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The SLAM Problem

" SLAM stands for simultaneous localization and
mapping

" The task of building a map while estimating
the pose of the robot relative to this map

" Why is SLAM hard?
Chicken-or-egg problem:

" a map is needed to localize the robot and
a pose estimate is needed to build a map

From Burgard et al slides



Alternative view of SLAM

® We already know we can do it
® for example
® do the matrix factorization stuff incrementally
® visual odometry then triangulate

e BUT
® that doesn’t take uncertainty into account
® What we’re doing now 1s
® wrapping an EKF (other filter) around ideas we’ve seen before



Why is SLAM a hard problem?

% ¥ % % ¥ %
0\ ,l \\ ,.

\

/
/
/
/

o — Robot pose __— o

uncertainty

\

= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences

= Pose error correlates data associations

From Burgard et al slides



In factorization language

® Which point in image 1 goes into which row of the matrix?
® ¢et that wrong enough often enough and you’re in trouble

® (Obvious we can do something about this
® cg assume we have OK reconstruction from frame 1..N-1
® in frame N, estimate camera motion from
® small number of reliable point correspondences +VO
® shaft encoders, etc.
® now sort out all other observations
® cg map to the point that appears closest in predicted camera



Data Association Problem
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= A data association is an assignment of

observations to landmarks
= In general there are more than ("’)

m

(n observations, m landmarks) possible
associations

= Also called "assignment problem”

From Burgard et al slides



State

All landmark positions
in original coordinate
frame

Position and orientation of the robot

Landmark 1 position in OCF



For sufficiently small timestep, bounded rate of change in angle, we get
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A general movement model
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v, u parameters of motion



A general movement model
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v_t = velocity
omega_t = rotational velocity
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Recall: The extended Kalman filter

® [inearize: x; = f(Xi-1,1)
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Posterior covariance of x_{i-1}

x; ~ N(f(xF,,0), Fo. Xt | FL 4+ FuXn i FD)

Noise covariance




Measuring position

U
U

® [andmark is at:
® in world coordinate system

® We record position in vehicle’s frame:

vehicle orientation point posn in
in world coords  world coords

Observation l
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point posn in vehicle posn in

vehicle coords world coords



Recall: The extended Kalman filter

® Linearize: yi = g(x;,n)
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Old slide

Dynamic Model:

X; = f(Xi—lan)

Yi — g(Xi7 Il)

Start Assumptions: T, and X, are known
Update Equations: Prediction 7"~ Z_

/Z P e .
X N(f(xi_l,O),foi_l]:x -+ FnEn,ZFn

Update Equations: Correction
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The extended kalman filter



Correction!

Dynamic Model:

X; = f(Xi—lvn)
Y = g(Xian)

Start Assumptions: T, and X, are known
Update Equations: Prediction 7"~ Z_
)

/Z — T sl T
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Update Equations: Correction
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The extended kalman filter



In principle, now easy

® Rather horrid from the point of view of complexity
® ]ooks like we have to invert a 3+N by 3+N matrix!

e BUT

® [_x is much simpler than it might look
® the landmarks do not move!
® [ n ditto
® there is no noise in the landmark updates - the landmarks are fixed
® (Qutcome:
® We can deal with landmarks one by one
® and so do many small matrix inversions rather than one large one



State update

® The vehicle moves, as above;
® but the landmarks don’t move ~
® and there 1sn’t any noise R
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Lo




In principle, now easy

e BUT

® [_x is much simpler than it might look
® the landmarks do not move!
® F_nditto
® there is no noise in the landmark updates - the landmarks are fixed
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Effects:

® Imagine we have 2 landmarks

x; ~ N(f(xi_1,0), FoXif (FL + Fpn3n i Fr

Recall EKF:
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Notice fewer matrix multiplies!




Effects:

® Imagine we have 2 landmarks

Recall EKF:
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More simplifications

e BUT

® G_x 1s much simpler than it might look
® cach set of measurements affected by only one landmark!

N N=Number of landmarks

A e
G| " 0 G 00 0

00N
L SR 0 0 0 0 F7r |



More simplifications

e BUT

® G_n is usually much simpler than it might look
® noise is usually additive normal noise

® This means that the term: Qn En Zg;{

® s actually a block diagonal matrix



Big simplification

® The nasty bit...
—1
G Gy +Gn Ym0, |

® But notice key point
® measurements interact only through the position/orientation of the vehicle
® OR measurements are conditionally independent conditioned on pose of v.
® OR you could subdivide time and update measurements one by one
® OR matrix G_x has the sparsity structure above

® (the same point, manifesting in different ways)



Subdividing time...

® We receive measurements of landmarks in some order
® a measurement of the position of landmark i affects the whole state
® because it changes your estimate of the location of the vehicle
® and that affects your estimate of state of every landmark
e BUT
® the change in estimate of location depends ONLY on
® Jocation
® Jandmark 1



Steps in EKF
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One measurement from one landmark!

Steps in EKF

34+INX2 342N x 2 2x2

Notice:
Inverting only a small matrix

3+2Nx2
2x1
Notice:
But affecting the whole state!




Landmarks

Which measurement comes from which landmark?

® data association -
® use some form of bipartite graph matching

® [dea: _
X,
® predicts landmark positions, vehicle position before obs
® compute distances between all pairs of
® predicted obs, real obs
® bipartite graph matcher

® OR greedy



Landmarks

® No measurement from a landmark?

® structure of EKF means you can process landmarks one by one
® that’s what all the matrix surgery was about
® 50 don’t update that landmark

® How do we know no measurement from a landmark?

® refuse to match if distance in greedy/bipartite is too big
® other kinds of matching problem (color, features, etc)



Measuring distance and orientation

e [.andmark is at: { u }

® in global coordinate system

® We record distance and heading:
® measurement

Hﬁ}:[ V(e —u)? +(y—v)? }

atan2(y —u,x —v) — 0

THIS ISN’T LINEAR!



A further trick: inverting measurement

e Example: measure distance and orientation to point

U point posn in
|: v :| world coords

vehicle posn in
world coords l

Observation

[ ][ e ]

atan2(y —u,x —v) — 0

|

vehicle orientation
in world coords




Range and bearing

Landmark position

Observation »[ Z ] _ [ \/(95—114)2 + (9—711)2 ]

atan2(y — u,x —v) — 0

P

Vehicle state

- 515;132;28;?2%]
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Noise affecting measurements

These are measurements
of landmark ONLY

Here use the current estimate of vehicle state



Bearing only (sketch)

® (Cannot determine landmark in 2D from measurement
® it’s on a line!
® you must come up with a prior
® after that, it’s easy
® {ind mean posterior location, covariance
® plugin
® Big Issue
® True prior should have infinite covariance
® can’t work with that
® 5o linearization may fail



