
Learning to control
D.A.Forsyth, UIUC

Topics

• Scamper through basic reinforcement learning ideas

• Imitation learning

• and its variants and problems

• as structure learning

First learned steering controller

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Fei-Fei+Johnson+Yeung 17

Levine, ND

https://www.alexirpan.com/2018/02/14/rl-hard.html

Blog post entitled: “Why deep reinforcement learning doesn’t work”

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

As you get further off the path, the probability

of making an error grows, cause the classifier

thinks this state is rare

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Notice you might not actually need

a human here - if your states are

discretized, and you have enough data,

you might get this by matching

Fragkiadaki, ND

Variants of DAGGER

• AGGRAVATE

• AGGRAVATED

Notice you might not actually need

a human here - if your states are

discretized, and you have enough data,

you might get this by matching

Fragkiadaki, ND

Aggrevate

Aggrevate Notice you might not actually need

a human here - if your states are

discretized, and you have enough data,

you might get this by matching

i.e. classifier minimizes sum of costs,

not zero-one loss

Aggrevated

• With properly chosen policy, can differentiate loss

• from aggrevate

• wrt parameters

• typically, policy is deep network

• Details

• paper

Fragkiadaki, ND

Structured prediction examples

• Label a sequence of words with part of speech tags

• Predict line of text from a line of ink

• In each case:

• We must map a sequence to a sequence

• just like in choice of steering angle

• The “future” affects current decisions

• just like in choice of steering angle

• We have a bunch of labelled examples

• just like in choice of steering angle

Not a ‘b’

A ‘b’

Strategy - I

• Construct a parametric cost function

• Inference:

• Choose the best string

H(X ,Y; ✓)

<latexit sha1_base64="+6aPPu1rrM3NDzr3KSLtu998Z3c=">AAACQ3icbVBNaxsxFNSmbZK6X05z7EXUFFIoZjeUJFAKIbnkmEKdOLWMeSs/28KSdpHelphl/1sv+QO99Q/kkkNC6bVQ2d5Cm2RAMJqZx5MmzbXyFMc/opUHDx+trq0/bjx5+uz5i+bGyxOfFU5iR2Y6c90UPGplsUOKNHZzh2BSjafp9HDun35F51VmP9Msx76BsVUjJYGCNGh+OfsoUhwrW4JzMKtKWQmTZufhOuZG2UqIUkjQ/KwSaId1ii+1o2prSbrVO/439oELmiDB20GzFbfjBfhdktSkxWocD5rfxTCThUFLUoP3vSTOqR9WkpIaq4YoPOYgpzDGXqAWDPp+ueig4m+CMuSjzIVjiS/UfydKMN7PTBqSBmjib3tz8T6vV9Bor18qmxeEVi4XjQrNKePzQvlQOZSkZ4GAdCq8lcsJOJAUam+EEpLbX75LTrbbyU47+fS+tX9Q17HOXrHXbIslbJftsyN2zDpMsm/skl2zm+giuop+Rr+W0ZWontlk/yH6/QchVrIU</latexit>

Y =
arg min

Y
H(X ,Y; ✓)

Frame (known)

String (unknown)

Ink (known)

Steering (unknown)

For sequences

• Some natural choices

• cost function has form

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

Ink (known)

Text (unknown)

Notice this term reflects the “effect of the future”

For sequences

• Natural, because inference is easy

• dynamic programming

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

Ink (known)

Text (unknown)

Notice this term reflects the “effect of the future”

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

X1 X2 X3

But we don’t know V, E !

• We do have examples (X*, Y*)

• Idea:

• Choose V, E so that:

• Inference on X* yields Y*

Strategy for structured prediction

• Construct a parametric cost function

• So that, for training X*

• is close to correct Y*

• (see movies for some details on construction)

H(X ,Y; ✓)

Fragkiadaki, ND

argmin
Y H(X ⇤

,Y; ✓)

For sequences

• Some natural choices

• cost function:

• Make V, E linear in theta

• might involve complicated feature constructions

• BUT simplifies learning

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

This yields

• The cost function has the form

• Choose theta so that for all training pairs x*, y*

• Note

• this isn’t one inequality - it’s one inequality per possible y!

• also, likely not feasible

• also, doesn’t prefer y’s that are “close” to y*

H(x, y; ✓) = ✓TG(x, y)

✓TG(x⇤, y⇤)  ✓TG(x⇤, y)

So rearrange inequalities

• Force G(x*, y) to grow:

• Rearrange, slack variable, and deal with many y:

✓TG(x⇤, y⇤) + ✏D(y, y⇤)  ✓TG(x⇤, y)

⇠ = (max(0,
max
y

✓T (G(x⇤, y⇤)�G(x⇤, y)) + ✏D(y, y⇤)

And now solve optimization problem

⇠i = (max(0,
max
y

✓T (G(x⇤
i, y

⇤
i)�G(x⇤

i, y)) + ✏D(y, y⇤i)

1

2
✓T ✓ +

X

i

⇠i

Don’t choose large theta - this helps generalization

Which is much nastier than it looks

⇠i = (max(0,
max
y

✓T (G(x⇤
i, y

⇤
i)�G(x⇤

i, y)) + ✏D(y, y⇤i)

1

2
✓T ✓ +

X

i

⇠i

Don’t choose large theta - this helps generalization

To take a step, we’ll need to know the sequence that maximizes this

Strategy

• Subgradient descent

• slacks aren’t differentiable, but it doesn’t really matter (piecewise linear)

• when you know the maximising y, the slacks are linear in theta

• Repeat

• pass through data, computing maximizing y

• can be brutally expensive

• this gives slacks as linear function of theta

• differentiate, take a gradient step

Applying this to predicting angle

• Simplest case:

• We’ve actually done this

• minimizing == choose the best angle for the current frame

• and this has problems because it doesn’t take future into account

Index gives frame

<latexit sha1_base64="bNSvNSdyLdeqwPzBIVYG52BeYQo=">AAACJ3icbZDLSsNAFIYn3q23qEs3g0WoICURUaEooiBdVrA10pQwmU7t0MmFmROhhLyNG1/FjaAiuvRNnDZZaPXAwMf/n8OZ8/ux4Aos69OYmp6ZnZtfWCwtLa+srpnrGy0VJZKyJo1EJB2fKCZ4yJrAQTAnlowEvmA3/uBi5N/cM6l4FF7DMGadgNyFvMcpAS155mnqUiJwPavk4GR7OKfbrOZCnwHZPXFVEngcX1Ycj+/hW4/XcGF5ZtmqWuPCf8EuoIyKanjmi9uNaBKwEKggSrVtK4ZOSiRwKlhWchPFYkIH5I61NYYkYKqTju/M8I5WurgXSf1CwGP150RKAqWGga87AwJ9NemNxP+8dgK9407KwzgBFtJ8US8RGCI8Cg13uWQUxFADoZLrv2LaJ5JQ0NGWdAj25Ml/obVftQ+r9tVB+ey8iGMBbaFtVEE2OkJnqI4aqIkoekBP6BW9GY/Gs/FufOStU0Yxs4l+lfH1DduCpBM=</latexit>

H(X ,Y; ✓) =
X

i

F (Xi, Yi; ✓)

Applying this to predicting angle

• Simplest case:

• Now things get interesting

• chosen angle depends on previous angle

• inference

• dynamic programming still works (delicate)

• learning

• as above

• Q: what about more previous angles?

Index gives frame

<latexit sha1_base64="MC3Cuywo347Su/1N0gvVg2ApQHc=">AAACMHicbZDLSgMxFIYzXmu9VV26CRahQi0zIioUoSholxXsRTplyKRpG5q5kJwRyjCP5MZH0Y2CIm59CtN2Flr9IfDxn3M4Ob8bCq7ANF+NufmFxaXlzEp2dW19YzO3td1QQSQpq9NABLLlEsUE91kdOAjWCiUjnitY0x1ejuvNeyYVD/xbGIWs45G+z3ucEtCWk7uObUoEriaFKbSSIp7SXVK2YcCAHJzbKvIcjq8KLYcX8Z0T80MrGQMv47THyeXNkjkR/gtWCnmUqubknuxuQCOP+UAFUaptmSF0YiKBU8GSrB0pFhI6JH3W1ugTj6lOPDk4wfva6eJeIPXzAU/cnxMx8ZQaea7u9AgM1GxtbP5Xa0fQO+vE3A8jYD6dLupFAkOAx+nhLpeMghhpIFRy/VdMB0QSCjrjrA7Bmj35LzSOStZJybo5zlcu0jgyaBftoQKy0CmqoCqqoTqi6AE9ozf0bjwaL8aH8TltnTPSmR30S8bXNyLcpzA=</latexit>

H(X ,Y; ✓) =
X

i

F (Xi, Yi�1, Yi; ✓)

Dynamic programming

L

R

LL

LR

RL

RR

LL

LR

RL

RR

<latexit sha1_base64="MC3Cuywo347Su/1N0gvVg2ApQHc=">AAACMHicbZDLSgMxFIYzXmu9VV26CRahQi0zIioUoSholxXsRTplyKRpG5q5kJwRyjCP5MZH0Y2CIm59CtN2Flr9IfDxn3M4Ob8bCq7ANF+NufmFxaXlzEp2dW19YzO3td1QQSQpq9NABLLlEsUE91kdOAjWCiUjnitY0x1ejuvNeyYVD/xbGIWs45G+z3ucEtCWk7uObUoEriaFKbSSIp7SXVK2YcCAHJzbKvIcjq8KLYcX8Z0T80MrGQMv47THyeXNkjkR/gtWCnmUqubknuxuQCOP+UAFUaptmSF0YiKBU8GSrB0pFhI6JH3W1ugTj6lOPDk4wfva6eJeIPXzAU/cnxMx8ZQaea7u9AgM1GxtbP5Xa0fQO+vE3A8jYD6dLupFAkOAx+nhLpeMghhpIFRy/VdMB0QSCjrjrA7Bmj35LzSOStZJybo5zlcu0jgyaBftoQKy0CmqoCqqoTqi6AE9ozf0bjwaL8aH8TltnTPSmR30S8bXNyLcpzA=</latexit>

H(X ,Y; ✓) =
X

i

F (Xi, Yi�1, Yi; ✓)

Make “stacked” states

More previous angles…

• Q: Can you do this?

• Yes - as per stacked state argument

• Q: Should you do this?

• Likely yes - roads have long scale structure, so should be able to smooth

Dynamic programming

Make “stacked” states

<latexit sha1_base64="q+fL0MTQa/gUQ+KZts53a3/Lkvs=">AAACOXicbZDLSsNAFIYnXmu9RV26GSxCBS2JiAoiFAVxWcFqSlPCZDq1QycXZk6EEvJabnwLd4IbF4q49QWcpllo9YeBj/+cw5nz+7HgCizr2Zianpmdmy8tlBeXlldWzbX1GxUlkrImjUQkHZ8oJnjImsBBMCeWjAS+YLf+4HxUv71nUvEovIZhzDoBuQt5j1MC2vLMRupSIvBlVh2Dk+3iMbWyExf6DMjOqauSwOP4oup4fBe3vJTv7WcF2DnwE1w0e2bFqlm58F+wC6igQg3PfHK7EU0CFgIVRKm2bcXQSYkETgXLym6iWEzogNyxtsaQBEx10vzyDG9rp4t7kdQvBJy7PydSEig1DHzdGRDoq8nayPyv1k6gd9xJeRgnwEI6XtRLBIYIj2LEXS4ZBTHUQKjk+q+Y9okkFHTYZR2CPXnyX7jZr9mHNfvqoFI/K+IooU20harIRkeoji5RAzURRQ/oBb2hd+PReDU+jM9x65RRzGygXzK+vgGFQKpO</latexit>

H(X ,Y; ✓) =
X

i

F (Xi, Yi�2, Yi�1, Yi; ✓)
LLL

LLR

LRL

LRR

RLL

RLR

RRL

RRR

LLL

LLR

LRL

LRR

RLL

RLR

RRL

RRR

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Mitchell, via Fragkiadaki

Actually, we don’t really have pi; we have

observations of what happens under pi, which

is not quite the same thing

This is really like structured prediction

LEARCH=IRL via structured prediction

• Adopt dual representation of policies in MDP

• Then it all boils down to what we’ve seen

Dual representation in MDPs

You can represent a policy by the distribution state-action pairs that arises, via a fairly fiddly duality
argument. Such representations are constrained.

Dual representations of policies

• We’re interested in policies that go from start to goal

• and are deterministic and acyclic

• you can represent these with an indicator vector for each state action pair

• 1 if in that state you do that action

• 0 otherwise

• Big point

• assume we have a cost for each state action pair

• write c

• then cost of policy mu is

µT c

Cost is some function of state, action

• Assume that it is linear in features

• so

• We know features for any instance,

• but we don’t know w

• we assume that w is the same across instances

• and we have seen experts

c = wTF

This is a matrix of features,

and it may change from

instance to instance (obstacles

in different places, etc.)

The cost incurred by an expert

• Cost for instance i takes the form

• Assume each time the expert does the optimal thing

cTµi = wTFµi

Known

Unknown

cTµi  cTµ

For ANY other mu!

But this is what we saw before…

• Details in Learch paper

