Motion Planning II

D.A. Forsyth
(with a lot of H. Choset, and some J. Li)

Choset slides

Dimension and its nuisances

- Counting:
- A d-dimensional cube has 2^{\wedge} d vertices
- Volume:
- your intuitions about volume are wrong in high dimension
- consider cubical "orange" in high d
- skin depth e/2
- pulp (1-e)
- volume of pulp:
- $(1-\mathrm{e})^{\wedge} \mathrm{d}$
- volume of skin:
- 1-(1-e) ${ }^{\wedge} \mathrm{d}$

- IT'S ALL SKIN!
- Almost all the volume of high d objects is very close to surface

Dealing with C-Space Dimension

Full set of neighbors

Random subset of neighbors

- We should evaluate all the neighbors of the current state, but:
- Size of neighborhood grows exponentially with dimension
- Very expensive in high dimension

Solution:

- Evaluate only a random subset of K of the neighbors
- Move to the lowest potential neighbor

Sampling Techniques

Forbidden Space

Free Space

Sampling Techniques

Sample random locations

Choset slides

Sampling Techniques

Remove the samples in the forbidden regions

Sampling Techniques

Link each sample to its K nearest neighbors

Sampling Techniques

Remove the links that cross forbidden regions

Choset slides

Sampling Techniques

Remove the links that cross forbidden regions

The resulting graph is a probabilistic roadmap (PRM)

Sampling Techniques

Link the start and goal to the PRM and search using A*

Sampling Techniques

Continuous Space

Discretization I

A* Search

- "Good" sampling strategies are important:
- Uniform sampling
- Sample more near points with few neighbors
- Sample more close to the obstacles
- Use pre-computed sequence of samples

Sampling Techniques

- Remarkably, we can find a solution by using relatively few randomly sampled points.
- In most problems, a relatively small number of samples is sufficient to cover most of the feasible space with probability 1
- For a large class of problems:
- Prob(finding a path) $\rightarrow 1$ exponentially with the number of samples
- But, cannot detect that a path does not exist

Algorithm BuildRRT
Input: Initial configuration $q_{\text {init }}$, number of vertices in RRT K, incremental distance Δq)
Output: RRT graph G
G.init($q_{\text {init }}$)
for $k=1$ to K do
$q_{\text {rand }} \leftarrow$ RAND_CONF ()
$q_{\text {near }} \leftarrow$ NEAREST_VERTEX $\left(q_{\text {rand }}, G\right)$
$q_{\text {new }} \leftarrow$ NEW_CONF $\left(q_{\text {near }}, q_{\text {rand }}, \Delta q\right)$
G.add_vertex ($q_{\text {new }}$)
G.add_edge $\left(q_{\text {near }}, q_{\text {new }}\right)$
return G

- " \leftarrow " denotes assignment. For instance, "largest \leftarrow item" means that the value of largest changes to the value of item.
- "return" terminates the algorithm and outputs the following value.

Choset slides

Algorithm BuildRRT

Input: Initial configuration $q_{\text {init }}$, number of vertices in RRT K, incremental distance Δq)
Output: RRT graph G
G.init($\left.q_{\text {init }}\right)$
for $k=1$ to K do
$q_{\text {rand }} \leftarrow$ RAND_CONF ()
$q_{\text {near }} \leftarrow$ NEAREST_VERTEX $\left(q_{\text {rand }}, G\right)$
$q_{\text {new }} \leftarrow$ NEW_CONF $\left(q_{\text {near }}, q_{\text {rand }}, \Delta q\right)$
G.add_vertex ($q_{\text {new }}$)
G. add_edge ($\left.q_{\text {near }}, q_{\text {new }}\right)$
return G

- " \leftarrow " denotes assignment. For instance, "largest $\leftarrow i t e m "$ means that the value of largest changes to the value of item.
- "return" terminates the algorithm and outputs the following value.
- The sample qrand is drawn UAR from configuration space
- or reject if inside obstacle
- Notice
- node with big voronoi region of free space more likely to get expanded
- the nearest neighbor step
- so tree builds out into free space quickly
- in different applications, one uses different epsilon
- sometimes even add whole edge

Choset slides

Properties

\square

- Tends to explore the space rapidly in all directions
- Does not require extensive pre-processing
- Single query/multiple query problems
- Needs only collision detection test \rightarrow No need to represent/pre-compute the entire C-space
You have to be able to draw the samples - this can get tricky

Choset slides

From Kuffner et al.

Choset slides

- (Limited) background in Russell\&Norvig Chapter 25
- Two main books:
- J-C. Latombe. Robot Motion Planning. Kluwer. 1991.
-S. Lavalle. Planning Algorithms. 2006. http://msl.cs.uiuc.edu/planning/
- H. Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations. 2006.
- Other demos/examples:
- http://voronoi.sbp.ri.cmu.edu/~choset/
- http://www.kuffner.org/james/research.html
- http://msl.cs.uiuc.edu/rrt/

