the whole of D
- i.e. holes are filled in
- we expect this to work even if D has many holes in it because
- there are few parameters in S, T

Factors with missing points

- How to minimize? set the gradient to zero
- gradient with respect to $T_{-} u v$ is

$$
2 \sum_{j} W_{u j}\left(D_{u j}-\sum_{k} T_{u k} S_{k j}\right) S_{v j}
$$

- gradient with respect to S_{-}uv is

$$
2 \sum_{i} W_{i v}\left(D_{i v}-\sum_{k} T_{i k} S_{k v}\right) T_{i u}
$$

Software

- Colmap
- open source SFM at very large scale
- backbone of many other projects
- https://demuc.de/colmap/

Notice there are TWO products here

$\left(\begin{array}{cccc}x_{1,1} & x_{1,2} & \ldots & x_{1, n} \\ x_{2,1} & x_{2,2} & \ldots & x_{2, n} \\ \ldots & & & \\ y_{m, 1} & y_{m, 2} & \ldots & y_{m, n} \\ y_{1,1} & y_{1,2} & \ldots & y_{1, n} \\ y_{2,1} & y_{2,2} & \ldots & y_{2, n} \\ \ldots & y_{m, 1} & y_{m, 2} & \ldots\end{array}\right)=\left(\begin{array}{c}y_{m, n}^{T}\end{array}\right)=\left(\begin{array}{c}\mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \ldots \\ \mathbf{u}_{m}^{T} \\ \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \ldots \\ \mathbf{v}_{m}^{T}\end{array}\right)\left(\begin{array}{llll} & & & \\ \mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n}\end{array}\right)$

Estimates of camera rotation

What happened to translation?

Key takeaway

- Multiple views of multiple points yields
- point positions
- camera rotations
- IF
- you can match
- We'll do more detailed versions in various cases
- but it's all basically this point

