FastSlam and variants

D.A. Forsyth, UIUC (with a lot of help from borrowed slides....!)

Particle filters

• We've seen basic particle filters

- Can deal with
 - non-linear state updates
 - non-linear measurements
- Dislike
 - high dimensions

Localization vs. SLAM

- A particle filter can be used to solve both problems
- Localization: state space $\langle x, y, \theta \rangle$ Easy for pf
- SLAM: state space $\langle x, y, \theta, map \rangle$ Bad news for pf
 - for landmark maps = $< I_1, I_2, ..., I_m >$
 - for grid maps = < c₁₁, c₁₂, ..., c_{1n}, c₂₁, ..., c_{nm}>
- Problem: The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!

Factored Posterior (Landmarks) map observations & movements poses $p(x_{1:t}, l_{1:m} | z_{1:t}, u_{0:t-1})$ $p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$ SLAM posterior

Robot path posterior

landmark positions

Does this help to solve the problem?

Factorization first introduced by Murphy in 1999

13

Mapping using Landmarks

Knowledge of the robot's true path renders landmark positions conditionally independent

14

Factored Posterior

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$
Robot path posterior
(localization problem)
Conditionally
independent
landmark positions

Rao-Blackwellization

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

- This factorization is also called Rao-Blackwellization
- Given that the second term can be computed efficiently, particle filtering becomes possible!

The factorization isn't Rao-Blackwellization It's the consequences that are. What's important here is that estimating p(llx, z) is very well behaved; you can bung these terms in an Extended Kalman filter

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) =$$

$$p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$
Particle filter represents this distribution

Each of these terms is handled by an EKF FOR EACH PARTICLE

FastSLAM

- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs

FastSLAM Complexity

- Update robot particles based on control u_{t-1}
- Incorporate observation z_t into Kalman filters
- Resample particle set

N = Number of particles M = Number of map features O(N) Constant time per particle

> O(N•log(M)) Log time per particle

O(N•log(M)) Log time per particle

O(N·log(M)) Log time per particle

FastSLAM – Action Update

FastSLAM – Sensor Update

FastSLAM – Sensor Update Particle #1 Weight = 0.8Particle #2 Weight = 0.4 Particle #3 Weight = 0.1 20

Cum grano salis

Implementation Hint

- Alan Oursland has a Java implementation

 http://www.oursland.net/projects/fastslam/
- He reports having a hard time getting it to work, until Dieter Fox helped him tune the Kalman Filter.
 - The observation covariance *R* must be very large, so observations can match far-away landmarks.
- This is an example of how personal experience is important to replicating ideas.

FastSLAM Complexity

- Update robot particles based on control u_{t-1}
- Cum grano salis O(N) Constant time per particle

- Incorporate observation z_t into Kalman filters
- Resample particle set
 - N = Number of particles M = Number of map features

O(N•log(M)) Log time per particle

O(N•log(M)) Log time per particle

O(N·log(M)) Log time per particle

າາ

The grain of salt..

From Kuipers' slides

More salt....

Why doesn't FastSLAM scale?

- At each frame:
 - K SIFT features are added to the kd-tree, and
 - NK landmarks are added to the FastSLAM tree.
- Memory fragmentation:
 - In time, nearby SIFT features are separated in memory, so CPU cache miss rate goes up.
 - For large maps, page fault rate will also increase.
- So the problem is the memory hierarchy, due to failure of locality.

Data Association Problem

Which observation belongs to which landmark?

- A robust SLAM must consider possible data associations
- Potential data associations depend also on the pose of the robot

Multi-Hypothesis Data Association

- Data association is done on a per-particle basis
- Robot pose error is factored out of data association decisions

50

्रे

X

Per-Particle Data Association

Was the observation generated by the red or the blue landmark?

P(observationIred) = 0.3

P(observationIblue) = 0.7

- Two options for per-particle data association
 - Pick the most probable match
 - Pick an random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark

FastSLAM in Victoria Park

with raw odometry

FastSLAM 2.0

From Kuipers' slides

Results – Victoria Park

- 4 km traverse
- < 5 m RMS position error
- 100 particles

Blue = GPS Yellow = FastSLAM

Dataset courtesy of University of Sydney ²⁶

FastSLAM 1.0 uses the motion model as the proposal distribution

$$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$$

□ Is there a better distribution to sample from?

[Montemerlo et al., 2002]

Courtesy: C. Stachniss

