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Topics

• Scamper through basic reinforcement learning ideas
• Imitation learning 

• and its variants and problems
• as structure learning



First learned steering controller



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Fei-Fei+Johnson+Yeung 17



Levine, ND



https://www.alexirpan.com/2018/02/14/rl-hard.html

Blog post entitled:  “Why deep reinforcement learning doesn’t work”
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As you get further off the path, the probability 
of making an error grows, cause the classifier

thinks this state is rare
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Notice you might not actually need 
a human here - if your states are 

discretized, and you have enough data, 
you might get this by matching
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Variants of DAGGER

• AGGRAVATE
• AGGRAVATED



Notice you might not actually need 
a human here - if your states are 

discretized, and you have enough data, 
you might get this by matching
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Aggrevate



Aggrevate Notice you might not actually need 
a human here - if your states are 

discretized, and you have enough data, 
you might get this by matching

i.e. classifier minimizes sum of costs,
not zero-one loss



Aggrevated

• With properly chosen policy, can differentiate loss
• from aggrevate
• wrt parameters
• typically, policy is deep network

• Details
• paper
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Structured prediction examples

• Label a sequence of words with part of speech tags
• Predict line of text from a line of ink

• In each case:
• We must map a sequence to a sequence

• just like in choice of steering angle
• The “future” affects current decisions

• just like in choice of steering angle
• We have a bunch of labelled examples

• just like in choice of steering angle

Not a ‘b’

A ‘b’







Strategy - I

• Construct a parametric cost function

• Inference:

• Choose the best string

H(X ,Y; ✓)

<latexit sha1_base64="+6aPPu1rrM3NDzr3KSLtu998Z3c="></latexit>

Y =
arg min

Y
H(X ,Y; ✓)

Frame (known)

String (unknown)

Ink (known)

Steering (unknown)



For sequences

• Some natural choices
• cost function has form

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

Ink (known)

Text (unknown)

Notice this term reflects the “effect of the future”



For sequences

• Natural, because inference is easy
• dynamic programming

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

Ink (known)

Text (unknown)

Notice this term reflects the “effect of the future”



V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

X1 X2 X3



But we don’t know V, E   !

• We do have examples (X*, Y*)
• Idea:

• Choose V, E so that:
• Inference on X* yields Y*



Strategy for structured prediction

• Construct a parametric cost function

• So that, for training X*

• is close to correct Y*

• (see movies for some details on construction)

H(X ,Y; ✓)

Fragkiadaki, ND

argmin
Y H(X ⇤

,Y; ✓)



For sequences

• Some natural choices
• cost function:

• Make V, E linear in theta
• might involve complicated feature constructions
• BUT simplifies learning

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .



This yields

• The cost function has the form

• Choose theta so that for all training pairs x*, y*

• Note
• this isn’t one inequality - it’s one inequality per possible y!
• also, likely not feasible
• also, doesn’t prefer y’s that are “close” to y*

H(x, y; ✓) = ✓TG(x, y)

✓TG(x⇤, y⇤)  ✓TG(x⇤, y)



So rearrange inequalities

• Force G(x*, y) to grow:

• Rearrange, slack variable, and deal with many y:

✓TG(x⇤, y⇤) + ✏D(y, y⇤)  ✓TG(x⇤, y)

⇠ = (max(0,
max
y

✓T (G(x⇤, y⇤)�G(x⇤, y)) + ✏D(y, y⇤)



And now solve optimization problem

⇠i = (max(0,
max
y

✓T (G(x⇤
i, y

⇤
i)�G(x⇤

i, y)) + ✏D(y, y⇤i)

1

2
✓T ✓ +

X

i

⇠i

Don’t choose large theta - this helps generalization



Which is much nastier than it looks

⇠i = (max(0,
max
y

✓T (G(x⇤
i, y

⇤
i)�G(x⇤

i, y)) + ✏D(y, y⇤i)

1

2
✓T ✓ +

X

i

⇠i

Don’t choose large theta - this helps generalization

To take a step, we’ll need to know the sequence that maximizes this



Strategy

• Subgradient descent
• slacks aren’t differentiable, but it doesn’t really matter (piecewise linear)
• when you know the maximising y, the slacks are linear in theta

• Repeat
• pass through data, computing maximizing y

• can be brutally expensive
• this gives slacks as linear function of theta
• differentiate, take a gradient step



Applying this to predicting angle

• Simplest case:

• We’ve actually done this
• minimizing == choose the best angle for the current frame
• and this has problems because it doesn’t take future into account

Index gives frame

<latexit sha1_base64="bNSvNSdyLdeqwPzBIVYG52BeYQo=">AAACJ3icbZDLSsNAFIYn3q23qEs3g0WoICURUaEooiBdVrA10pQwmU7t0MmFmROhhLyNG1/FjaAiuvRNnDZZaPXAwMf/n8OZ8/ux4Aos69OYmp6ZnZtfWCwtLa+srpnrGy0VJZKyJo1EJB2fKCZ4yJrAQTAnlowEvmA3/uBi5N/cM6l4FF7DMGadgNyFvMcpAS155mnqUiJwPavk4GR7OKfbrOZCnwHZPXFVEngcX1Ycj+/hW4/XcGF5ZtmqWuPCf8EuoIyKanjmi9uNaBKwEKggSrVtK4ZOSiRwKlhWchPFYkIH5I61NYYkYKqTju/M8I5WurgXSf1CwGP150RKAqWGga87AwJ9NemNxP+8dgK9407KwzgBFtJ8US8RGCI8Cg13uWQUxFADoZLrv2LaJ5JQ0NGWdAj25Ml/obVftQ+r9tVB+ey8iGMBbaFtVEE2OkJnqI4aqIkoekBP6BW9GY/Gs/FufOStU0Yxs4l+lfH1DduCpBM=</latexit>

H(X ,Y; ✓) =
X

i

F (Xi, Yi; ✓)



Applying this to predicting angle

• Simplest case:

• Now things get interesting
• chosen angle depends on previous angle
• inference

• dynamic programming still works  (delicate)
• learning

• as above
• Q: what about more previous angles?

Index gives frame

<latexit sha1_base64="MC3Cuywo347Su/1N0gvVg2ApQHc="></latexit>

H(X ,Y; ✓) =
X

i

F (Xi, Yi�1, Yi; ✓)



Dynamic programming

L

R

LL

LR

RL

RR

LL

LR

RL

RR

<latexit sha1_base64="MC3Cuywo347Su/1N0gvVg2ApQHc=">AAACMHicbZDLSgMxFIYzXmu9VV26CRahQi0zIioUoSholxXsRTplyKRpG5q5kJwRyjCP5MZH0Y2CIm59CtN2Flr9IfDxn3M4Ob8bCq7ANF+NufmFxaXlzEp2dW19YzO3td1QQSQpq9NABLLlEsUE91kdOAjWCiUjnitY0x1ejuvNeyYVD/xbGIWs45G+z3ucEtCWk7uObUoEriaFKbSSIp7SXVK2YcCAHJzbKvIcjq8KLYcX8Z0T80MrGQMv47THyeXNkjkR/gtWCnmUqubknuxuQCOP+UAFUaptmSF0YiKBU8GSrB0pFhI6JH3W1ugTj6lOPDk4wfva6eJeIPXzAU/cnxMx8ZQaea7u9AgM1GxtbP5Xa0fQO+vE3A8jYD6dLupFAkOAx+nhLpeMghhpIFRy/VdMB0QSCjrjrA7Bmj35LzSOStZJybo5zlcu0jgyaBftoQKy0CmqoCqqoTqi6AE9ozf0bjwaL8aH8TltnTPSmR30S8bXNyLcpzA=</latexit>

H(X ,Y; ✓) =
X

i

F (Xi, Yi�1, Yi; ✓)

Make “stacked” states



More previous angles…

• Q: Can you do this?
• Yes - as per stacked state argument

• Q:  Should you do this?
• Likely yes - roads have long scale structure, so should be able to smooth



Dynamic programming

Make “stacked” states

<latexit sha1_base64="q+fL0MTQa/gUQ+KZts53a3/Lkvs="></latexit>

H(X ,Y; ✓) =
X

i

F (Xi, Yi�2, Yi�1, Yi; ✓)
LLL

LLR

LRL

LRR

RLL

RLR

RRL

RRR

LLL

LLR

LRL

LRR

RLL

RLR

RRL

RRR
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Mitchell, via Fragkiadaki



Actually, we don’t really have pi; we have 
observations of what happens under pi, which

is not quite the same thing



This is really like structured prediction



LEARCH=IRL via structured prediction

• Adopt dual representation of policies in MDP
• Then it all boils down to what we’ve seen



Dual representation in MDPs

You can represent a policy by the distribution state-action pairs that arises, via a fairly fiddly duality 
argument.  Such representations are constrained.



Dual representations of policies

• We’re interested in policies that go from start to goal
• and are deterministic and acyclic
• you can represent these with an indicator vector for each state action pair

• 1 if in that state you do that action
• 0 otherwise

• Big point
• assume we have a cost for each state action pair

• write c
• then cost of policy mu is 

µT c



Cost is some function of state, action

• Assume that it is linear in features
• so

• We know features for any instance,
• but we don’t know w
• we assume that w is the same across instances
• and we have seen experts

c = wTF

This is a matrix of features,
and it may change from

instance to instance (obstacles
in different places, etc.)



The cost incurred by an expert

• Cost for instance i takes the form

• Assume each time the expert does the optimal thing

cTµi = wTFµi

Known

Unknown

cTµi  cTµ

For ANY other mu!



But this is what we saw before…

• Details in Learch paper


