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Basic direct method

• Imagine a camera at a fixed height 
• moving rigidly over a textured ground plane
• bottom half of image is distorted ground plane texture
• Q: when camera moves, how does distortion change?
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How the image distorts

• Camera moves relative to ground plane

• And we get an image transformation

Original texture
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BUT - the texture hasn’t changed

• So

• Idea:
• minimize 

• as a function of the rotation and translation
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Note:  This gives odometry, and a form of map



Issues

• Minimize how?
• Typically, Newton’s method or a variant

• What about robustness?
• use an m-estimator, as in IRLS

• How to initialize?
• you could use interest points…
• but if movements are small you might not need to

• Why?
• massively improved estimates of rotation and translation IF you can min
• because very large numbers of points contribute

• Generalize
• camera moving in 3D and viewing a plane - easy, from drawing
• 3D world - more interesting



Direct SLAM in a 3D world

• RGB-D or stereo (sketch)
• align depth map in view 2 with that of view 1

• using rotation, translation, m-estimator+IRLS
• wrinkle - use intensity as well as depth

• keep
• aligned depths (prune redundancies) for mapping
• transformation (for localization)



Direct SLAM in a 3D world - I

• Monocular cameras
• semi-direct 

• for the moment, feature points
• to predict image positions, we need depths
• Discovery: 

• They’re not required for every frame
• a good R,T estimate comes from correspondence
• keyframes and depths refine

• and keyframe depths can be refined.











Quick and efficient



Direct SLAM in a 3D world - I

• Monocular cameras
• direct 

• to predict image positions, we need depths
• Recall:

• keyframes are fine
• Discovery:

• keyframe depths are enough
• pose graph:

• key frames (nodes) linked by transforms (edges)





Essential steps 

• Compare new frame to keyframe
• which has known depths 
• compute R, T, from

• photometric error and depth error
• recall: 

• depth -> image match -> photometric error
• (could adjust depths in keyframe using R,T, photometric error)

• Keyframe selection
• even sampling OR
• entropy of R,T from last keyframe to current frame j = H_j

• look at H_j/H_1
• ie am I getting bad at computing motion?
•



Essential steps 

• Loop Closure
• match keyframes

• Map
• pose graph

• Start
• how do I get depth for first keyframe?

• doesn’t seem to matter - random initialization
• as long as you refine the depths

• (roughly) stereo matching yields depth







More…

https://vision.in.tum.de/research/vslam/lsdslam

References on web page


