
Direct Slam
D.A. Forsyth, UIUC

Basic direct method

• Imagine a camera at a fixed height
• moving rigidly over a textured ground plane
• bottom half of image is distorted ground plane texture
• Q: when camera moves, how does distortion change?

x

y
z

Plane z=-h

(s, t, -h)
(u, v)=(-s/t, -h/t)

horizon (v=0)

x

y
z

Plane z=-h

(s, t, -h)
(u, v)=(-s/t, -h/t)

horizon (v=0)

0

@
U/W
V/W
1

1

A ⌘

0

@
U
V
W

1

A =

0

@
�1 0 0
0 0 1
0 1 0

1

A

0

@
s
t
�h

1

A

C

Image coordinates Plane texture coords

How the image distorts

• Camera moves relative to ground plane

• And we get an image transformation

Original texture

New image coords

0

@
U
V
W

1

A

2

=

0

@
�1 0 0
0 0 1
0 1 0

1

A
✓

R2D T
0 1

◆0

@
s
t
�h

1

A

0

@
U
V
W

1

A

2

=

0

@
�1 0 0
0 0 1
0 1 0

1

A
✓

R2D T
0 1

◆2

4

0

@
�1 0 0
0 0 1
0 1 0

1

A

3

5
�1 0

@
U
V
W

1

A

1

Original Image

New image coords

Motion

Motion

BUT - the texture hasn’t changed

• So

• Idea:
• minimize

• as a function of the rotation and translation

I

✓
U2(R,T)

W2(R,T)
,
V2(R,T)

W2(R,T)

◆
I

✓
U1

V1
,
U2

V2

◆
should be the same as

I

✓
U2(R,T)

W2(R,T)
,
V2(R,T)

W2(R,T)

◆
� I

✓
U1

V1
,
U2

V2

◆�2

Note: This gives odometry, and a form of map

Issues

• Minimize how?
• Typically, Newton’s method or a variant

• What about robustness?
• use an m-estimator, as in IRLS

• How to initialize?
• you could use interest points…
• but if movements are small you might not need to

• Why?
• massively improved estimates of rotation and translation IF you can min
• because very large numbers of points contribute

• Generalize
• camera moving in 3D and viewing a plane - easy, from drawing
• 3D world - more interesting

Direct SLAM in a 3D world

• RGB-D or stereo (sketch)
• align depth map in view 2 with that of view 1

• using rotation, translation, m-estimator+IRLS
• wrinkle - use intensity as well as depth

• keep
• aligned depths (prune redundancies) for mapping
• transformation (for localization)

Direct SLAM in a 3D world - I

• Monocular cameras
• semi-direct

• for the moment, feature points
• to predict image positions, we need depths
• Discovery:

• They’re not required for every frame
• a good R,T estimate comes from correspondence
• keyframes and depths refine

• and keyframe depths can be refined.

Quick and efficient

Direct SLAM in a 3D world - I

• Monocular cameras
• direct

• to predict image positions, we need depths
• Recall:

• keyframes are fine
• Discovery:

• keyframe depths are enough
• pose graph:

• key frames (nodes) linked by transforms (edges)

Essential steps

• Compare new frame to keyframe
• which has known depths
• compute R, T, from

• photometric error and depth error
• recall:

• depth -> image match -> photometric error
• (could adjust depths in keyframe using R,T, photometric error)

• Keyframe selection
• even sampling OR
• entropy of R,T from last keyframe to current frame j = H_j

• look at H_j/H_1
• ie am I getting bad at computing motion?
•

Essential steps

• Loop Closure
• match keyframes

• Map
• pose graph

• Start
• how do I get depth for first keyframe?

• doesn’t seem to matter - random initialization
• as long as you refine the depths

• (roughly) stereo matching yields depth

More…

https://vision.in.tum.de/research/vslam/lsdslam

References on web page

