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Topics

• Scamper through basic reinforcement learning ideas

• Imitation learning 


• and its variants and problems

• as structure learning



First learned steering controller
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https://www.alexirpan.com/2018/02/14/rl-hard.html

Blog post entitled:  “Why deep reinforcement learning doesn’t work”
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As you get further off the path, the probability 

of making an error grows, cause the classifier


thinks this state is rare
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Notice you might not actually need 

a human here - if your states are 


discretized, and you have enough data, 

you might get this by matching
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Variants of DAGGER

• AGGRAVATE

• AGGRAVATED



Notice you might not actually need 

a human here - if your states are 


discretized, and you have enough data, 

you might get this by matching
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Aggrevate



Aggrevate Notice you might not actually need 

a human here - if your states are 


discretized, and you have enough data, 

you might get this by matching

i.e. classifier minimizes sum of costs,

not zero-one loss



Aggrevated

• With properly chosen policy, can differentiate loss

• from aggrevate

• wrt parameters

• typically, policy is deep network


• Details

• paper
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Structured prediction examples

• Label a sequence of words with part of speech tags

• Predict line of text from a line of ink


• In each case:

• We must map a sequence to a sequence


• just like in choice of steering angle

• The “future” affects current decisions


• just like in choice of steering angle

• We have a bunch of labelled examples


• just like in choice of steering angle

Not a ‘b’

A ‘b’







Strategy - I

• Construct a parametric cost function


• Inference:


• Choose the best string

H(X ,Y; ✓)

<latexit sha1_base64="+6aPPu1rrM3NDzr3KSLtu998Z3c=">AAACQ3icbVBNaxsxFNSmbZK6X05z7EXUFFIoZjeUJFAKIbnkmEKdOLWMeSs/28KSdpHelphl/1sv+QO99Q/kkkNC6bVQ2d5Cm2RAMJqZx5MmzbXyFMc/opUHDx+trq0/bjx5+uz5i+bGyxOfFU5iR2Y6c90UPGplsUOKNHZzh2BSjafp9HDun35F51VmP9Msx76BsVUjJYGCNGh+OfsoUhwrW4JzMKtKWQmTZufhOuZG2UqIUkjQ/KwSaId1ii+1o2prSbrVO/439oELmiDB20GzFbfjBfhdktSkxWocD5rfxTCThUFLUoP3vSTOqR9WkpIaq4YoPOYgpzDGXqAWDPp+ueig4m+CMuSjzIVjiS/UfydKMN7PTBqSBmjib3tz8T6vV9Bor18qmxeEVi4XjQrNKePzQvlQOZSkZ4GAdCq8lcsJOJAUam+EEpLbX75LTrbbyU47+fS+tX9Q17HOXrHXbIslbJftsyN2zDpMsm/skl2zm+giuop+Rr+W0ZWontlk/yH6/QchVrIU</latexit>

Y =
arg min

Y
H(X ,Y; ✓)

Frame (known)

String (unknown)

Ink (known)

Steering (unknown)



For sequences

• Some natural choices

• cost function has form

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

Ink (known)

Text (unknown)

Notice this term reflects the “effect of the future”



For sequences

• Natural, because inference is easy

• dynamic programming

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

Ink (known)

Text (unknown)

Notice this term reflects the “effect of the future”



V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

X1 X2 X3



But we don’t know V, E   !

• We do have examples (X*, Y*)

• Idea:


• Choose V, E so that:

• Inference on X* yields Y*



Strategy for structured prediction

• Construct a parametric cost function


• So that, for training X*


• is close to correct Y*


• (see movies for some details on construction)

H(X ,Y; ✓)

Fragkiadaki, ND

argmin
Y H(X ⇤

,Y; ✓)



For sequences

• Some natural choices

• cost function:


• Make V, E linear in theta

• might involve complicated feature constructions

• BUT simplifies learning

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .



This yields

• The cost function has the form


• Choose theta so that for all training pairs x*, y*


• Note

• this isn’t one inequality - it’s one inequality per possible y!

• also, likely not feasible

• also, doesn’t prefer y’s that are “close” to y*

H(x, y; ✓) = ✓TG(x, y)

✓TG(x⇤, y⇤)  ✓TG(x⇤, y)



So rearrange inequalities

• Force G(x*, y) to grow:


• Rearrange, slack variable, and deal with many y:

✓TG(x⇤, y⇤) + ✏D(y, y⇤)  ✓TG(x⇤, y)

⇠ = (max(0,
max
y

✓T (G(x⇤, y⇤)�G(x⇤, y)) + ✏D(y, y⇤)



And now solve optimization problem

⇠i = (max(0,
max
y

✓T (G(x⇤
i, y

⇤
i)�G(x⇤

i, y)) + ✏D(y, y⇤i)

1

2
✓T ✓ +

X

i

⇠i

Don’t choose large theta - this helps generalization



Which is much nastier than it looks

⇠i = (max(0,
max
y

✓T (G(x⇤
i, y

⇤
i)�G(x⇤

i, y)) + ✏D(y, y⇤i)

1

2
✓T ✓ +

X

i

⇠i

Don’t choose large theta - this helps generalization

To take a step, we’ll need to know the sequence that maximizes this



Strategy

• Subgradient descent

• slacks aren’t differentiable, but it doesn’t really matter (piecewise linear)

• when you know the maximising y, the slacks are linear in theta


• Repeat

• pass through data, computing maximizing y


• can be brutally expensive

• this gives slacks as linear function of theta

• differentiate, take a gradient step



Applying this to predicting angle

• Simplest case:


• We’ve actually done this

• minimizing == choose the best angle for the current frame

• and this has problems because it doesn’t take future into account

Index gives frame

<latexit sha1_base64="bNSvNSdyLdeqwPzBIVYG52BeYQo=">AAACJ3icbZDLSsNAFIYn3q23qEs3g0WoICURUaEooiBdVrA10pQwmU7t0MmFmROhhLyNG1/FjaAiuvRNnDZZaPXAwMf/n8OZ8/ux4Aos69OYmp6ZnZtfWCwtLa+srpnrGy0VJZKyJo1EJB2fKCZ4yJrAQTAnlowEvmA3/uBi5N/cM6l4FF7DMGadgNyFvMcpAS155mnqUiJwPavk4GR7OKfbrOZCnwHZPXFVEngcX1Ycj+/hW4/XcGF5ZtmqWuPCf8EuoIyKanjmi9uNaBKwEKggSrVtK4ZOSiRwKlhWchPFYkIH5I61NYYkYKqTju/M8I5WurgXSf1CwGP150RKAqWGga87AwJ9NemNxP+8dgK9407KwzgBFtJ8US8RGCI8Cg13uWQUxFADoZLrv2LaJ5JQ0NGWdAj25Ml/obVftQ+r9tVB+ey8iGMBbaFtVEE2OkJnqI4aqIkoekBP6BW9GY/Gs/FufOStU0Yxs4l+lfH1DduCpBM=</latexit>

H(X ,Y; ✓) =
X

i

F (Xi, Yi; ✓)



Applying this to predicting angle

• Simplest case:


• Now things get interesting

• chosen angle depends on previous angle

• inference


• dynamic programming still works  (delicate)

• learning


• as above

• Q: what about more previous angles?

Index gives frame
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H(X ,Y; ✓) =
X

i

F (Xi, Yi�1, Yi; ✓)



Dynamic programming

L

R

LL

LR

RL

RR

LL

LR

RL

RR
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H(X ,Y; ✓) =
X

i

F (Xi, Yi�1, Yi; ✓)

Make “stacked” states



More previous angles…

• Q: Can you do this?

• Yes - as per stacked state argument


• Q:  Should you do this?

• Likely yes - roads have long scale structure, so should be able to smooth



Dynamic programming

Make “stacked” states
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H(X ,Y; ✓) =
X

i

F (Xi, Yi�2, Yi�1, Yi; ✓)
LLL

LLR

LRL

LRR

RLL

RLR

RRL

RRR

LLL

LLR

LRL

LRR

RLL

RLR

RRL

RRR
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Mitchell, via Fragkiadaki



Actually, we don’t really have pi; we have 

observations of what happens under pi, which


is not quite the same thing



This is really like structured prediction



LEARCH=IRL via structured prediction

• Adopt dual representation of policies in MDP

• Then it all boils down to what we’ve seen



Dual representation in MDPs

You can represent a policy by the distribution state-action pairs that arises, via a fairly fiddly duality 
argument.  Such representations are constrained.




Dual representations of policies

• We’re interested in policies that go from start to goal

• and are deterministic and acyclic

• you can represent these with an indicator vector for each state action pair


• 1 if in that state you do that action

• 0 otherwise


• Big point

• assume we have a cost for each state action pair


• write c

• then cost of policy mu is 

µT c



Cost is some function of state, action

• Assume that it is linear in features

• so


• We know features for any instance,

• but we don’t know w

• we assume that w is the same across instances

• and we have seen experts

c = wTF

This is a matrix of features,

and it may change from


instance to instance (obstacles

in different places, etc.)



The cost incurred by an expert

• Cost for instance i takes the form


• Assume each time the expert does the optimal thing

cTµi = wTFµi

Known

Unknown

cTµi  cTµ

For ANY other mu!



But this is what we saw before…

• Details in Learch paper


